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Abstract The H -free process, for some fixed graph H , is the random graph
process defined by starting with an empty graph on n vertices and then adding
edges one at a time, chosen uniformly at random subject to the constraint that
no H subgraph is formed. Let G be the random maximal H -free graph ob-
tained at the end of the process. When H is strictly 2-balanced, we show that
for some c > 0, with high probability as n → ∞, the minimum degree in G

is at least cn1−(vH −2)/(eH −1)(logn)1/(eH −1). This gives new lower bounds for
the Turán numbers of certain bipartite graphs, such as the complete bipartite
graphs Kr,r with r ≥ 5. When H is a complete graph Ks with s ≥ 5 we show
that for some C > 0, with high probability the independence number of G is
at most Cn2/(s+1)(logn)1−1/(eH −1). This gives new lower bounds for Ramsey
numbers R(s, t) for fixed s ≥ 5 and t large. We also obtain new bounds for the
independence number of G for other graphs H , including the case when H

is a cycle. Our proofs use the differential equations method for random graph
processes to analyse the evolution of the process, and give further information
about the structure of the graphs obtained, including asymptotic formulae for
a broad class of subgraph extension variables.
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1 Introduction

Random graph processes provide a natural context for modeling a complex
network that evolves over time. While there has been considerable recent in-
terest in using such processes to model networks that arise in applications
(see [11] and the references therein), random graphs have long been an im-
portant component in the construction of sophisticated combinatorial objects
(see [2]). In the classical Erdős-Rényi random graph model G(n,p) each pair
of vertices appears as an edge with probability p = p(n) and these choices
are mutually independent. The closely related random graph G(n, i) is chosen
uniformly at random from the collection of all graphs with n vertices and i

edges. These models are well understood, but distributions on graphs given by
random processes in which there is significant dependence among the choices
made in different rounds are typically much more difficult to analyse. For
many such processes even the most basic quantities, such as the number of
edges in the final graph, are not known (see [21], for example).

In this paper we analyse a significant portion of the initial evolution of the
H -free process, for some fixed graph H , defined by starting with an empty
graph on n vertices and then adding edges one at a time, chosen uniformly
at random subject to the constraint that no H subgraph is formed. More for-
mally, we begin with the graph on n vertices with no edges, which we denote
G(0). Now suppose i > 0 and we have some graph G(i − 1). We say that a
pair uv of vertices is open in G(i − 1) if uv is not an edge of G(i − 1) and
G(i − 1) ∪ {uv} does not contain H as a subgraph. We choose uv uniformly
at random among all open pairs in G(i − 1) and then G(i) is obtained from
G(i − 1) by adding the edge ei = uv. The process terminates when there are
no open pairs, with some graph G on n vertices that is a maximal H -free
graph. Beside being of interest in its own right, our analysis of this process
produces new results in Ramsey theory and the theory of Turán problems.

Erdős, Suen and Winkler [17] suggested this process as a means to gener-
ate an interesting probability distribution on the collection of maximal H -free
graphs, or more generally maximal graphs with any fixed graph property.1

They obtained results on the triangle-free process and the bipartite process,
using a differential equations method that had been previously applied by
Ruciński and Wormald [28] to analyse the ‘maximum degree d’ process. An-
other motivation for their work was that their analysis of the triangle-free
process led to the best lower bound on the Ramsey number R(3, t) known at
that time.

Ramsey theory encompasses a variety of results expressing the informal
principle that all large systems have some structure. It is a source of many

1Bollobás (personal communication) informs us that such processes were considered earlier,
if not in print.
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challenging unsolved combinatorial problems and has applications through-
out mathematics. We refer the reader to [22] for an introduction to the sub-
ject. The Ramsey number R(s, t) is the least number n such that any graph
on n vertices contains a complete graph with s vertices or an independent set
with t vertices. In general, very little is known about these numbers, even ap-
proximately. The upper bound R(3, t) = O(t2/ log t) was obtained by Ajtai
et al. [1], but for many years the best known lower bound, due to Erdős [12],
was �(t2/ log2 t). Spencer [33] conjectured that the triangle-free process is
likely to produce a graph that establishes a good lower bound on R(3, t) for
t large; the idea being that the triangle-free process admits enough random
edges to bring the independence number close to the smallest possible for
a triangle-free graph. Finally, Kim [23] determined the order of magnitude,
showing that R(3, t) = �(t2/ log t). His proof made use of a semi-random
construction that is motivated (even guided) by the triangle-free process,
but the question remained open as to whether the triangle-free process it-
self gives such a good construction. This was answered by Bohman [7], who
showed that with high probability, the graph produced by the triangle-free
process has independence number bounded above by O(n1/2 log1/2 n) and
minimum degree bounded below by �(n1/2 log1/2 n). He went on to analyse
the K4-free process, improving the best known lower bound on R(4, t) to
R(4, t) > �(t5/2/ log2 t).

The general H -free process was independently studied by Osthus and
Taraz [26] and by Bollobás and Riordan [8]. Say that a graph H is strictly
2-balanced if the number of vertices vH and edges eH in H are both at least
3 and

eH − 1

vH − 2
>

eK − 1

vK − 2

for all proper subgraphs K of H with vK ≥ 3. Osthus and Taraz showed
that if H is strictly 2-balanced then for some c,C > 0 with high probability,
for the H -free process G has average degree at least cn1−(vH −2)/(eH −1) and
maximum degree at most Cn1−(vH −2)/(eH −1)(logn)1/(�(H)−1). (In fact they
proved the average degree bound under a similar but weaker condition on H .)
Wolfovitz [36] showed that if H is strictly 2-balanced and regular then the ex-
pected number of edges in G is at least cn2−(vH −2)/(eH −1)(log logn)1/(eH −1).
An immediate consequence is an improved lower bound for Turán numbers,
which leads us to another motivation for studying the H -free process.

The Turán number ex(n,H) is the maximum possible number of edges in
a graph on n vertices that does not contain an H subgraph. More generally,
the theory of Turán problems concerns the study of combinatorial structures
that have maximum size subject to not containing some fixed structure. We
refer the reader to [18] for a survey of this subject. Turán [35] determined
the value of ex(n,H) when H = Kr is complete: the unique largest graph
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on n vertices with no Kr subgraph is complete (r − 1)-partite with part sizes
as equal as possible. For general H , the Erdős-Stone-Simonovits theorem
[14, 16] gives the estimate ex(n,H) = ex(n,Kr)+o(n2), where r = χ(H) is
the chromatic number of H . This gives an asymptotic formula for the Turán
number when H is not bipartite. However, when H is bipartite it is an open
problem in general to determine even the order of magnitude of ex(n,H). For
example, when H = Kr,r is complete bipartite with r ≥ 5, for many years the
best known lower bound was ex(n,Kr,r ) = �(n2−2/(r+1)), a result of Erdős
and Spencer [15] proved via a simple application of the probabilistic method.
Wolfovitz’s analysis of the H -free process improved this to ex(n,Kr,r ) =
�(n2−2/(r+1)(log logn)1/(r2−1)).

1.1 Results I: Ramsey and Turán bounds

In this paper we extend the methods from [7] to an analysis of the H -free
process when H is strictly 2-balanced, leading to new lower bounds for Ram-
sey and Turán numbers. We also investigate other properties of the process,
viewing it as a model of interest in its own right, and give certain extension
counting formulae that address a question of Spencer. In particular, we show
that the graph produced by the H -free process is very similar to the corre-
sponding random graph G(n, i) with respect to small subgraph counts, with
the exception that the H -free process produces no copies of graphs contain-
ing H . We begin with the Turán and Ramsey results.

Our first theorem gives a new lower bound for the number of edges in G.
In fact we have a new lower bound for the minimum degree, and it holds
with high probability, not just in expectation. An immediate consequence is a
lower bound for the Turán number ex(n,H).

Theorem 1.1 Suppose that H is a strictly 2-balanced graph with vH

vertices and eH edges. Then for some c > 0 with high probability the
minimum degree in the final graph of the H -free process is at least
cn1−(vH −2)/(eH −1)(logn)1/(eH −1). In particular, the Turán number satisfies

ex(n,H) = �(n2−(vH −2)/(eH −1)(logn)1/(eH −1)).

Note that it follows immediately from Theorem 1.1 that we have

ex(n,Kr,r ) = �(n2−2/(r+1)(logn)1/(r2−1)).

For general complete bipartite graphs Kr,s with r ≤ s, the ‘Zarankiewicz
problem’ of estimating ex(n,Kr,s) is a subject of special interest in extremal
graph theory. A general upper bound of order n2−1/r was given by Kövári,
Sós and Turán [24]. The only known asymptotic results are ex(n,K2,r ) ∼



The early evolution of the H -free process 295

1
2(r − 1)1/2n3/2 (see [19]) and ex(n,K3,3) ∼ 1

2n5/3 (see [9] and [20]). Note
that the lower bound construction for K3,3 also gives the best known lower
bound for K4,4. The only other case when the upper bound is known to be of
the correct order of magnitude is when s > (r −1)! (see [3]). The known con-
structions are based on algebraic and geometric structures that may not exist
for other values of the parameters r and s. However, it is widely believed that
ex(n,Kr,s) for general r ≤ s is on the order of n2−1/r .

For Ramsey numbers, we obtain the following new lower bounds.

Theorem 1.2 For fixed s ≥ 5 and t → ∞, the Ramsey number satisfies

R(s, t) = �
(
t

s+1
2 (log t)

1
s−2 − s+1

2
)
.

The previously best known lower bound on R(s, t) when s is fixed and

t is large was R(s, t) = �((t/ log t)
s+1

2 ), established by Spencer [32] using
the Lovász Local lemma. Theorem 1.2 improves this by a multiplicative fac-
tor of (log t)1/(s−2). There is no particular reason to believe that our lower
bound is anywhere near optimal, since the best known general upper bound
is essentially t s−1 (up to a polylogarithmic factor in t). On the other hand, as
Theorem 1.2 can be viewed as the natural generalisation of the construction
that gives the correct order of magnitude for R(3, t), it would be interesting
to see a significant improvement on the bound in Theorem 1.2 for s ≥ 4.

We also obtain new lower bounds for cycle-complete Ramsey numbers.
Given graphs H1, H2, the graph Ramsey number R(H1,H2) is the least num-
ber n such that for any 2-colouring of the edges of Kn there is a monochro-
matic copy of H1 or H2. Note that R(C�,Kt) ≥ n if and only if there is a
C�-free graph on n vertices with no independent set of size t . We prove the
following bound.

Theorem 1.3 For fixed � ≥ 4 and t → ∞ the cycle-complete Ramsey number
satisfies

R(C�,Kt) = �
(
t

�−1
�−2 / log t

)
.

Again this is quite far from the best known upper bound (see [10, 25, 34]).
For example, Erdős [13] conjectured that R(C4,Kt) = O(t2−ε) for some ab-
solute constant ε > 0, but this is still open.

In fact, we establish more general properties of the H -free process from
which these theorems follow. In order to show that the process continues to
run for a certain number of steps, we will establish asymptotic formulae for
various graph parameters at any given time in the process, including the de-
gree of any vertex, but also more general extension parameters. To state these
formulae we need some terminology and notation.
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1.2 Terminology and notation I

We write [n] = {1, . . . , n} for the vertex set of the process. At step i of the
process let E(i) be the edges of the graph G(i), let O(i) be the pairs of
vertices that are open (as defined above), and let C(i) be the pairs of vertices
that are neither edges nor open, which we refer to as closed.

We fix some strictly 2-balanced graph H throughout the paper and write

p = n
− vH −2

eH −1 .

For any graph � we write V� for the vertex set of �, E� for the edge set of �,
v� = |V�| and e� = |E�|. For A ⊆ V� we write

S� = pe�nv� and SA,� = pe�−e�[A]nv�−|A|.

We say that such a pair (A,�) is strictly balanced if SA,�[B] > SA,� for every
A � B � V� and strictly dense if SA,�[B] > 1 for every A � B ⊆ V� .

A key element of our analysis of the H -free process is closely tracking the
number of extensions from fixed sets of vertices to fixed subgraphs of G(i).
Intuitively, the graph G(i) produced by the H -free process should be roughly
equal to the random graph G(n, i), the graph chosen uniformly at random
from the collection of graphs with n vertices and i edges, up until the num-
ber of copies of H in G(n, i) is roughly equal to the number of edges. This
occurs when i is roughly pn2, with p as defined above. We expect the more
interesting part of the evolution of the H -free process to be at and beyond
this range of i. Considering G(n,p), which is very similar to G(n, i) here,
we note that S� is roughly the expected number of labeled copies of �, and
SA,� is roughly the expected number of labeled extensions to � from a fixed
set of vertices playing the role of A. Thus we can think of these quantities as
anticipated scalings by which we should measure the same parameters in the
H -free process.

In order to track extensions, we track all ‘open routes’ to such extensions.
Suppose � is a graph and J is a spanning subgraph of �. Suppose also that
A ⊆ V� is an independent set in � and φ : A → [n] is an injective mapping.
We define the extension variables Xφ,J,�(i) to be the number of injective
maps f : V� → [n] such that

(i) f (e) ∈ O(i) for every e ∈ E� \ EJ ,
(ii) f (e) ∈ E(i) for every e ∈ EJ , and

(iii) f restricts to φ on A.

We say that the random variable Xφ,J,�(i) is trackable if one of the following
two conditions holds:
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(a) (A,�) is strictly dense and � does not contain H as a subgraph, or
(b) SA,� = 1, (A,�) is strictly balanced, EJ � E� , and H is not a subgraph

of the graph �′ obtained from � by adding the edges ab for all a, b ∈ A

with φ(a)φ(b) ∈ E(i).

It follows easily from the definitions that for any trackable extension variable
Xφ,J,�(i) the pair (A,J ) is strictly dense. Note further that condition (b)
includes the case where � = H \ ab for some ab ∈ EH , eJ ≤ eH − 2, A =
{a, b} and φ(ab) /∈ E(i). These extensions comprise the set of open routes to
a copy of H less an edge, where φ(ab) plays the role of the missing edge.
As the appearance of such an extension is the mechanism whereby the pair
φ(ab) becomes closed, these particular extension variables play a central role
in our analysis of the H -free process.

We fix constants V,W, ε,μ throughout the paper which satisfy 0 < μ �
ε � 1/W � 1/V � 1/eH . (The notation 0 < α � β means that there is an
increasing function f (x) so that the following argument is valid for 0 < α <

f (β).) We introduce a continuous time variable t , using the scaling t = t (i) =
i/s with s = pn2, and analyse the process up to time tmax = μ(logn)1/(eH −1),
which corresponds to

m = μ(logn)1/(eH −1)pn2

edges. Let T be the set of all triples (A,J,�) where J is a spanning subgraph
of a graph � with v�, e� < V , A is an independent set in �, and the variables
Xφ,J,�(0) are trackable. Write aut(H) for the number of automorphisms of
H and define

q(t) = e−2eH aut(H)−1(2t)eH −1
, aH = 4eH (eH − 1)/aut(H),

c(t) = aH (2t)eH −2q(t), P (t) = W(teH −1 + t),

e(t) = eP (t) − 1 and se = n1/2eH −ε.

We also define γ (t) to be any smooth increasing function such that γ (t) =
40V e40V t for 0 ≤ t ≤ 40V/W , γ ′(t) > 20V for 40V/W < t ≤ 1/(50V ), and
γ (t) < 1/2, γ ′(t) < W for all t ≥ 0. Then we set θ(t) = 1/2 + γ (t), so that
1/2 ≤ θ(t) < 1 for all t ≥ 0.

1.3 Results II: the H -free process

Our first main theorem gives asymptotic formulae for trackable extension
variables throughout the process.

Theorem 1.4 With high probability, for every i ≤ m and trackable extension
variable Xφ,J,�(i) corresponding to a triple in T , we have

Xφ,J,�(i) = (1 ± e(t)/se)(xA,J,�(t) ± 1/se)SA,J ,
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where

xA,J,�(t) = (2t)eJ q(t)e�−eJ .

(For this theorem to be useful we choose ε < ε(V ) sufficiently small and
then μ < μ(ε) sufficiently small so that e(t) and q(t)−V are both at most nε

for t ≤ tmax.) Note, for example, that there is a trackable extension variable
describing the number of common neighbours of a set of size d whenever
pdn > 1, so we have the following corollary.

Corollary 1.5 With high probability, for every d with pdn > 1, set A of d

vertices and n2p ≤ i ≤ m, the number of common neighbours of A in G(i) is
(1 + o(1))(2i/n2)dn.

A remarkable consequence of Theorem 1.4 is that the graph G(i) for i ≤ m

is similar to the uniform random graph G(n, i) with respect to small subgraph
counts, with the notable exception that there are no copies of graphs contain-
ing H in G(i). The possibility of this intriguing behavior was first suggested
by Joel Spencer. The following theorem gives the correct asymptotic counts
for labeled copies of a graph � in the ‘subcritical’ case (i) and the ‘supercriti-
cal’ case (ii). For the sake of brevity we just establish existence of at least one
copy in the ‘critical’ case (iii), although our discussion in Sect. 10 points the
way towards better results in this case.

Theorem 1.6 Suppose � is an H -free graph and write X�(i) for the number
of labelled copies of � in G(i). Then with high probability

(i) If there exists B ⊆ V� with S�[B] < 1 then X�(m) = 0.
(ii) If S�[B] > 1 for all non-empty B ⊆ V� then there exists a constant ξ > 0

such that X�(i) ∼ (2i/n2)e�nv� for n2p ≤ i ≤ ξm.
(iii) If S�[B] ≥ 1 for all B ⊆ V� then X�(m) > 0.

While Theorem 1.4 alone is enough to establish the Turán bounds stated
above, our results on the Ramsey numbers require an upper bound on the in-
dependence number of G(m). Theorem 1.2 follows easily from Theorem 1.8
below. This in turn follows from the following more general result for s ≥ 6.
(Then we will need to modify the proof slightly to deal with the case s = 5.)

Theorem 1.7 Suppose that H is strictly 2-balanced and that for any two
edges uv, xy of H and {x, y} � B � VH we have SB,H\uv < 1. Then there is
C > 0 such that with high probability the final graph of the H -free process
has independence number at most Cn(vH −2)/(eH −1)(logn)1−1/(eH −1).
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Theorem 1.8 For any s ≥ 5 there is C > 0 such that with high probabil-
ity the final graph of the Ks -free process has independence number at most

Cn
2

s+1 (logn)1−((s
2)−1)

−1
.

Alon, Ben-Shimon and Krivelevich [4] recently proposed a construction
that takes a nearly regular Ks -free graph G and produces a regular Ks -free
graph with roughly the same independence number as the original graph. It
follows from Corollary 1.5 that the graph produced after m steps of the Ks -
free process is a suitable input for this construction. This suggests that the
bound on R(s, t) given in Theorem 1.2 can be achieved by a regular graph.
(A formal proof would need to provide some details missing from the sketch
given in [4].)

We also obtain the following bound when H is a cycle, which implies
Theorem 1.3.

Theorem 1.9 For any � ≥ 3 there is C > 0 such that with high probabil-
ity the final graph of the C�-free process has independence number at most
C(n logn)(�−2)/(�−1).

1.4 Organisation of the paper

In the next section we give a heuristic explanation for the differential equa-
tions leading to the formulae in Theorem 1.4. In Sect. 3 we develop some
theory of strictly 2-balanced graphs and balanced extensions. Over the fol-
lowing three sections we collect various properties that hold with high prob-
ability on the ‘good’ event at a given time that the process has followed the
trajectory of the differential equations so far. Section 4 contains various union
bound arguments, Sect. 5 gives upper bounds on the extension variables and
Sect. 6 provides a means to approximate the number of pairs that become
closed when some particular pair is added as an edge. In Sect. 7 we formulate
our framework for showing that the process follows the differential equations,
which is based to some extent on that given by Wormald [37], but also incor-
porates martingale estimates from [7]. Section 8 concerns trackable random
variables: we obtain bounds on the one-step changes of trackable random
variables sufficient to apply the differential equations method. Then we apply
the differential equation method in Sect. 9 to prove Theorem 1.4, from which
Theorem 1.1 immediately follows. We also apply Theorem 1.4 to prove The-
orem 1.6 in Sect. 10. Next we turn our attention to the independence number.
In Sect. 11 we formulate a general property, which we call ‘smooth indepen-
dence’, and bound the independence number under the assumption that H has
this property. Then in Sect. 12 we show that cycles and complete graphs Ks ,
s ≥ 5 have smooth independence, from which Theorems 1.9 and 1.2 follow.
We also prove Theorem 1.7 in this section. The final section contains some
concluding remarks.
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1.5 Terminology and notation II

We write Gj for the good event that for every 0 ≤ i ≤ j and trackable exten-
sion variable Xφ,J,�(i) corresponding to a triple in T , we have

Xφ,J,�(i) = (1 ± e(t)/se)(xA,J,�(t) ± θ(t)/se)SA,J .

Note that this implies the formulae in the statement of Theorem 1.4, since
θ(t) < 1 for all t ≥ 0.

When we count extensions it is convenient to work with labeled graphs,
and we will often write uv for the ordered pair (u, v) as well as the edge
{u, v}. The prime symbol ′ is occasionally used to denote differentiation with
respect to the time variable t : this will be clear from the context.

Statements containing the symbols ± and/or ∓ are shorthand for two sepa-
rate statements: one with every ± replaced by + and every ∓ by −, the other
with ± replaced by − and ∓ by +. We also use the notation a = b ± c to
mean b − c < a < b + c. Where there is possibility for confusion we label the
symbols as ±1 and ±2, e.g. a±1±2 = b±1 ± c∓2 is shorthand for 4 separate
statements, one of which is a++ = b+ ± c−.

The parameter n will always be sufficiently large compared to all other pa-
rameters, and we use the phrase ‘with high probability’ to refer to an event
that has probability 1−on(1), i.e. the probability tends to 1 as n tends to infin-
ity. In fact we can arrange that our high probability events fail with probability
at most exp(−nε).

We say that a graph W is a join of two graphs W1 and W2 if it has subgraphs
J1 isomorphic to W1 and J2 isomorphic to W2 such that VW = VJ1 ∪ VJ2 and
EW = EJ1 ∪ EJ2 . For convenient notation we use names for vertices in J1

interchangeably with their corresponding vertices in W1, and similarly for J2

and W2.
If X is a set and k is a non-negative integer then we write

(
X
k

)
for the set of

subsets of X of size k.
We will not often refer explicitly to the underlying probability space for

the H -free process, but we note here the following natural construction. Let

� = �n be the set of all maximal sequences in
([n]

2

)
with distinct entries

and the property that each initial sequence gives an H -free graph on vertex
set [n]. We stress that our measure is not uniform: it is the measure given
by the uniform random choice at each step. We always work with the natural
filtration F0 ⊆ F1 ⊆ · · · given by the process. Two elements x, y of � are in
the same atom (i.e. part of the generating partition) of Fj exactly when the
first j entries of x and y agree.
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2 Trajectory equations

We start by giving a heuristic explanation of the equations describing the evo-
lution of the H -free process. We will then prove the validity of these equations
in subsequent sections. Recall that G(i) denotes the graph on [n] obtained
after i steps of the H -free process: its edge set E(i) contains i edges. We
partition the non-edges

([n]
2

) \ E(i) into two sets O(i) and C(i), which we
call open pairs and closed pairs, respectively. We say that a pair uv is open if
G(i) ∪ uv does not contain a copy of H , i.e. uv is a possible choice for the
next edge in the process.

Notation We consider the following random variables. Suppose � is a graph
and J is a spanning subgraph of � (i.e. VJ = V�). Suppose also that A ⊆ VJ

is an independent set (i.e. does not span any edges) in � and φ : A → [n]
is an injective mapping. Throughout this paper we assume that �,J,A,φ

satisfy these conditions, even if this is not explicitly stated. We define the
extension set �φ,J,�(i) to be the set of injective maps f : V� → [n] such
that (i) f (e) ∈ O(i) for every e ∈ E� \ EJ , (ii) f (e) ∈ E(i) for every e ∈
EJ , and (iii) f restricts to φ on A. Then we define the extension variables
by Xφ,J,�(i) = |�φ,J,�(i)|. In words, we are counting labeled copies (not
necessarily induced) of a graph J in G(i) that extend a particular embedding
φ : A → [n], with the extra condition that some extra pairs (i.e. the edges of
� \ J ) are open. Actually we will be interested in the number of copies up to
isomorphism, but the equations for labeled copies are easier to work with.

Examples One special case of this definition is the number of labeled copies
of a graph � in G(i): this can be written as Xφ0,�,�(i), where we write φ0
for the unique function φ0 : ∅ → [n]. To count edges and open pairs with this
notation we write e and e for the two graphs on two vertices, say {a, b},
with one edge and no edges respectively. Then Xφ0,e,e(i) = 2|O(i)| and
Xφ0,e,e(i) = 2|E(i)|. We can also express the degree dG(i)(v) of a vertex v

in G(i) as Xφv,e,e(i), where again e is the edge ab and we write φv for the
function φ : {a} → [n] defined by φ(a) = v.

We write Q(i) = 2|O(i)| for the number of ordered pairs that are open. For
an ordered pair uv ∈ O(i), write Cuv(i) for the set of ordered pairs xy ∈ O(i)

that would become closed, i.e. belong to C(i + 1), if at time i + 1 the process
chooses uv as the edge ei+1. By the definition of C(i + 1) this means that
adding uv and xy to G(i) would create a copy of H . Another way to say this
is that there is a subgraph J obtained by deleting two edges ab and cd from H

and an injective map f : VH → [n] such that f (a) = u, f (b) = v, f (c) = x,
f (d) = y and f (e) ∈ E(i) for every edge of J . We have f ∈ �φT ,JT ,�T

(i),
where given such a quadruple T = (a, b, c, d), we write �T = H \ ab, JT =
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H \ {ab, cd} and define φT by φT (a) = u and φT (b) = v. In principle there
could be many embeddings f giving the same pair xy, but we will show
in Lemma 6.1 that this is very unlikely: for most xy ∈ Cuv(i) there will be
exactly one such embedding f , up to an automorphism of H . We will see
that Cuv(i) ∼ aut(H)−1 ∑

T XφT ,JT ,�T
(i), where the sum is over quadruples

T = (a, b, c, d) such that ab and cd are distinct (but not necessarily disjoint)
edges of H .

To approximate the extension variables we introduce a continuous time
variable t , using the scaling t = t (i) = i/s with s = pn2, where we recall that
p = n−(vH −2)/(eH −1). We noted above that this is the point at which the num-
ber of copies of H in the random graph G(n, s) is comparable to the number
of edges s, so it is natural to anticipate the interesting behaviour to occur
at this scale. We analyse the process up to time tmax = μ(logn)1/(eH −1), for
some small constant μ > 0, which corresponds to m = μ(logn)1/(eH −1)pn2

edges. For the variable Xφ,J,�(i) with φ : A → [n] we use the scaling
SA,J = peJ nvJ −|A|. Again, we noted above that the count of these exten-
sions in G(n, s) suggests the use of this scaling. Our eventual aim is to prove
that with high probability, for every i ≤ m and for every trackable extension
variable Xφ,J,�(i) corresponding to a triple in T , we have the asymptotic
formula

Xφ,J,�(i) = (1 ± e(t)/se)(xA,J,�(t) ± θ(t)/se)SA,J ,

where xA,J,�(t) = (2t)eJ q(t)e�−eJ and q(t), e(t), θ(t), se are as defined
above.

Note that xφ0,e,e(t) = q(t), so the good event pertaining to Q(i) is
Q(i) = (1 ± e(t)/se)(q(t) ± θ(t)/se)n

2. We also write c(t) = aut(H)−1 ×∑
T xφT ,JT ,�T

(t), where as above the sum is over quadruples T = (a, b, c, d)

such that ab and cd are distinct edges of H .
Now we give an informal derivation of the differential equations satis-

fied by the functions xA,J,�(t), which describe the main terms for the be-
haviour of the variables Xφ,J,� . We stress that this discussion does not con-
stitute a proof of Theorem 1.4; rather, it motivates the functions xA,J,�(t)

defined above, and presages the proper proof given below, in which the cal-
culations we make here will play a central role. For the sake of the discus-
sion we ignore the error terms described by e(t) and se, and use the ap-
proximations Xφ,J,�(i) ≈ xA,J,�(t)SA,J , so Q(i) ≈ q(t)n2 and Cuv(i) ≈
c(t)peH −2nvH −2 = c(t)p−1. The system of differential equations will follow
from the approximation xA,J,�(t + s−1) ≈ xA,J,�(t) + s−1x′

A,J,�(t) and re-
placing changes Xφ,J,�(i + 1) − Xφ,J,�(i) by their expected value given Gi .
Intuitively, although the change in a single step may be far from its expected
value, over many steps a ‘law of large numbers’ will apply to the accumu-
lated changes. We also ignore two ‘pathological’ behaviours that will need to
be dealt with in Sect. 8.
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As an illustrative case, we start by counting open edges |O(i)| = Q(i)/2.
When we choose the edge ei+1 we have

Q(i + 1) = Q(i) − 1 − Cei+1(i) ≈ q(t)n2 − c(t)p−1.

Since

Q(i + 1) ≈ q(t + 1/s)n2 ≈ (q(t) + s−1q ′(t))n2 = q(t)n2 + p−1q ′(t)

we have the equation q ′(t) = −c(t).
To derive the differential equation for the general extension variable

xA,J,�(t), we write

Xφ,J,�(i + 1) − Xφ,J,�(i) = Y+
φ,J,�(i) − Y−

φ,J,�(i),

where Y+
φ,J,�(i) ≥ 0 is the number of functions f : V� → [n] in �φ,J,�(i +

1) \ �φ,J,�(i), and Y−
φ,J,�(i) ≥ 0 is the number of functions f : V� → [n] in

�φ,J,�(i) \ �φ,J,�(i + 1). The term Y+
φ,J,�(i) has contributions correspond-

ing to each edge e of J . A function f in �φ,J\e,�(i) will be counted by
Y+

φ,J,�(i) if the process chooses the edge ei+1 equal to f (e). Since ei+1 is
chosen uniformly at random among Q(i)/2 open edges, we can estimate

E(Y+
φ,J,�(i)|Gi) ≈ 2

Q(i)

∑

e∈J

Xφ,J\e,�(i) ≈ 2p−1SA,J

q(t)n2
·
∑

e∈J

xA,J\e,�(t).

The term Y−
φ,J,�(i) has contributions corresponding to each edge e of � \ J .

A function f in �φ,J,�(i) will be counted by Y−
φ,J,�(i) if the process either

chooses the edge ei+1 equal to f (e) or f (e) becomes closed, i.e. f (e) ∈
C(i + 1). Thinking of ei+1 as an ordered pair, the number of choices is 2 +
Cf (e)(i), each occurring with probability Q(i)−1. Therefore

E(Y−
φ,J,�(i)|Gi) = 1

Q(i)

∑

e∈�\J

∑

f ∈�φ,J,�(i)

(2 + Cf (e)(i))

≈ (e� − eJ )
c(t)p−1xA,J,�(t)SA,J

q(t)n2
.

On the other hand, we have

Y+
φ,J,�(i) − Y−

φ,J,�(i) = Xφ,J,�(i + 1) − Xφ,J,�(i)

≈ (xA,J,�(t + s−1) − xA,J,�(t))SA,J

≈ s−1x′
A,J,�(t)SA,J
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so we have the equation

q(t)x′
A,J,�(t) = 2

∑

e∈J

xA,J\e,�(t) − (e� − eJ )c(t)xA,J,�(t). (1)

Note that the equation q ′(t) = −c(t) derived above is simply a special case
of (1).

To solve these equations we use the substitution xA,J,�(t) = q(t)e�−eJ ×
z�(t), where we will see that the functions z�(t) can be parameterised by a
single number � = eJ . Then, since q ′(t) = −c(t), we have q(t)x′

A,J,�(t) =
q(t)e�−eJ +1z′

�(t) − c(t)(e� − eJ )q(t)e�−eJ z�(t), which also equals

2
∑

e∈J

xA,J\e,�(t) − (e� − eJ )c(t)xA,J,�(t)

= 2�q(t)e�−eJ +1z�−1(t) − (e� − eJ )c(t)q(t)e�−eJ z�(t).

We deduce that z′
�(t) = 2�z�−1(t). Now we use the initial conditions that

xA,J,�(0) is equal to 1 if eJ = 0, otherwise 0 (e.g. q(0) = 1). So z0(0) = 1
and z�(0) = 0 for � > 0. We obtain the solution z�(t) = (2t)�. Also
q ′(t) = −c(t) = −aut(H)−1 ∑

T xφT ,JT ,�T
(t) = −aut(H)−14eH (eH − 1) ×

q(t)(2t)eH −2. Integrating and substituting we conclude that

q(t) = e−2eH aut(H)−1(2t)eH −1
,

xA,J,�(t) = (2t)eJ e−2(e�−eJ )eH aut(H)−1(2t)eH −1 = (2t)eJ q(t)e�−eJ .

Remark As discussed above, we expect these random variables to evolve
as they do in the unconstrained random graph G(n, i). Thus it is natural
to compare the process G(i) at step i to the random graph G(n,ρ), where
ρn2/2 = i = tpn2, i.e. ρ = 2tp. In G(n,ρ) we can define open/closed pairs
and the variables Xφ,J,�(i). For any ordered pair uv in [n], edge ab of H

and function f : VH → [n] with f (a) = u, f (b) = v the edges of f (H \ ab)

will all be present in G(n,ρ) with probability ρeH −1. (For the purpose of this
discussion we ignore the negligible contributions from functions f that are
not injective.) Given uv, there are 2eHnvH −2 such functions f : VH → [n],
corresponding to 2eH aut(H)−1nvH −2 distinct sets of edges. The probability
that uv is open should be approximately

(1 − ρeH −1)2eH aut(H)−1nvH −2 ≈ exp(−(2tp)eH −12eH aut(H)−1nvH −2)

= q(t).

Similar reasoning applies to general extension variables, and the equations
we derived above agree with the corresponding equations for G(n,ρ). (See
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Spencer [31] for results on extension variables in this model.) We could use
this correspondence as the starting point of our discussion and as a heuristic
for the trajectories our variables follow, but this would not provide any insight
into how to prove that our random variables actually follow the given trajec-
tories. As we noted above, the calculations in this section play a central role
in the proof of Theorem 1.4.

3 Strictly balanced graphs and balanced extensions

In this section we obtain some basic properties of our fixed strictly 2-balanced
graph H . We also introduce a more general concept of strictly balanced ex-
tensions, and discuss the manner by which arbitrary extensions can be decom-
posed into a series of such extensions. First we recall the relevant definitions.
We suppose that H is strictly 2-balanced, in the sense that vH , eH ≥ 3 and
eH −1
vH −2 > eK−1

vK−2 for all proper subgraphs K of H with vK ≥ 3. We also fix the
parameter

p = n
− vH −2

eH −1 .

For any graph � we define the scaling of � to be S� = nv�pe� . The condi-
tion that H is strictly 2-balanced can be also be written as SK > SH for all
subgraphs K of H with 2 < vK < vH , since SH = nvH peH = pn2 and

SK/SH = nvK−2peK−1 = n
(eK−1)(

vK−2
eK−1 − vH −2

eH −1 )
> 1.

Note that the scaling S� is always an integer power of n1/(eH −1). It follows
that the inequality S� > 1 actually implies S� ≥ n1/(eH −1) and similarly that
S� < 1 implies S� ≤ n−1/(eH −1).

The following lemma collects some simple properties of H and p.

Lemma 3.1

(i) If d is the largest integer for which npd−1 > 1 then H has minimum
degree at least d .

(ii) We have p > 1/n, and so H has minimum degree at least 2.
(iii) H is a 2-connected graph, and if {x, y} is a cutset then xy /∈ EH .

Proof First note that H cannot have a vertex v of degree at most d − 1: oth-
erwise SH/SH\v = npd(v) > 1, which contradicts the fact that H is strictly
2-balanced. We deduce that H has minimum degree at least 1. Next, sup-
pose for a contradiction that p ≤ 1/n. Then eH ≤ vH −1. However, for every
connected subgraph K of H we have eK ≥ vK − 1, so eK−1

vK−2 ≥ 1 ≥ eH −1
vH −2 ,

which contradicts the definition of H being strictly 2-balanced. Therefore
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p > 1/n. Now suppose for a contradiction that H is not 2-connected. Then
we can write VH = X∪Y so that EH = EH [X] ∪EH [Y ] and |X∩Y | = 1. Then
SH [X]SH [Y ] = nSH , so without loss of generality we have SH [X] ≤ (nSH )1/2,
and since SH = pn2 we have SH [X]/SH ≤ (n/SH )1/2 = (1/pn)1/2 < 1. This
contradicts H being strictly 2-balanced, so H is 2-connected. Finally, sup-
pose that {x, y} is a cutset, but that xy ∈ EH . Write VH = X ∪ Y so that
EH = EH [X] ∪ EH [Y ] and X ∩ Y = {x, y}. Then SH [X]SH [Y ] = pn2SH =
(pn2)2, so without loss of generality SH [X] ≤ pn2 = SH . But this contradicts
H being strictly 2-balanced, so xy /∈ EH . �

Recall that if � is a graph and A ⊆ V� we define the scaling of the pair
(A,�) to be

SA,� = pe�−e�[A]nv�−|A|.

Note that SA,� = S�/S�[A]. Also, for any A ⊆ B ⊆ V� we have SB,� =
S�/S�[B] = S�/S�[A] · S�[A]/S�[B] = SA,�/SA,�[B]. We say that (A,�) is
strictly balanced if for any A � B � V� we have SA,� < SA,�[B], or equiva-
lently SB,� < 1. For example, we can again rephrase our assumption that H

is strictly 2-balanced to say that for any edge e = ab of H , with A = {a, b}
the pair (A,H) is strictly balanced. Indeed, SA,H = peH −1nvH −2 = 1, and
for A � B � VH we have SB,H = SH/SH [B] < 1.

We will apply results on strictly balanced extensions to arbitrary pairs
(A,�) using the extension series A = B0 � B1 � · · · � Bd = V� of (A,�),
which we construct by the following rule. If (Bi,�) is not strictly balanced
then Bi+1 is chosen to be a minimal set C with Bi � C � V� that minimises
SBi,�[C] = n|C|−|Bi |pe�[C]−e�[Bi ] , otherwise we choose Bd = Bi+1 = V� . For
more compact notation we also write SA

i (�) = SBi,�[Bi+1]. We note the fol-
lowing properties of extension series.

• (Bi,�[Bi+1]) is strictly balanced.
• For i ≥ 1 we have SA

i (�) = SBi,�[Bi+1] = SBi−1,�[Bi+1]/SBi−1,�[Bi ] ≥ 1.

Therefore the sequence SA,�[Bi ] = ∏i−1
j=0 SA

j (�) is non-decreasing. How-

ever, it is not necessarily true that the sequence of successive factors SA
i (�)

is non-decreasing. For example, consider the K7-free process, where p =
n−1/4, and let � = K4. Choosing A of size 2 we have �[B0] = K2,
�[B1] = K3, �[B2] = K4 with SA

0 (�) = np2 = n1/2 and SA
1 (�) = np3 =

n1/4.
• It is possible that SA,� < 1 but some factors SA

i (�) are greater than 1.
For example, consider the C5-free process, where p = n−3/4, and let �

be the graph consisting of K4 plus an isolated vertex. Choosing A to be
2 vertices of the K4 we have �[B0] = K2, �[B1] = K4, �[B2] = �, so
SA

0 (�) = n2p5 = n−7/4, SA
1 (�) = n and SA,� = n−3/4.
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4 Union bounds

In this section we collect some useful properties of the H -free process, as-
suming that the good events Gi hold. Recall that on Gi we have Q(i) =
(1± e(t)/se)(q(t)± θ(t)/se)n

2, and q(t) = exp(−�(teH −1)), where the con-
stant in the �-notation depends only on H . We analyse the process up to time
tmax = m/s = μ(logn)1/(eH −1), and choose μ > 0 sufficiently small so that
e(t), q(t)−V < nε . Since se = n1/2eH −ε we have Q(i) > n2−ε (say) for i ≤ m.
The following lemmas use this lower bound for Q(i) and union bound esti-
mates. We will state the bounds at time m, but they also hold at any time i ≤ m

by monotonicity. Our first lemma bounds the probability that G(m) contains
some fixed graph F .

Lemma 4.1 For any fixed graph F on [n], the probability that Gm holds and
G(m) contains F is at most peF n2eF ε .

Proof We take a union bound over all choices of steps 1 ≤ i1 ≤ · · · ≤ ieF
≤ m

where the j th edge of F is chosen as the edge eij added to form G(ij ) from
G(ij − 1). Since edges are chosen uniformly at random from at least n2−ε

options, each choice has probability at most n−(2−ε) conditional on the his-
tory of the process. Therefore P(F ⊆ G(m)) ≤ meF n−(2−ε)eF < peF n2eF ε ,
say, since m = μ(logn)1/(eH −1)pn2. �

Given sets A,B ⊆ [n], write e(A,B) for the number of edges in G(m) that
have one endpoint in A and the other in B . Our next lemma gives a bound for
e(A,B) holding with high probability for all choices of A,B of specified
size.

Lemma 4.2 For any a, b ≥ 1, the probability pa,b that Gm holds and
there exist sets A,B ⊆ [n] such that |A| = a, |B| = b and e(A,B) ≥
max{4ε−1(a + b),pabn2ε} satisfies pa,b < n−(a+b).

Proof Write x = max{4ε−1(a + b),pabn2ε}. We take a union bound over(
n
a

)
choices for A,

(
n
b

)
choices for B , at most

(
ab
x

)
ways to choose x pairs with

one endpoint in A and the other in B , and less than mx choices of steps 1 ≤
i1 < · · · < ix ≤ m in which to choose these pairs as edges of the process. Since
edges are chosen uniformly at random from at least n2−ε options, each choice
has probability at most n−(2−ε) conditional on the history of the process.
Therefore we can estimate the probability by pa,b <

(
n
a

)(
n
b

)(
ab
x

)
mxn−(2−ε)x .

Since m = μ(logn)1/(eH −1)pn2, we have
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logpa,b < a(log(n/a) + 1) + b(log(n/b) + 1)

+ x(log(ab/x) + 1 + log(pnε) + logμ + (eH − 1)−1 log logn)

< (a + b − εx/2) logn,

since x ≥ pabn2ε and n large imply that −(log(ab/x) + log(pnε)) ≥
ε logn � log logn. Since x ≥ 4ε−1(a + b) the stated bound follows. �

For A ⊆ [n] let DA,d be the set of vertices v such that |NG(m)(v)∩A| ≥ d ,
i.e. in G(m), v has at least d neighbours in A. We conclude this section by
applying the previous lemma to give an upper bound for DA,d .

Lemma 4.3 For any 8ε−1 ≤ d ≤ a ≤ dp−1n−2ε , the probability that Gm

holds and there exists A ⊆ [n] with |A| = a and |DA,d | ≥ 8ε−1d−1a is at
most n−a .

Proof Set B = DA,d , b = |B| and consider the event that b ≥ 8ε−1d−1a.
Since e(A,B) ≥ db and d ≥ 8ε−1 we have e(A,B) − 4ε−1b ≥ db/2 ≥
4ε−1a. Also, the bound a ≤ dp−1n−2ε implies that e(A,B) ≥ db ≥ pabn2ε .
By Lemma 4.2 this event has probability at most n−(a+b) ≤ n−a . �

5 Counting extensions

In this section we see how to obtain general upper bounds on extension vari-
ables, assuming that the good events Gi hold. We will state the bounds at
time m, but they also hold at any time i ≤ m by monotonicity. Let Nφ,J =
Xφ,J,J (m): the number of extensions of a fixed embedding φ : A → [n] to an
embedding f : J → G(m), where A ⊆ VJ is independent. Note that this is an
upper bound for Xφ,J,�(m). The following lemma gives a good estimate on
Nφ,J when the extension is strictly balanced.

Lemma 5.1 Suppose (A,J ) is strictly balanced and φ : A → [n] is an in-
jective map. Let ω(n) be any function such that ω(n) → ∞ as n → ∞.
On Gm, with high probability we have Nφ,J < SA,J n4eJ ε if SA,J ≥ 1 and
Nφ,J < ω(n) if SA,J < 1.

Proof We start by estimating the maximum number of vertex-disjoint ex-
tensions of φ to an embedding of J . Let N ′

φ,J be the maximum number s

such that there are embeddings f1, . . . , fs of J in G(m), all restricting to φ

on A, with fi(VJ \ A) and fj (VJ \ A) disjoint for all 1 ≤ i < j ≤ s. We can
estimate P(N ′

φ,J ≥ s) by a union bound over at most s!−1(nvJ −|A|)s possi-
ble functions f1, . . . , fs , where for each choice of functions, we can apply
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Lemma 4.1 to obtain an upper bound pseJ n2seJ ε on the probability that the
graph F = ⋃s

i=1 fi(J ) is a subgraph of G(m). Therefore

P(N ′
φ,J ≥ s) ≤ s!−1(nvJ −|A|)spseJ n2seJ ε < (3s−1SA,J n2eJ ε)s .

If SA,J ≥ 1 then we can set s = SA,J n3eJ ε to get a bound holding with
failure probability much less than exp (−nε). On the other hand, if SA,J =
peJ nvJ −|A| < 1 then, since p = n

− vH −2
eH −1 , we in fact have SA,J ≤ n−1/(eH −1).

Assuming that ε < (2eJ eH )−1 we then have SA,J n2eJ ε < 1, and we can set
s = ω′(n) for any function ω′(n) → ∞ as n → ∞ to get a bound holding
with failure probability much less than n−C for any constant C > 0.

Now we argue by induction on vJ − |A| to show the following bounds on
Nφ,J : if SA,J ≥ 1 then Nφ,J < SA,J n3eJ εω′(n)2(vJ −|A|) and if SA,J < 1 then
Nφ,J < ω′(n)2(vJ −|A|). Then we can choose ω′(n)2(vJ −|A|) < ω(n) < nε to
obtain the bounds required for the theorem. Our base case is vJ − |A| = 1,
when we have Nφ,J = N ′

φ,J , and we can apply the bounds just shown
for N ′

φ,J .
Next suppose vJ − |A| > 1. We claim that for any embedding f counted

by Nφ,J there are at most ω′(n)2(vJ −|A|)−1 embeddings f ′ counted by Nφ,J

with f ′(VJ \ A) ∩ f (VJ \ A) �= ∅. To see this, consider any such f ′ and let
B = {b ∈ VJ : f ′(b) ∈ f (VJ )}, so that A � B � VJ . Let φ′ be the restric-
tion of f ′ to B and let J ′ = J \ EJ [B] be the graph obtained from J by
deleting all edges inside B . Then, as noted above, SB,J ′ = SA,J /SA,J [B], and
since (A,J ) is strictly balanced we have SB,J ′ < 1. By induction hypothe-
sis we have Nφ′,J < ω′(n)2(vJ −|B|). Also, there are at most v

|B|−|A|
J < v

vJ

J

choices for φ′, so at most v
vJ

J ω′(n)2(vJ −|B|) embeddings f ′ corresponding to
this set B . Summing over all A � B � VJ we obtain at most ω′(n)2(vJ −|A|)−1

(say) such embeddings f ′.
Finally, we can estimate Nφ,J by means of a maximum collection F =

{f1, . . . , fs} of vertex-disjoint extensions of φ (so |F | = N ′
φ,J ). Any exten-

sion f counted by Nφ,J has a common image with some fi ∈ F outside of A,
and for each fi ∈ F we have at most ω′(n)2(vJ −|A|)−1 such embeddings f .
Therefore Nφ,J ≤ N ′

φ,J ω′(n)2(vJ −|A|)−1. If SA,J ≥ 1 then N ′
φ,J < SA,J n3eJ ε

and so Nφ,J < SA,J n3eJ εω′(n)2(vJ −|A|). On the other hand, if SA,J < 1 then
N ′

φ,J < ω′(n) and so Nφ,J < ω′(n)2(vJ −|A|). This completes the proof. �

For general extensions Nφ,J may be considerably larger than SA,J , but the
following lemma gives a useful bound.

Lemma 5.2 On Gm, with high probability we have Nφ,J < n4eJ ε ×
maxA⊆B⊆VJ

SB,J .
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Proof Consider the extension series A = B0 � B1 � · · · � Bd = VJ . We re-
peatedly apply Lemma 5.1 to bound the number of extensions in each step
of the series. At the first step we either have SA

0 (J ) < 1 and so Nφ,J [B1] <

ω(n) or SA
0 (J ) ≥ 1 and so Nφ,J [B1] < SA

0 (J )n4eJ [B1]ε . At subsequent steps
i ≥ 1 we have SA

i (J ) ≥ 1, so for each injection φ′ : Bi → [n] we have

Nφ′,Ji [Bi+1] < SA
i (J )n

4(eJ [Bi+1]−eJ [Bi ])ε . Multiplying these bounds and using

SA,J = ∏d−1
i=0 SA

i (J ) gives a bound equal to either n4eJ εSA,J when SA
0 (J ) ≥ 1

or ω(n)n4(eJ −eJ [B1])εSB1,J when SA
0 (J ) < 1. By definition of the extension

series, maxA⊆B⊆VJ
SB,J is either SA,J when SA

0 (J ) ≥ 1 or SB1,J when
SA

0 (J ) < 1. Also, we may assume that eJ [B1] ≥ 1 (otherwise EJ is empty), so
we can choose ω(n) < nε to obtain the required bound. �

Remark In both of the preceding lemmas we can choose ω(n) = ncε for some
constant c > 0 to make the failure probability exponentially small.

We say that the pair (A,J ) is dense if SA
0 (J ) = SA,J [B1] ≥ 1 and strictly

dense if SA
0 (J ) > 1 (and so SA

0 (J ) ≥ n1/(eH −1)). Since SA
i (J ) ≥ 1 for i ≥ 1,

for a dense pair we have maxA⊆B⊆VJ
SB,J = SA,J , so the previous lemma

gives an approximate upper bound of SA,J for Nφ,J . Note that if (A,J ) is
strictly dense then so is (A,J ′) for any subgraph J ′ of J , since we have
SA,J ′[B] ≥ SA,J [B] > 1 for any B with A � B ⊆ VJ . The same argument
shows that if J is a subgraph of H with eJ ≤ eH − 2 and A = {u, v}, where
uv ∈ EH \ EJ , then (A,J ) is strictly dense.

We conclude this section by showing that adding an edge to a strictly dense
pair gives a significant improvement on the bound for Nφ,J .

Lemma 5.3 Suppose that (A,J ) is a strictly dense pair, a, b are vertices of
J with ab /∈ EJ and {a, b} �⊆ A, and J ′ = J ∪ {ab} is obtained by adding
the edge ab to J . Then maxA⊆B⊆VJ ′ SB,J ′ < SA,J , and so on Gm, with high
probability we have Nφ,J ′ < n−1/(eH −1)+4eJ ′εSA,J .

Proof Choose B with A ⊆ B ⊆ VJ maximising SB,J ′ . If B = A we have
SB,J ′ = pSA,J , whereas if B �= A we have SB,J ′ ≤ SB,J = SA,J /SA,J [B] <

SA,J , as (A,J ) is strictly dense. Either way we have SB,J ′ ≤ n−1/(eH −1)SA,J ,
since it is an integer power of n1/(eH −1), so the bound on Nφ,J ′ follows from
Lemma 5.2. �

6 Closure fidelity

Recall that for an ordered pair uv ∈ O(i), we write Cuv(i) for the set of
ordered pairs xy ∈ O(i) that would become closed, i.e. belong to C(i + 1),
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if at time i + 1 the process chooses uv as the edge ei+1. By definition of
C(i + 1) this means that adding uv and xy to G(i) would create a copy of H .
Also, since uv and xy are open, any such copy of H must use both uv and
xy. In principle there could be many such copies of H , but we will show in
this section that in fact this is not the case, and moreover, by counting these
copies of H we obtain an accurate estimate for the number of pairs closed
by uv.

We frequently need to estimate the number of overlapping extensions of
two pairs (A1, J1) and (A2, J2), so we will introduce some notation for this
situation. Recall that a graph W is a join of two graphs W1 and W2 if it has
subgraphs J1 isomorphic to W1 and J2 isomorphic to W2 such that VW =
VJ1 ∪ VJ2 and EW = EJ1 ∪ EJ2 . For convenient notation we use names for
vertices in J1 interchangeably with their corresponding vertices in W1, and
similarly for J2 and W2. Whenever we use this notation the sets A1 and A2
will be independent and we will write C = VJ1 ∩ VJ2 .

We need some further notation for describing the possibilities by which a
pair uv can close a pair xy. There must be a subgraph J obtained by deleting
two edges ab and cd from H and an injective map f : VH → [n] such that
f (a) = u, f (b) = v, f (c) = x, f (d) = y and f (e) ∈ E(i) for every edge
of J . The map f is counted by XφT ,JT ,�T

(i), where given such a quadruple
T = (a, b, c, d), we write �T = H \ ab, JT = H \ {ab, cd} and define φT by
φT (a) = u and φT (b) = v.

For the sake of an argument needed in the proof of Lemma 11.1 we extend
the definition of Cuv(i) to allow the case when uv ∈ C(i) is a closed pair: we
define it as the number of pairs xy such that adding uv and xy to G(i) creates
a copy of H containing both uv and xy.

Lemma 6.1 With high probability, for every 1 ≤ i ≤ m and ordered pair uv ∈
O(i) ∪ C(i), assuming Gi , we have |Cuv(i)| = aut(H)−1 ∑

T XφT ,JT ,�T
(i) ±

n−1/eH p−1, where the sum is over quadruples T = (a, b, c, d) such that ab

and cd are distinct (but not necessarily disjoint) edges of H .

Proof Let P be the set of ordered pairs xy for which there exist (at least)
two embeddings f1, f2 of H in G(i)∪{uv, xy} with f1(EH ) �= f2(EH ) such
that both embedded copies f1(H) and f2(H) use the edges uv and xy. Given
any xy ∈ P we fix any two such embeddings f1 and f2. Let W be a graph
isomorphic to (f1(H) ∪ f2(H)) \ {uv, xy} and write a, b, c, d for the ver-
tices in W corresponding to u, v, x, y respectively. Note that these are not
necessarily distinct, but there are at least 3 distinct vertices in the list, since
{u, v} �= {x, y}. Let φ be the function defined by φ(a) = u and φ(b) = v. We
bound P by estimating, for all such W , the number Nφ,W of embeddings of
W in G(i) where a is mapped to u and b to v.
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There are two cases, according to whether or not we have f1(VH ) =
f2(VH ). If f1(VH ) = f2(VH ) then, since f1(EH ) �= f2(EH ), W is ob-
tained from a subgraph J = H \ {ab, cd} of H by adding at least one
edge. As noted above, (ab, J ) is strictly dense, and so by Lemma 5.3 we
have Nφ,W < n−1/(eH −1)+4eW εp−1. Now suppose that f1(VH ) �= f2(VH ). We
need to estimate Nφ,W where W is the join of J1 = f1(H) \ {uv, xy} and
J2 = f2(H) \ {uv, xy}. With the above notation we have A1 = A2 = {a, b},
and C = VJ1 ∩ VJ2 contains {a, b} and {c, d}, so C \ A1 and C \ A2 are non-
empty. Choose B with A1 ∪ A2 ⊆ B ⊆ VW maximising SB,W and write B1 =
B ∩ VJ1 , B2 = B ∩ VJ2 . We consider three subcases according to B1 and B2.
The first subcase is B1 ∪ C �= VJ1 . Then we have SB1∪C,J1 = SB1∪C,H < 1,
as {c, d} ⊆ C and H is strictly 2-balanced. Also SB2,J2 ≤ SA2,J2 , since
(A2, J2) is (strictly) dense, so SB,W ≤ SB2,J2SB1∪C,J1 < SA2,J2 = p−1. The
second subcase is B2 ∪ C �= VJ2 , when a similar argument gives SB,W =
SB1,J1SB2∪C,J2 < SA1,J1 = p−1. Finally, the third subcase is B1 ∪ C = VJ1

and B2 ∪ C = VJ2 . Then VJ1 \ (A1 ∪ C) and VJ2 \ (A2 ∪ C) are non-empty,
since f1(VH ) �= f2(VH ), and thus B1 �= A1 and B2 �= A2. Since (A1, J1) is
strictly dense we have SB1,J1 < SA1,J1 = p−1, so SB,W = SB1,J1SB2∪C,J2 =
SB1,J1 < p−1. In all cases we have SB,W < p−1, so SB,W ≤ n−1/(eH −1)p−1,
since it is an integer power of n−1/(eH −1). Now Lemma 5.2 gives Nφ,W <

n−1/(eH −1)+4eW εp−1. Summing over less than |VH |2|VH | (say) choices of W

we obtain a bound |P | ≤ n−1/(eH −1/2)p−1, say.
To finish the proof we calculate the number of ordered pairs xy /∈ P

counted by Cuv(i). For each such pair xy there is a unique copy Hc of H in
G(i)∪{uv, xy}. For each quadruple T = (a, b, c, d) in H such that there is an
isomorphism f : H → Hc with f (a) = u, f (b) = v, f (c) = x, f (d) = y we
count xy by XφT ,JT ,�T

(i). Also, any other such quadruple T ′ = (a′, b′, c′, d ′)
and isomorphism f ′ : H → Hc with f ′(a′) = u, f ′(b′) = v, f ′(c′) = x,
f ′(d ′) = y corresponds to the automorphism f −1f ′ of H , and this is a one-
to-one correspondence. Therefore we can estimate the number of ordered
pairs xy /∈ P that close uv by aut(H)−1 ∑

T (XφT ,JT ,�T
(i) ± |P |). Includ-

ing the pairs in P , we can estimate |Cuv(i)| by aut(H)−1 ∑
T XφT ,JT ,�T

(i)±
n−1/eH p−1, say. This completes the proof. �

Note that the extension variables which appear in Lemma 6.1 are track-
able: they satisfy condition (b) in the definition, since uv /∈ E(i). Substituting
the formulae XφT ,JT ,�T

(i) = (1 ± e(t)/se)((2t)eH −2q(t) ± θ(t)/se)p
−1 and

recalling that se = n1/2eH −ε � n1/eH we obtain the following estimate.

Corollary 6.2 With high probability, for every 1 ≤ i ≤ m and ordered pair
uv ∈ O(i) ∪ C(i), assuming Gi , we have

|Cuv(i)| = (1 ± e(t)/se)((2t)eH −2q(t) ± 2θ(t)/se)aHp−1,

where aH = 4eH (eH − 1)/aut(H).
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7 Martingale estimates: the differential equations method

Our main tool for establishing concentration of random variables will be
the following versions of the Azuma-Hoeffding inequality, Lemmas 6 and 7
from [7]. First we need some definitions. Suppose we have a sequence of
random variables X0,X1, . . . and a filtration F0 ⊆ F1 ⊆ · · · (which will
always be the natural filtration given by the process). We say that the se-
quence X0,X1, . . . is a martingale if E(Xi+1|Fi ) = Xi for i ≥ 0. We say
it is a submartingale if E(Xi+1|Fi ) ≥ Xi for i ≥ 0 or a supermartingale if
E(Xi+1|Fi ) ≤ Xi for i ≥ 0. We say that a sequence of random variables
X0,X1, . . . is (η,N)-bounded, for some η,N > 0, if Xi −η ≤ Xi+1 ≤ Xi +N

for all i ≥ 0. In our application below we consider sequences of random
variables A0,A1, . . . where the difference sequence Di = Ai+1 − Ai sat-
isfies 0 ≤ Di ≤ N and EDi = (1 ± ei)di for some di ≤ η/2 and a small
error term 0 < ei < 1. We will define A+

i = ∑
j<i(Dj − (1 − ej )dj ), and

A−
i = ∑

j<i(Dj − (1 + ej )dj ). Then each of A±
i is (η,N)-bounded, A+

i is a

submartingale and A−
i is a supermartingale. We refer to A±

i as a martingale
pair with parameters (η,N).

Lemma 7.1 Suppose η ≤ N/10, m ≥ 1, a > 0 and A0,A1, . . . is an (η,N)-
bounded submartingale. Then P(Am ≤ A0 − a) ≤ e−a2/3ηmN .

Lemma 7.2 Suppose η ≤ N/10, m ≥ 1, 0 < a ≤ ηm/10 and A0,A1, . . . is
an (η,N)-bounded supermartingale. Then P(Am ≥ A0 + a) ≤ e−a2/3ηmN .

We now come to the formulation of the differential equations method. Al-
though it is technically involved, the idea behind it is quite simple. We have
a collection of sequences of random variables, and would like to prove that
certain asymptotic approximations hold with high probability at each step of
each sequence. The asymptotic formulae are heuristically derived by consid-
ering the one-step expected changes in these variables. We let Gi be the event
all formulae hold up to step i. If, conditional on Gi , the expected change of a
random variable from step i to step i +1 is close to what it should be for these
formulae to hold, and we also have a useful absolute bound for these one-step
changes, then we can apply martingale estimates to show that the event Gi in-
deed holds with high probability. We recommend the survey of Wormald [37]
for an introduction to this method, and a comparison of Lemma 7.3 below
with Theorem 5.1 in Wormald [37] may be helpful. We also note that Seier-
stad [29, 30] has recently given improved large deviation bounds and a central
limit theorem for the method under certain general criteria. One difference in
our theorem is that we phrase our result in terms of a known smooth solution
to a system of differential equations, and thus side-step the issue of the exis-
tence of a solution. However, the important difference is in the hypothesis for
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the bounds on the one-step changes of the variables: by using Lemmas 7.1
and 7.2 we can make do with much weaker estimates than those needed to
apply the general result from [37].

Set-up for Lemma 7.3 Suppose we have a stochastic graph process defined on
the vertex set [n], where n is large. Let r be a fixed positive integer, and for
each j ∈ [r] let kj , Sj be parameters (which can depend on n). Suppose that
for each j ∈ [r] and A ∈ ([n]

kj

)
there is a sequence of random variables Xj,A(i),

defined for i = 0, . . . ,m and measurable with respect to the underlying graph
process. We suppose further that

Xj,A(i + 1) − Xj,A(i) = Y+
j,A(i) − Y−

j,A(i),

where Y+
j,A(i), Y−

j,A(i) ≥ 0. We relate these sequences of random variables to
functions on [0,∞) by introducing t = i/s for some function s = s(n) that
goes to infinity. We hope to find a collection xj (t) of continuous functions
such that

Xj,A(i) ≈ xj (t)Sj

for all j ∈ [r],A ∈ ([n]
kj

)
and i = 0, . . . ,m. Note that in our application i will

be the number of edges that have been added, and we can think of s as the
time-scaling for the underlying process. We can think of 1 ≤ j ≤ r as the
‘type’ of a random variable and the set A as giving its ‘position’ in the graph.
The parameter Sj is the size-scaling for the j th type of random variable.

Now we will formally state our lemma. Note that for technical reasons we
also allow the introduction of an additional sequence Hi of high probability
events.

Lemma 7.3 Let 0 < ε < 1 and c,C > 0 be constants, and suppose that for
each j ∈ [r] we have a parameter sj = sj (n), and functions xj (t), ej (t),
θj (t), γj (t) that are smooth and non-negative for t ≥ 0. For i∗ = 1, . . . ,m let
Gi∗ be the event that

Xj,A(i) =
(

1 ± ej (t)

sj

)(
xj (t) ± θj (t)

sj

)
Sj

for all 1 ≤ i ≤ i∗, 1 ≤ j ≤ r and A ∈ ([n]
kj

)
. Suppose that also there is a de-

creasing sequence of events Hi , 1 ≤ i ≤ m such that P(Hm | Gm) → 1 as
n → ∞, and that the following conditions hold:
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1. (trend hypothesis) When conditioning on Gi ∧ Hi we have

EY±
j,A(i) =

(
y±
j (t) ± hj (t)

4sj

)
Sj

s
,

for all j ∈ [r] and A ∈ ([n]
kj

)
, where y±

j (t) and hj (t) are smooth non-
negative functions such that

x′
j (t) = y+

j (t) − y−
j (t) and hj (t) = (ejxj + γj )

′(t);
2. (boundedness hypothesis) For each j ∈ [r], conditional on Gi ∧ Hi we

have

Y±
j,A(i) <

Sj

s2
j kjnε

;

3. (initial condition) For all j ∈ [r] we have ej (0) = γj (0) = 0; and
Xj,A(0) = Sjxj (0) for all A ∈ ([n]

kj

)
;

4. We have n3ε < s < m < n2, m < nε/2s, s ≥ 40Cs2
j kjn

ε , n2ε ≤ sj < n−εs,

inf
t≥0

θj (t) + ej (t)xj (t)/2 − γj (t)/2 > c,

sup
t≥0

|y±
j (t)| < C, sup

t≥0
|x′

j (t)| < C,

∫ ∞

0
|x′′

j (t)|dt < C,

sup
0≤t≤m/s

|hj (t)| < nε,

∫ m/s

0
|h′

j (t)|dt < nε.

Then P(Gm ∧ Hm) → 1 as n → ∞.

Proof On the event Gi ∧ Hi we define

Y
±1±2
j,A (i) = Y

±1
j,A(i) − (y

±1
j (t) ∓2 hj (t)/4sj )Sj/s.

(Recall our convention that this is shorthand for 4 separate sequences of vari-
ables, one for each way of choosing signs for ±1 and for ±2.) If any event Gi

or Hi fails we define all Y
±1±2
j,A (i ′) to be 0 for i ′ > i. Define

Z
±1±2
j,A (i) =

i−1∑

i′=0

Y
±1±2
j,A (i ′), Nj = Sj

s2
j kjnε

and ηj = 4CSj/s.

Using the bounds |hj (t)| < nε , sj > n2ε , |y±
j (t)| < C we see that Z+±

j,A(i)

and Z−±
j,A(i) are martingale pairs with parameters (ηj ,Nj + ηj ). For example
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Z++
j,A(i + 1)−Z++

j,A(i) = Y++
j,A (i) = Y+

j,A − (y+
j (t)−hj (t)/4sj )Sj /s is a sub-

martingale by the trend hypothesis, is bounded above by Nj + n−εSj /4s <

Nj + ηj by the boundedness hypothesis and below by −CSj/s > −ηj . (The
other cases are similar.)

Next we need the Euler-Maclaurin summation formula (see [5]), which is
as follows. Suppose f (t) is a smooth function and a is a natural number. Then
I = ∫ a

0 f (i) di can be approximated by S = 1
2f (0)+f (1)+· · ·+f (a −1)+

1
2f (a) with error |S − I | <

∫ a

0 |f ′(i)|di. We apply the formula to f (i) =
x′
j (t (i)) for any j ∈ [r] and a = i∗ with 1 ≤ i∗ ≤ m. Write t∗ = i∗/s. Then

I =
∫ i∗

0
x′
j (t (i)) di =

∫ t∗

0
x′
j (τ )s dτ = s

(
xj (t

∗) − xj (0)
)

and

|S − I | < 1

s

∫ i∗

0
|x′′

j (t (i))|di =
∫ t∗

0
|x′′

j (τ )|dτ < C,

so
∣∣∣∣
∣
xj (t

∗) − xj (0) − 1

s

i∗−1∑

i=0

x′
j (t (i))

∣∣∣∣
∣

<
1

s

(∣∣∣
∣
x′
j (0)

2

∣∣∣
∣ +

∣∣∣
∣
x′
j (t

∗)
2

∣∣∣
∣ +

∫ t∗

0
|x′′

j (τ )|dτ

)
<

3C

s
.

We can rewrite this as

1

s

i∗−1∑

i=0

x′(t (i))Sj =
(

xj (t
∗) − xj (0) ± 3C

s

)
Sj . (2)

Similarly, our assumptions on hj and the initial conditions ej (0) = γj (0) = 0

give |ej (t
∗)xj (t

∗) + γj (t
∗) − ∑i∗−1

i=0 hj (t (i))/s| < 3nε/s, which we can
rewrite as

i∗−1∑

i=0

hj (t (i))/4sj · Sj/s = (ej (t
∗)xj (t

∗) + γj (t
∗) ± 3nε/s)Sj/4sj . (3)

Now we will estimate the probability that any event Gi fails. We can re-
strict attention to events where all Hi hold, as by assumption they all hold
with high probability. Fix 1 ≤ j ≤ k, A ∈ ([n]

kj

)
, 1 ≤ i∗ ≤ m, t∗ = i∗/s. Con-

sider the event that i∗ is the first step at which Hi∗ holds but Gi∗ fails and
that it fails for the variable Xj,A(i∗). One possibility is that Xj,A(i∗) >
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(1 + ej (t
∗)/sj )(xj (t

∗) + θj (t
∗)/sj )Sj . By definition (using the convention

t = t (i) = i/s)

Xj,A(i∗) − Xj,A(0) −
i∗−1∑

i=0

x′(t)Sj /s

=
i∗−1∑

i=0

(Y+
j,A(i) − y+

j (t)Sj /s − Y−
j,A(i) + y−

j (t)Sj /s)

= Z+−
j,A(i∗) − Z−+

j,A(i∗) + 2
i∗−1∑

i=0

hj (t)/4sj · Sj/s.

Applying (2) and the assumed lower bound for Xj,A(i∗) gives

Z+−
j,A(i∗) − Z−+

j,A(i∗) + 2
i∗−1∑

i=0

hj (t)/4sj · Sj/s

> (ej (t
∗)xj (t

∗) + θj (t
∗) + θj (t

∗)ej (t
∗)/sj − 3Csj/s)Sj/sj .

Then (3), n2ε < sj < n−εs and θj (t
∗) + ej (t

∗)xj (t
∗)/2 − γj (t

∗)/2 > c give

Z+−
j,A(i∗) − Z−+

j,A(i∗)

> (ej (t
∗)xj (t

∗)/2 − γj (t
∗)/2 + θj (t

∗) − (nε + 3Csj )/s)Sj/sj

> cSj/2sj .

We deduce that Z+−
j,A(i∗) > cSj/4sj or Z−+

j,A(i∗) < −cSj/4sj . Since Z±±
j,A

does not change once Gi∗ fails, it follows that Z+−
j,A(m) > cSj/4sj or

Z−+
j,A(m) < −cSj/4sj . Now we apply Lemmas 7.1 and 7.2 with a = cSj/4sj ,

which is valid using our assumptions s ≥ 40Cs2
j kjn

ε , sj > n2ε and m > s

which give ηj < Nj/10 and a < ηjm/10. We deduce that these events have
probability at most

exp(−(cSj/4sj )
2/3ηjm(Nj + ηj )) < exp(−5kj logn) �

∣∣
∣∣

([n]
kj

)∣∣
∣∣

−1

n−3kj ,

say. A similar bound holds for the probability that Xj,A(i∗) <

(1 − ej (t
∗)/sj )(xj (t

∗) − c/sj )Sj , when we have Z−−
j,A(i∗) > cSj/4sj or

Z++
j,A(i∗) < −cSj/4sj . Taking a union bound over 1 ≤ j ≤ r and A ∈ ([n]

kj

)

completes the proof. �
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8 Trackable variables

To apply Lemma 7.3 to the extension variables Xφ,J,�(i), we need to estimate
the expected and maximum number of extensions that may be created or de-
stroyed in each step of the process. In this section we establish a bound on the
maximum number of extensions created or destroyed; in other words, we ver-
ify the boundedness hypothesis. Also, in anticipation of the expected change
calculations needed for the trend hypothesis, we show that two types of patho-
logical subgraph configurations that could potentially spoil these calculations
are suitably rare. More specifically, we show that, on the event Gi , there are
very few extensions in �φ,J,� that contain a pair of open pairs e, f such that
the inclusion of one as an edge causes the other to become closed, and very
few extensions in �φ,J,� for which there are two edges in φ(E� \EJ ) that can
both be closed by the addition of the same edge ei+1. We stress that we obtain
these bounds whenever the variable is trackable (as defined in Sect. 1.2). In
particular, this condition holds for the extension variables that track the open
routes to H less an edge, the central variables in the proof of Theorem 1.4.

We begin with a technical lemma that amounts to showing that if Xφ,J,� is
trackable then there are no ‘implicitly’ closed edges in E� \ EJ .

Lemma 8.1 If Xφ,J,�(i) is a trackable variable and uv ∈ E� \EJ then there
does not exist C ⊆ VH with an injective embedding ψ : C → V� such that

1. ψ(H [C]) is a subgraph of the graph �′ = � ∪ (φ−1(E(i))∩ (
A
2

)
) obtained

from � by adding the edges ab for all a, b ∈ A with φ(a)φ(b) ∈ E(i),
2. for any vertex c ∈ C with ψ(c) �∈ A, every neighbour of c in H belongs

to C, and
3. there is some edge e in H [C] with ψ(e) = uv.

Proof Assume for a contradiction that ψ is an embedding satisfying condi-
tions (1–3) of the lemma. Define A′ = {c ∈ C : ψ(c) ∈ A}. We claim that
|A′| ≥ 2. This is clear if H contains an edge e with ψ(e) ⊆ A. Otherwise,
condition (1) implies that C �= VH , as H is not a subgraph of � by definition
of trackability. Then, since condition (3) implies ψ(C) �⊆ A, condition (2)
implies that A′ disconnects H , and since H is 2-connected we deduce that
|A′| ≥ 2.

Let K be the graph obtained from H [C] by deleting all edges inside A′.
Then K is isomorphic to a subgraph of � by condition (1), so SA,�[A∪ψ(C)] ≤
SA′,K . Also, SA′,K is equal to S(VH \C)∪A′,H by condition (2). This in turn is
at most 1, as H is strictly balanced. We deduce that SA,�[A∪ψ(C)] ≤ 1.

Now (A,�) cannot be strictly dense, since ψ(C) �⊆ A, so it remains to
consider possibility (b) in the definition of trackability. In this case we must
have SA,�[A∪ψ(C)] = 1, and so S(VH \C)∪A′,H = 1. Then the fact that H is
strictly balanced implies that C = VH , |A′| = 2 and A′ ∈ EH . (We cannot
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have (VH \ C) ∪ A′ = VH as A′ � C.) However, the existence of such an
embedding of H in �′ is specifically ruled out by the definition of trackability,
so we have the required contradiction. �

Now we are ready to verify the boundedness hypothesis. Following the
notation of Lemma 7.3 we write Xφ,J,�(i + 1) − Xφ,J,�(i) = Y+

φ,J,�(i) −
Y−

φ,J,�(i), where Y+
φ,J,�(i) ≥ 0 is the number of maps f in �φ,J,�(i + 1) \

�φ,J,�(i) and Y−
φ,J,�(i) ≥ 0 is the number of maps f in �φ,J,�(i) \

�φ,J,�(i+1). Recall that f : V� → [n] is counted by Xφ,J,�(i) if f (e) ∈ O(i)

for every e ∈ E� \ EJ , f (e) ∈ E(i) for every e ∈ EJ , and f restricts to φ

on A. Then f will be counted by Y−
φ,J,�(i) if there is at least one e ∈ E� \EJ

such that f (e) either becomes closed at step i + 1 or is the edge ei+1 chosen
by the process at step i + 1. Also, for each edge e of J and f counted by
Xφ,J\e,�(i), f might be counted by Y+

φ,J,�(i) if ei+1 = f (e). (We will see
below that f may not actually be counted, but for the purpose of an upper
bound we do not need to take this into account here.)

Lemma 8.2 (Boundedness hypothesis) With high probability, for every 1 ≤
i ≤ m, assuming Gi and that Xφ,J,�(i) is trackable, we have Y+

φ,J,�(i) ≤
n−1/eH SA,J and Y−

φ,J,�(i) ≤ n−1/eH SA,J .

Proof We start with the variable Y+
φ,J,�(i). Fix an edge e = ab of J and sup-

pose the process chooses the edge ei+1 = uv in step i+1. Let A′ = A∪{a, b},
J ′ = J \ EJ [A′] and define φ′ : A′ → [n] agreeing with φ on A and satisfy-
ing φ′(a) = u, φ′(b) = v. Note that one of a or b may belong to A, but not
both, as A is independent in J . Any f counted by Y+

φ,J,�(i) with f (a) = u

and f (b) = v is counted by Xφ′,J ′,�(i); we can bound this by Nφ′,J ′ , which
by Lemma 5.2 satisfies Nφ′,J ′ < n4eJ ′ε maxA′⊆B⊆VJ ′ SB,J ′ . Since A � A′ and
(A,J ) is strictly dense we have maxA′⊆B⊆VJ ′ SB,J ′ ≤ n−1/(eH −1)SA,J . Sum-
ming over all edges e of J we estimate Y+

φ,J,�(i) < n−1/eH SA,J .

Now consider the variable Y−
φ,J,�(i). Suppose the process chooses the edge

ei+1 = uv in step i + 1. Fix an edge e of � \ J . We want to estimate the num-
ber of embeddings f in �φ,J,�(i) for which f (e) is either equal to ei+1 or
becomes closed in step i + 1. Since (A,J ) is strictly dense, Lemma 5.3 gives
an upper bound of n−1/(eH −1)+4(eJ +1)εSA,J on the number of embeddings f

with f (e) = ei+1.
Next consider an embedding f where f (e) = xy becomes closed in step

i + 1. Then there is an embedding f2 of H in G(i) ∪ {uv, xy}. Write
C′ = f (VJ ) ∩ f2(VH ) and identify the sets f −1(C′) and f −1

2 (C′) as a
set C on which f and f2 agree. Then we have f2(a) = u, f2(b) = v

for some a, b ∈ VH , and we have some c, d ∈ C with f (c) = f2(c) = x,
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f (d) = f2(d) = y, where {c, d} �= {a, b} and {c, d} �⊆ A (since A is inde-
pendent in �). Write H ′ = H \ {ab, cd} and let W be the join of J1 = J and
J2 = H ′ formed by identifying vertices in C and removing any edges within
A′ = A ∪ {a, b}.

We claim that SB,W ≤ n−1/(eH −1)SA,J for all A′ ⊆ B ⊆ VW . Fix such a set
B and write B1 = B ∩ VJ1 and B2 = B ∩ VJ2 . We have

SB,W = SB1,J · SB2∪C,H · pβ

where β is the number of edges in J2 joining B2 \C and C \B2. Since (A,J )

is strictly dense we have SB1,J ≤ SA,J , with equality only if B1 = A. Fur-
thermore, since {a, b} ∪ C has at least 3 vertices, we have SC∪B2,H ≤ 1, with
equality only if C ∪ B2 = VH . Thus we can restrict our attention to the sit-
uation where B1 = A, B2 ⊃ VJ2 \ VJ1 and β = 0. In this case we will use
Lemma 8.1 to obtain a contradiction. We view C as a subset of VH and let
ψ be the identification of C with the subset of V� which is also called C.
We can assume that condition (1) is satisfied, as otherwise f is an exten-
sion of φ to an embedding of a supergraph of J and then we have the re-
quired estimate on SB,W by Lemma 5.3. Also, β = 0 gives condition (2),
and f2(cd) = xy = f (e) with e ∈ E� \ EJ and c, d ∈ C, which gives con-
dition (3). Thus Lemma 8.1 shows that this case does not actually arise. We
deduce that SB,W ≤ n−1/(eH −1)SA,J .

Now applying Lemma 5.2 and summing over all possibilities for e and W

gives the required bound Y−
φ,J,�(i) < n−1/eH SA,J . �

Now we turn to two technical issues regarding the expected values of
Y+

φ,J,�(i) and Y−
φ,J,�(i). We would like to approximate these using our es-

timates for extension variables. In the case of Y+
φ,J,�(i), our first approxima-

tion is that for each edge e of J , an embedding f counted by Xφ,J\e,�(i)

should be counted by Y+
φ,J,�(i) if ei+1 = f (e). However, we need to account

for the possibility that the addition of the edge ei+1 = f (e) closes some edge
f (e′) where e′ ∈ E� \ EJ . In the case of Y−

φ,J,� , we sum |Cf (uv)(i)| over
uv ∈ E� \ EJ to estimate the number of open edges xy such that choos-
ing ei+1 = xy causes a given embedding f in �φ,J,� to leave this set.
However, we need to account for the possibility that there could be edges
uv,u′v′ ∈ E� \ EJ such that Cf (uv)(i) and Cf (u′v′)(i) have large intersec-
tion. We now establish two lemmas showing that these two ‘pathological’
possibilities have a negligible impact.

Lemma 8.3 (Creation fidelity) If Xφ,J,� is a trackable variable then, with
high probability on the event Gi , the number of extensions f ∈ �φ,J,� with
the property that there are distinct uv, xy ∈ E� \ EJ such that G(i) ∪
{f (uv), f (xy)} contains a copy of H is at most n−1/eH SA,J .
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Proof Let uv, xy ∈ E� \ EJ be distinct and fixed. Consider any graph W

given by the join J and a copy of H less two edges, where uv and xy

are identified with these missing edges. As in Lemma 8.2 it suffices to
show that SB,W ≤ n−1/(eH −1)SA,J for all A ⊆ B ⊆ VW . The argument is al-
most identical to that in Lemma 8.2. With the same notation we again have
SB,W = SB1,J · SB2∪C,H · pβ . We again have SB1,J ≤ SA,J , with equality
only if B1 = A. Furthermore, in the current lemma we have u, v, x, y ∈ C,
so |C| ≥ 3, and SC∪B2,H ≤ 1, with equality only if C ∪ B2 = VH . Then
Lemma 8.1 applies as before to complete the proof. �

Lemma 8.4 (Destruction fidelity) If uv,u′v′ ∈ O(i) are distinct then, on Gi ,
we have |Cuv(i) ∩ Cu′v′(i)| ≤ n−1/eH p−1 with high probability.

Proof Let ab and cd be distinct edges of H and set H1 = H \ {ab, cd}. Sim-
ilarly, let a′b′ and c′d ′ be distinct edges of H and set H2 = H \ {a′b′, c′d ′}.
Now let W be any join of H1 and H2 where c = c′ and d = d ′ but ab �= a′b′.
Set A = {a, b}∪{a′, b′}. Then |A| ≥ 3. Appealing to Lemma 5.2, it suffices to
show SB,W < p−1 for all A ⊆ B ⊆ VW . Fix such a set B . Similarly to before
we have SB,W ≤ SB1,H1SC∪B2,H2p

β2 , where B1 = B ∩ VH1 , B2 = B ∩ VH2 ,
and C = VH1 ∩ VH2 and β2 is the number of edges in H2 joining B2 \ C and
C \ B2.

Note that c, d ∈ C, so SC∪B2,H2 = SC∪B2,H ≤ 1, with equality only when
C ∪ B2 = VH . Also, since H1 is strictly dense we have SB1,H1 ≤ 1/p,
with equality only when B1 = {a, b}. Thus we obtain the desired inequality
SB,W < p−1, except possibly in the case when C ∪ B2 = VH , B1 = {a, b}
and β2 = 0. Also, the same argument reversing the roles of H1 and H2
shows that we obtain the desired inequality, except possibly in the case when
C ∪ B1 = VH , B2 = {a′, b′} and β1 = 0, where β1 is the number of edges
in H1 joining B1 \ C and C \ B1. Since H is 2-connected, the only remain-
ing possibility is when VH1 = VH2 . But then SB,W ≤ SA,H1 < 1/p, as H1 is
strictly dense and |A| ≥ 3. Thus in all cases we have the desired inequality. �

9 Trajectory verification and Turán bounds

Now we use the above bounds and Lemma 7.3 to prove Theorem 1.4, which
shows that trackable extension variables are well described by the differen-
tial equations given earlier in the paper. It will then follow that the process
does indeed continue until at least time t = tmax = μ(logn)1/(eH −1), i.e.
m = μ(logn)1/(eH −1)pn2 edges. In particular, it will follow that variables
counting common neighbours of d-sets with pdn > 1 and variables counting
extensions from non-edge pairs to subgraphs of H with at most eH − 2 edges
satisfy these equations. Then Corollary 1.5 is an immediate consequence of
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the formulae for common neighbours. In particular, when d = 1 we deduce
the minimum degree statement needed to prove Theorem 1.1. To prove Theo-
rem 1.4 we will show that the good event Gm holds with high probability, i.e.
for every i ≤ m and trackable extension variable Xφ,J,�(i) corresponding to
a triple in T , we have

Xφ,J,�(i) = (1 ± e(t)/se)(xA,J,�(t) ± θ(t)/se)SA,J ,

where xA,J,�(t) = q(t)e�−eJ (2t)eJ and t, se, SA,J , q(t), e(t), θ(t) are as de-
fined in Sect. 1.2.

Proof of Theorem 1.4 To apply Lemma 7.3 we arbitrarily number the triples
in T by 1 ≤ j ≤ r and identify the extension variables Xφ,J,�(i) with the vari-
ables Xj,A(i) appearing in the statement of the lemma. We take ej (t) = e(t)

and θj (t) = θ(t) and sj = se for all 1 ≤ j ≤ r . The event Hi is the event that
the estimates given in Lemmas 6.1, 8.2, 8.3 and 8.4 hold up to step i. We will
give values for the other parameters of the lemma later in this proof.

We start with the main step, which is checking the trend hypothesis. For
the expected one-step changes E[Y±

φ,J,�(i)|Gi ∧ Hi] we analyse the error
terms in our earlier heuristic derivation. We start with the variable Q(i),
which counts the number of ordered pairs that are open at step i. Write
Q(i +1)−Q(i) = Q+(i)−Q−(i) with Q+(i),Q−(i) ≥ 0. Since Q(i +1) =
Q(i) − 1 − |Cei+1(i)| we have Q+(i) = 0 and Q−(i) = 1 + |Cei+1(i)|. Then
Corollary 6.2 gives

Q−(i) = 1 + (1 ± e(t)/se)((2t)eH −2q(t) ± 2θ(t)/se)aHp−1.

We have q ′(t) = y+
q (t)−y−

q (t), where y+
q (t) = 0 for all t and y−

q (t) = c(t) =
aH (2t)eH −2q(t). Recall that hq(t) = (eq + γ )′(t). Now e′(t) = P ′(t)eP (t) >

W(teH −2 + 1)eP (t), so since W � V � eH we have hq(t)/y
−
q (t) > (V +

Wa−1
H (2t)−(eH −2))eP (t) for t > 0. Since s = pn2 and θ(t) < 1 we easily have

the required condition for Q−(i), namely

Q−(i) = (y−
q (t) ± hq(t)/4se)n

2/s.

(We only need this estimate for E(Q−(i)|Gi ∧ Hi ), but actually it always
holds on the event Gi .)

Now we check the trend hypothesis in the general case. We write
Xφ,J,�(i + 1) − Xφ,J,�(i) = Y+

φ,J,�(i) − Y−
φ,J,�(i). The term Y+

φ,J,�(i) has
contributions corresponding to each edge e of J . A function f in �φ,J\e,�(i)

will be counted by Y+
φ,J,�(i + 1) if the process chooses the edge ei+1 equal

to f (e) and this choice of ei+1 does not close any edge in f (E� \ EJ ). Now
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ei+1 is chosen uniformly at random among Q(i)/2 open edges, so appealing
to Lemma 8.3 we can estimate

E(Y+
φ,J,�(i)|Gi ∧ Hi ) = 2Q(i)−1

∑

e∈J

(Xφ,J\e,�(i) ± n−1/eH SA,J\e).

Now Xφ,J\e,�(i) = (1 ± e(t)/se)(xA,J\e,�(t) ± θ(t)/se)SA,J\e. Since
SA,J\e = p−1SA,J , n−1/eH � 1/se and θ(t) ≥ 1/2 for t ≥ 0 we estimate
E(Y+

φ,J,�(i)|Gi ∧ Hi ) as

2((1 ± e(t)/se)(q(t) ± θ(t)/se)n
2)−1

× eJ · (1 ± e(t)/se)(q(t)e�−eJ +1(2t)eJ −1 ± 2θ(t)/se)p
−1SA,J .

We have x′
A,J,�(t) = y+

A,J,�(t)−y−
A,J,�(t), where y+

A,J,�(t) = 2eJ q(t)e�−eJ×
(2t)eJ −1 and y−

A,J,�(t) = aH (e� − eJ )q(t)e�−eJ (2t)eJ +eH −2. We also have
hA,J,�(t) = (exA,J,� + γ )′(t). To establish the required bound, i.e.

E(Y+
φ,J,�(i)|Gi ∧ Hi ) = (y+

A,J,�(t) ± hA,J,�(t)/4se)SA,J /s,

it suffices to show that

(1 ± 4e(t)/se)(1 ± 2θ(t)q(t)−1/se)(1 ± 2θ(t)(q(t)e�−eJ +1(2t)eJ −1)−1/se)

⊆ 1 ± (2eJ q(t)e�−eJ (2t)eJ −1)−1hA,J,�(t)/4se. (4)

Setting x(t) = xA,J,�(t) = (2t)eJ q(t)e�−eJ we see that it is necessary to es-
tablish that

4eJ e(t)x(t)

t
+ 2eJ θ(t)x(t)

tq(t)
+ 4eJ θ(t)

q(t)
(5)

is bounded above by

1

4

(
x(t)e′(t) + x′(t)e(t) + γ ′(t)

)

>
eP(t)x(t)

4

(
WteH −2 + W + (eJ /t − (e� − eJ )aH (2t)eH −2)

eP (t) − 1

eP (t)

)

+ γ ′(t)
4

>
eP(t)x(t)

4

(
W

2
teH −2 + W

)
+ γ ′(t)

4
.

Note that establishing this bound is in fact sufficient. This follows from the
inequality |hA,J,�(t)| < nε (explained later in the proof), which implies that
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the terms omitted in (4) are bounded above by nε/(x(t)s2
e ) + nε/s2

e , and so
do not cause the inequality to be violated when n is sufficiently large. Note
also that we can assume that eJ > 0, as otherwise Y+

φ,J,� = y+
A,J,� = 0. To

verify the bound for t < 40V/W we note that x(t) ≤ 9t/4 , as eJ > 0, and
therefore (5) is at most 9V e(t) + 15V < 10V e40V = γ ′(t)/4. On the other
hand, for t > 40V/W we note that the first two terms in (5) can each be
bounded by WeP(t)x(t)/10; the remaining term is bounded by γ ′(t)/4 > 5V

for 40V/W < t < 1/(50V ) and by eP (t)x(t) for larger t .
Next consider the term Y−

φ,J,�(i), which has contributions corresponding
to each edge e of � \ J . A function f in �φ,J,�(i) will be counted by
Y−

φ,J,�(i + 1) if the process either chooses the edge ei+1 equal to f (e) or
f (e) becomes closed, i.e. f (e) ∈ C(i + 1). Thinking of ei+1 as an ordered
pair, the number of choices is 2 + |Cf (e)(i)|, each occurring with probability
Q(i)−1. Therefore, appealing to Lemma 8.4, we have

E(Y−
φ,J,�(i)|Gi ∧ Hi )

= Q(i)−1
∑

f ∈�φ,J,�(i)

∑

e∈�\J
(2 + |Cf (e)(i)| ± n−1/eH p−1).

We can estimate |Cf (e)(i)| by Corollary 6.2, so we estimate E(Y−
φ,J,�(i)|

Gi ∧ Hi) as

((1 ± e(t)/se)(q(t) ± θ(t)/se)n
2)−1

× (e� − eJ ) · (1 ± e(t)/se)(q(t)e�−eJ (2t)eJ ± θ(t)/se)SA,J

× (1 ± e(t)/se)((2t)eH −2q(t) ± 2θ(t)/se ± n−1/eH )aHp−1.

Now to establish the required bound, i.e.

E(Y−
φ,J,�(i)|Gi ∧ Hi ) = (y−

A,J,�(t) ± hA,J,�(t)/4se)SA,J /s,

it suffices to show that

(1 ± 4e(t)/se)(1 ± 2θ(t)q(t)−1/se)(1 ± θ(t)(q(t)e�−eJ (2t)eJ )−1/se)

× (1 ± 2θ(t)((2t)eH −2q(t))−1/se)

⊆ 1 ± (aH (e� − eJ )q(t)e�−eJ (2t)eJ +eH −2)−1hA,J,�(t)/4se.

And this reduces to showing that

4aH (e� − eJ )(2t)eH −2x(t)e(t) + 2aH (e� − eJ )(2t)eH −2x(t)θ(t)

q(t)

+ aH (e� − eJ )(2t)eH −2θ(t) + 2aH (e� − eJ )x(t)θ(t)

q(t)
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is bounded above by

eP (t)x(t)

4

(
W

2
teH −2 + W

)
+ γ ′(t)

4
.

This follows by estimates very similar to those given above for Y+
φ,J,�(i). We

omit the details, except for remarking that is helpful to observe that the term
aH (e� − eJ )(2t)eH −2θ(t) is bounded by γ ′(t)/4 for t < 1/(50V ).

This verifies the trend hypothesis of Lemma 7.3. To finish the proof we
check the remaining conditions. The boundedness hypothesis follows from
Lemma 8.2 as we have n1/eH � n1/eH −ε = s2

e nε . We have |T | = r < V 3V ,
n2ε < s2

e nε < n < pn2 = s < m < n2, se = n1/2eH −ε > n2ε and m < snε for
n sufficiently large. The functions xA,J,�(t) and y±

A,J,�(t) all have the form

F(t)e−KteH −1
, where F is a polynomial of degree at most V +eH , and K and

all coefficients in F are non-negative and bounded above by W , say. Here we
can use

∫ ∞

0
tae−t = a! and sup

t≥0
tae−t = (a/e)a for a ∈ N

to see that supt≥0 |y±
A,J,�(t)|, supt≥0 |x′

A,J,�(t)| and
∫ ∞

0 |x′′
A,J,�(t)|dt are

all bounded by some constant C depending only on W . Also, recall that
e(t) = eP (t) − 1 with P(t) = W(teH −1 + t), hA,J,�(t) = (exA,J,� + γ )′(t),
and γ (t) is a smooth increasing function such that γ (t) and γ ′(t) are bounded
by absolute constants. The initial conditions e(0) = γ (0) = 0 hold. Since
t < t∗ = μ(logn)1/(eH −1), by choosing μ sufficiently small we can ensure
that sup0≤t≤m/s |hA,J,�(t)| < nε and

∫ m/s

0 |h′
A,J,�(t)|dt < nε . Finally, we

can choose c = 1/2, since θ(t) = 1/2+γ (t), so θ(t)+e(t)x(t)/2−γ (t)/2 >

1/2. �

10 Counting small subgraphs

In this short section we apply our results to count small subgraphs in the
H -free process and compare these counts to those known for the G(n,p)

model. A rough summary is that the H -free process looks very much like
G(n,p) from this perspective, except that it does not contain any graphs that
contain H . A more precise description is given by Theorem 1.6, which we
now prove.

Proof of Theorem 1.6 Statement (i) follows from Lemma 4.1, as �[B] does
not appear in G(i) with high probability, and therefore � itself does not
appear with high probability (note that the failure probability here decays
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polynomially in n, not exponentially). Statement (ii) follows from Theo-
rem 1.4 applied to the trackable variable X�(i) = X∅,�,�(i); for any fixed
� we can reapply the theorem with a new parameter V ′ > v�, e� , and track
the variable until step m′ = ξm for some ξ = ξ(�) > 0. It remains to con-
sider the case when S�[B] ≥ 1 for all B ⊆ V� . For convenience we assume
that V�, e� < V , although this assumption can be eliminated by restricting
time to t ≤ ξm for some ξ = ξ(�) > 0, as in (ii). Form the extension se-
ries ∅ = B0 � B1 � · · · � Bd = V� , as defined in Sect. 3. We divide the
m steps of the process into d equal intervals, and in the j th interval we
show that with high probability there is an extension from a fixed copy of
�[Bj−1] (found in the previous interval) to a copy of �[Bj ]. By construction
every step of the extension series is strictly balanced, and our assumption in
this case implies that the scalings in each step satisfy SBj−1,�[Bj ] ≥ 1. Sup-
pose that φ : Bj−1 → [n] is an embedding of �[Bj−1] in G((j − 1)m/d).
If SBj−1,�[Bj ] > 1 then the variable Xφ,�[Bj ],�[Bj ](i) is trackable, so the re-
quired extension exists by Theorem 1.4 (in fact there are many such exten-
sions). On the other hand, if SBj−1,�[Bj ] = 1 we can apply Theorem 1.4 to
the trackable variables Xφ,�[Bj ]\e,�[Bj ](i) with e ∈ E�[Bj ] \ E�[Bj−1]. Writ-
ing aj = e�[Bj+1] − e�[Bj ] we can estimate the probability that in step i the
edge ei completes some embedding of �[Bj ] \ e for some e to an embed-
ding of �[Bj ] by Q(i)−1 ∑

e Xφ,�[Bj ]\e,�[Bj ](i) ∼ aj (2t)aj−1/(pn2). Since
the length of each interval is m/d � s = pn2 and t � 1 (ignoring the first
half of the first interval, say) we see that the required extension appears with
high probability. �

Remark Our results for counting labelled copies of � in the H -free process
mirror those obtained for the analogous counts in G(n,p). However, rather
more is known in the G(n,p) model, some of which is surveyed in Sect. VII
of [27]. In the supercritical case Barbour, Karoński and Ruciński [6] gave a
central limit theorem with estimates on the rate of convergence for the ap-
propriately normalised count. Spencer [31] analysed the critical case: one of
his results concerns the case when � is strictly balanced, when he obtains the
asymptotic probability for � to appear when p is near the threshold. It seems
plausible that similar results may hold for the H -free process: in the super-
critical case one would need to extract distributional information from the
differential equations method (along the lines of [29]), and in the critical case
one would need a more accurate analysis of the above proof (which seems to
suggest a Poisson approximation). For the sake of brevity we do not pursue
these possibilities here.
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11 Smooth independence

We have now shown that the H -free process continues until at least the time
tmax = μ(logn)1/(eH −1), when it has m = μ(logn)1/(eH −1)pn2 edges. In this
section we describe an additional assumption (‘smooth independence’) on H ,
under which we show that the independence number of the resulting graph is
at most

α = 3μ−1(logn)1−1/(eH −1)p−1.

Since the independence number cannot increase when more edges are added,
we also have the same upper bound for the terminal graph of the process. The
main step of our proof will be to show that, for any set I of size α, with high
probability we can track the number of open pairs contained within I : at time
t there will be roughly q(t)|I |2 open ordered pairs in I . Then a simple union
bound calculation will show that with high probability I is not independent
at time tmax.

To track the open pairs within a set I we use Lemma 7.3, but we cannot
simply apply the lemma directly, due to the possibility of closing a large num-
ber of pairs in I in a single step of the process. Note that in this application
of Lemma 7.3 we will take r = 1, k1 = α and S1 = α2. So we will not be
able to achieve the boundedness hypothesis in a useful way if we allow our
process to close α edges in the set I in a single step (and this certainly is a
possibility for many choices of H ). To deal with this, we say that an open pair
uv ∈ O(i − 1) is I -good at step i if

|Cuv(i − 1) ∩ I 2| < n−5εp−1,

that is, if the addition of the pair as an edge would close at most n−5εp−1

ordered pairs in I , otherwise the pair uv is I -bad at step i. Then we say that
a pair xy in I is I -closed at step i if there is some step i ′ ≤ i such that ei′ is
I -good at step i and G(i′) ∪ {xy} contains a copy of H using xy and ei′ . If
xy in I is not in E(i) and not I -closed we say that it is I -open at step i. Note
that an I -closed pair is closed, but an I -open pair could be open or closed
(but not an edge). Let QI(i) be the number of open ordered pairs in I at step
i and XI(i) be the number of I -open ordered pairs in I at step i. We write
BI (i) for the set of pairs uv ∈ O(i) that are I -bad at step i + 1. Also, write
PI for the set of I -bad edges chosen through m steps of the process. Thus
PI = {ei : ei is I -bad at step i}. We say that H has smooth independence if
with high probability, for every set I of size α,

|BI (i)| < n−6εp−2 for all i, and |PI | < n−5εp−1.

Our first step is to apply Lemma 7.3 to track the number of I -open pairs in I .
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Lemma 11.1 If H has smooth independence, then with high probability, for
any set I of size α, the number of I -open ordered pairs in I at step i is
XI(i) = (1 ± e(t)n−2ε)(q(t) ± n−2ε)α2.

Proof We apply Lemma 7.3 with r = 1, k1 = α, X1,I (i) = XI(i) for I ∈ ([n]
α

)
,

x1(t) = q(t), e1(t) = e(t), γ1(t) = γ (t), θ1(t) = θ(t), s1 = n2ε and S1 = α2.
We let Hi be the event that the estimates given by Theorem 1.4 and |BI (i)| ≤
p−2n−6ε hold up to step i for every set I of size α.

The main step is verifying the trend hypothesis of Lemma 7.3. Note that
adding an edge cannot create any new I -open pairs, so we always have
Y+

1,I (i) = 0. Now we calculate the expected one-step change E(Y−
1,I |Gi ∧ Hi ).

Recall that a pair e becomes closed at step i + 1 if the process chooses the
edge ei+1 in Ce(i) so a pair e in I becomes I -closed if is I -open and ei+1 is
chosen in Ce(i) \ BI (i). Also, if e in I is open as well as I -open it may be-
come an edge if the process chooses ei+1 = e. Now ei+1 is chosen uniformly
among Q(i) open ordered pairs at step i, so

E(Y−
1,I |Gi ∧ Hi ) = Q(i)−1

[( ∑

e∈XI (i)

(|Ce(i)| ± 1)

)
± |BI (i)|p−1nε/2

]
.

Here we also wrote XI(i) for the set of I -open pairs in I , and used the
estimate that each pair in BI (i) can close at most p−1nε/2 pairs by Corol-
lary 6.2. Temporarily ignoring the error terms, this suggests the equation
x′

1(t) = −q(t)−1x1(t)c(t), which has q(t) as a solution, explaining our choice
of x1(t) above. To account for the error terms, we estimate Q(i) by Theo-
rem 1.4, Ce(i) by Corollary 6.2, XI(i) by the fact that we are conditioning
on Gi (interpreted for the current application of Lemma 7.3) and BI (i) by
definition of the event Hi . Thus we estimate E(Y−

1,I |Gi ∧ Hi ) as

((1 ± e(t)/se)(q(t) ± θ(t)/se)n
2)−1 · (1 ± e(t)/s1)(q(t) ± θ(t)/s1)α

2

× (1 ± e(t)/se)((2t)eH −2q(t) ± 2θ(t)/se ± n−5ε)aHp−1.

Recalling that s = pn2, y−
q (t) = aH (2t)eH −2q(t) and hq(t) = (eq + γ )′(t)

we see that we have the required condition

E(Y−
1,I |Gi ∧ Hi) = (y−

q (t) ± hq(t)/4s1)α
2/s.

The boundedness hypothesis follows immediately from the definition of
I -open pairs. Note that we can arrange for s2

1k1n
ε = αn5ε < n, since ε is

small. The remaining conditions of Lemma 7.3 follow by similar calculations
as in the proof of Theorem 1.4. �

Next we show that a similar estimate holds for the number of open pairs
in I .
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Lemma 11.2 If H has smooth independence, then with high probability, for
every set I of size α, the number of open ordered pairs in I at step i is QI(i) =
(1 ± e(t)n−2ε)(q(t) ± 2n−2ε)α2.

Proof We need to estimate the number of ordered pairs in I that are I -open
but not open. By Corollary 6.2 we can bound the number of pairs closed
by any edge by p−1 logn (say). By smooth independence we can assume
that |PI | < n−5εp−1, so at most n−5εp−1 · p−1 logn pairs in I are closed but
I -open. The required bound follows from these estimates and Lemma 11.1. �

Finally, we can show that the independence number of the process at time
m is at most α.

Lemma 11.3 If H has smooth independence, then with high probability, at
time m every set I of size α contains at least one edge.

Proof At step i + 1 the process chooses an edge uniformly at random from
one of the Q(i) open ordered pairs. Since QI(i) of these belong to I , it fails
to choose an edge in I with probability 1 − QI(i)/Q(i). Multiplying these
probabilities and taking a union bound over I we can bound the probabil-
ity that there is an independent set I of size α by pα = (

n
α

)
maxI

∏m
i=1(1 −

QI(i)/Q(i)). By Theorem 1.4 and Lemma 11.2 we have

QI(i)/Q(i) = ((1 ± e(t)/se)(q(t) ± θ(t)/se)n
2)−1

× (1 ± e(t)n−2ε)(q(t) ± 2n−2ε)α2.

Recalling that se = n1/2eH −ε and μ is chosen small enough that q(t)−1

and e(t) are at most nε for t ≤ tmax we can estimate QI(i)/Q(i) = (1 ±
10n−ε)(α/n)2. Therefore

logpα = α(logn− logα+1+O(1/n))−m
(
(1±10n−ε)(α/n)2 ±2(α/n)4).

Also, since m = μ(logn)1/(eH −1)pn2 and α = 3μ−1(logn)1−1/(eH −1)p−1 we
have m(α/n)2 = 3α logn. Thus we obtain

logpα < −α logn = −3μ−1(logn)2−1/(eH −1)p−1,

so pα < exp(−n1/eH ) (say), as required. �

12 Independence number and Ramsey bounds

In this section we show that cliques and cycles both have the smooth inde-
pendence property. By Lemma 11.3, this is enough to prove Theorems 1.8
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and 1.9, and then Theorem 1.2 follows immediately from Theorem 1.8. We
will also show that a graph H satisfying the hypothesis of Theorem 1.7 has
smooth independence, which is enough to prove that theorem.

We start with cycles, where we deduce smooth independence from a path-
counting argument.

Lemma 12.1 The �-cycle C� has smooth independence for � ≥ 4.

Proof Suppose I ⊆ [n] is a set of α vertices and let BI (i) ⊆ O(i − 1) be the
ordered pairs at step i that are I -bad. We need to show that with high proba-
bility |BI (i)| < n−6εp−2 for all such I and all i ≤ m. Consider the contrary
event that |BI (i)| ≥ n−6εp−2, i.e. there are at least n−6εp−2 ordered pairs that
each close at least n−5εp−1 ordered pairs in I . Then there is some ordered
pair of edges uv, xy of C� and B ′

I (i) ⊆ BI (i) with |B ′
I (i)| ≥ �−1n−6εp−2

such that for every pair cd in B ′
I (i) there are at least �−1n−6εp−1 embed-

dings f of C� \ {uv, xy} with f (x) = c, f (y) = d and f (u), f (v) ∈ I .
Set I0 = I and for 1 ≤ j ≤ � − 2 define

Ij = {v : |NG(i)(v) ∩ Ij−1| > n−10εpn}.

By Theorem 1.4 the degree of any vertex at time t is (1 ± e(t)/se)(2t ±
1/se)pn. Now p = n−(�−2)/(�−1) and t ≤ tmax = μ(logn)1/(�−1), so pn =
n1/(�−1) and we can bound all degrees by (n logn)1/(�−1). It follows that
there are at most (n logn)j/(�−1) paths of length j starting at any given
vertex, for any j . Also, if v /∈ Ij we can improve on this estimate when
counting paths of length j that start at v and end in I . To see this, con-
sider choosing the vertex sequence of such a path starting at v, say v =
vj−1, . . . , v0 ∈ I . At each step we have at most (n logn)1/(�−1) choices,
and there must be some j − 1 ≥ j ′ ≥ 1 where vj ′ /∈ Ij ′ but vj ′−1 ∈ Ij ′−1,
when by definition we have at most n−10εpn choices. This gives at most
j (n−10εpn)((n logn)(j−1)/(�−1)) < n−9εnj/(�−1) paths of length j that start
at v and end in I .

Suppose without loss of generality that removing uv and xy from the cycle
leaves a path of length �1 joining u to x and a path of length �2 joining v to y,
with �1 + �2 = �− 2 and �1 > 0 (we might have �2 = 0, i.e. v = y). We claim
that for any pair cd in B ′

I (i) we must have c ∈ I�1 and d ∈ I�2 . For suppose
that c /∈ I�1 . Then there are at most n−9εn�1/(�−1) paths of length �1 that start
at c and end in I . Also, there are at most (n logn)�2/(�−1) paths of length �2
that start at d and end in I . Thus we bound the number of embeddings f

of C� \ uv with f (x) = c, f (y) = d and f (u), f (v) ∈ I by n−9εn�1/(�−1) ×
(n logn)�2/(�−1) < �−1n−5εp−1, contradiction. Thus we have c ∈ I�1 , and the
same argument gives d ∈ I�2 .
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Now by Lemma 4.3, with high probability we have |Ij | ≤
α(8−1εn−10εpn)−j < n1−(j+1)/(�−1)+11jε for 1 ≤ j ≤ � − 2 and every I

of size α. Therefore,

|B ′
I (i)| ≤ |I�1 | · |I�2 | ≤ n2−(�1+�2+2)/(�−1)+11(�1+�2)ε

= n2−�/(�−1)+11(�−2)ε < n < n−6εp−2.

This contradicts our assumption on B ′
I (i).

It remains to bound |PI |. Now suppose |PI | ≥ n−5εp−1. Under this as-
sumption there are at least n−5εp−1 edges that are chosen by the process
that each close at least n−5εp−1 ordered pairs in I . Arguing as above, we
see that there is some ordered pair of edges uv, xy of C� and P ′

I ⊆ PI

with |P ′
I | ≥ �−1n−5εp−1 such that for every edge cd in P ′

I there are at
least �−1n−5εp−1 embeddings f of C� \ uv with f (x) = c, f (y) = d and
f (u), f (v) ∈ I . Following the argument above, each such pair cd must have
c ∈ I�1 and d ∈ I�2 . And here we have the added condition cd ∈ E(m). By
Lemma 4.2, with high probability we have

e(I�1, I�2) < max{4ε−1(|I�1 | + |I�2 |),p|I�1 ||I�2 |n2ε}.
This is less than n−1/�p−1 unless �2 = 0. Also, if �2 = 0 then �1 = � − 2,
so |I�1 | < n11�ε and we can bound the number of edges incident to I�1

by |I�1 |(n logn)1/(�−1) < n1/(�−1)+12�ε . Either way we have e(I�1, I�2) <

�−1n−5εp−1 ≤ |P ′
I |, by our earlier assumption, which contradicts the fact

any edge cd in P ′
I has c ∈ I�1 and d ∈ I�2 . Therefore with high probabil-

ity we have |PI | < n−5εp−1 for all I , i.e. H has the smooth independence
property. �

For cliques, we first consider the case H = Ks for some s ≥ 6. Then p =
n−2/(s+1). Consider any two edges uv, xy of H and let H− = H \ uv. We
have Sxy,H− = p−1 and for s ≥ 6 we have Sxy,H−[B] ≥ p2n > p−1 for any
B with xy � B � VH , i.e. (xy,H−) is strictly balanced. We show that this
more general property suffices for smooth independence. Note that if H is
any graph such that (xy,H−) is strictly balanced for all xy,uv ∈ EH then H

has minimum degree at least 3. (To see this, assume for a contradiction that
dH (u) = 2 and consider an extension (xy,H−) where u �∈ xy.)

Lemma 12.2 Suppose that (xy,H \uv) is strictly balanced for any two edges
uv, xy of H . Then H has smooth independence.

Proof Suppose I ⊆ [n] is a set of α vertices, and let PI (i) be the set of or-
dered pairs of vertices cd with the property that there at least n−5εp−1 or-
dered pairs ab ∈ I 2 such that G(i − 1) + {ab, cd} contains a copy of H that
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includes both ab and cd . Note that PI (i) contains BI (i) as well as all of
the I -bad edges that have been chosen by the process so far (i.e. PI ∩ E(i)).
We show that with high probability |PI (i)| < n−5εp−1 for all such I and all
i ≤ m. Consider the contrary event that |PI (i)| ≥ n−5εp−1, i.e. there are at
least n−5εp−1 ordered pairs that each close at least n−5εp−1 ordered pairs
in I . Then there is some ordered pair of ordered edges uv, xy of H with
u /∈ {x, y} and P ′

I (i) ⊆ PI (i) with |P ′
I (i)| ≥ (2eH )−1n−5εp−1 such that for

every pair cd in P ′
I (i) there are at least (2eH )−1n−5εp−1 embeddings f of

H− = H \ {uv, xy} with f (x) = c, f (y) = d and f (u), f (v) ∈ I .
Write H− = H \ {uv, xy}. Since (xy,H−) is strictly balanced we have

SB,H− < 1 for any B with xyu ⊆ B � VH . Applying Lemma 5.2, we see
that for any a, c, d ∈ [n] there are at most n4eH ε embeddings f of H− =
H \{uv, xy} with f (x) = c, f (y) = d and f (u) = a. For each pair cd ∈ P ′

I (i)

let Ucd be the set of vertices a ∈ I such that there is at least one embedding f

of H− = H \ {uv, xy} with f (x) = c, f (y) = d and f (u) = a. By definition
of P ′

I (i) we must have

|Ucd | > (2eH )−1n−5εp−1/n4eH ε > n−10eH εp−1

(say) for every pair cd ∈ P ′
I (i). Next we need the following claim.

Claim 1 |Ucd ∩ Uc′d ′ | < n−1/eH p−1 for any two pairs cd, c′d ′ ∈ P ′
I (i).

Proof Consider two embeddings f1, f2 of H− such that f1(x) = c,
f1(y) = d , f2(x) = c′, f2(y) = d ′ and f1(u) = f2(u) = a. Let C′ = f1(VH )∩
f2(VH ). Let W be the join of J1 = H− and J2 = H− formed by identifying
the sets f −1

1 (C′) and f −1
2 (C′) as a single set C on which f1 and f2 agree.

Note that we have u ∈ C. For ease of notation we let x, y denote the copies
of x, y in J1 and x′, y′ the copies of x, y in J2. Let A = {x, y} ∪ {x′, y′}.
Since cd �= c′d ′ we have |A| ≥ 3. Define φ : A → [n] by φ(x) = c, φ(y) = d ,
φ(x′) = c′, φ(y′) = d ′. We want to estimate Nφ,W . The argument is very sim-
ilar to that in Lemma 6.1. Choose B with A ⊆ B ⊆ VW maximising SB,W . We
have cases depending on how VJ1 and VJ2 intersect. If f1(VH ) = f2(VH ), i.e.
VJ1 = VJ2 , then we have SB,W ≤ SB,H− ≤ 1 < p−1, since (xy,H−) is strictly
balanced and |A| ≥ 3. We henceforth suppose that f1(VH ) �= f2(VH ). Define
B1 = B ∩ VJ1 and B2 = B ∩ VJ2 . Next we consider the case VJ1 ⊆ VJ2 ∪ A.
If B2 �= {x′, y′} then we have SB,W ≤ SB2,J2 ≤ 1 < 1/p because (x′y′, J2) is
strictly balanced. If B2 = {x′, y′} then we note that, since H has minimum
degree at least 3 and VJ1 \ VJ2 �= ∅, we have SB,W ≤ pSB2,J2 ≤ 1 < 1/p. The
analogous argument handles the case VJ2 ⊆ VJ1 ∪ A.

Now suppose that VJ1 \ (VJ2 ∪ A) and VJ2 \ (VJ1 ∪ A) are non-empty. We
consider subcases according to B1 and B2. The first subcase is B1 ∪ C �=
VJ1 . Then we have SB1∪C,J1 = SB1∪C,H− < 1, since u ∈ C and (xy,H−) is
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strictly balanced. Also SB2,J2 ≤ Sx′y′,H− = p−1, so SB,W = SB2,J2SB1∪C,J1 <

p−1. The second subcase is B2 ∪ C �= VJ2 , when a similar argument gives
SB,W = SB1,J1SB2∪C,J2 < p−1. Finally, the third subcase is B1 ∪ C = VJ1

and B2 ∪ C = VJ2 . Then B1 contains VJ1 \ (A1 ∪ C) and B2 contains VJ2 \
(A2 ∪ C), which are both non-empty. Since (xy,H−) is strictly balanced we
have SB1,J1 ≤ 1 and SB2∪C,J2 ≤ 1, and so SB,W = SB1,J1SB2∪C,J2 ≤ 1. In all
cases we have SB,W < p−1, so SB,W ≤ n−1/(eH −1)p−1, since it is an integer
power of n−1/(eH −1). Now Lemma 5.2 gives Nφ,W < n4eW ε−1/(eH −1)p−1.
Summing over all possible joins W we estimate |Ucd ∩ Uc′d ′ | < n−1/eH p−1,
which proves the claim. �

Returning to the proof of the lemma, we now set ω = n11eH ε and choose
ω pairs of P ′

I (i), say c1d1, . . . , cωdω. Recall that |Ucd | > n−10eH εp−1 for
every cd ∈ P ′

I (i). Then |Ucidi
\ ∪j<iUcj dj

| > n−10eH εp−1 − in−1/eH p−1 for
1 ≤ i ≤ ω by the claim. This gives

∣∣∣
∣∣

ω⋃

i=1

Ucidi

∣∣∣
∣∣
> ωn−10eH εp−1 − 1

2
ω2n−1/eH p−1 > nεp−1,

say. But by definition the sets Ucidi
are contained in I , for which |I | = α =

3μ−1(logn)1−1/(eH −1)p−1 is too small. This contradiction shows that we
cannot have |PI (i)| ≥ n−5εp−1 for some I holding together with the bounds
used from Lemma 5.2. These bounds hold with high probability, so with high
probability we have |PI (i)| < n−5εp−1 for all I , i.e. H has the smooth inde-
pendence property. �

The two arguments above can be generalised to prove smooth indepen-
dence for a wider class of graphs H . However, for the sake of brevity and
clarity, we restrict our attention to these simple cases here. We complete the
discussion of cliques by showing that K5 has smooth independence. (The in-
dependence numbers for the K3-free and K4-free processes have already been
obtained in [7].)

Lemma 12.3 K5 has smooth independence.

Proof Write H = K5. We argue as in the proof of Lemma 12.2. Consider
I , PI (i), uv, xy, P ′

I (i), Ucd as defined in that proof. Now (xy,H−) is not
strictly balanced, but we do have SB,H− ≤ 1 for any B with xyu ⊆ B ⊆ VH ,
so for every cd ∈ P ′

I (i) we still obtain the bound |Ucd | > n−10eH εp−1. Fol-
lowing that proof, our next step is to show that |Ucd ∩ Uc′d ′ | < n−1/eH p−1

for any two pairs cd, c′d ′ ∈ P ′
I (i). In fact we will obtain a much stronger

bound. Consider two embeddings f1, f2 of H such that f1(x) = c, f1(y) = d ,
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f2(x) = c′, f2(y) = d ′ and f1(u) = f2(u) = a. Define C′, H−, J1, J2, W , x′,
y′, A and φ as before. Choose B with A ⊆ B ⊆ VW maximising SB,W . Note
that for any K with xy � K ⊆ VH we have SK,H− ≤ 1. So if VJ1 = VJ2

we have SB,W ≤ 1. Otherwise we consider cases according to B1 = B ∩ VJ1

and B2 = B ∩VJ2 . Since SB,W = SB1,J1SB2∪C,J2 , SB,W = SB2,J2SB1∪C,J1 and
|B1 ∪ C|, |B2 ∪ C| ≥ 3 we see that SB,W ≤ 1, except possibly in the case
B1 = {x, y} and B2 = {x′, y′}. In this case we note that there is an edge from
a ∈ C to B2 that is not contained in J1, so SB,W ≤ pSB1,J1 = 1. In all cases we
have SB,W ≤ 1 and so Nφ,W < n4eW . Summing over all possible joins W we
estimate |Ucd ∩ Uc′d ′ | < n5eW , say. Now the remainder of the proof follows
as in Lemma 12.2. �

13 Concluding remarks

We have restricted our attention in this paper to those aspects of the H -free
process needed for our applications to Ramsey and Turán bounds. However,
we also view this work as the first stage in the study of this process as a model
of independent interest. In the course of our arguments we have already de-
scribed some properties of the model via our asymptotic formulae for track-
able extension variables; for example, we have shown that for fixed graphs �

that do not contain H as a subgraph, excluding ‘critical’ cases, the number of
copies of � in G(i) is roughly the same as the number of copies of � in the
unconstrained random graph G(n, i). In principle, one may ask for analogues
in the graph G(i) produced by the H -free process of any property known to
hold in G(n, i). But the most natural next steps are continued investigation of
the independence number and development of upper bounds on the number
of steps in the H -free process. For independent sets, there are other classes
of graphs covered by our methods, but for clarity we have restricted our at-
tention to certain concrete settings rather than stating a complicated general
theorem. One might hope that any strictly 2-balanced graph can be analysed
by these methods. With respect to upper bounds, we believe that the number
of steps in the H -free process is at most a constant times the lower bound we
establish here for any strictly 2-balanced H . In fact, we are even prepared to
make this conjecture for the degree of each vertex.

Conjecture 13.1 For any strictly 2-balanced graph H there is a constant
C so that with high probability the maximal H -free graph G on n vertices
produced by the H -free process has maximum degree

�(G) < Cn1−(vH −2)/(eH −1)(logn)1/(eH −1).

For the triangle-free process this follows from the bound on the indepen-
dence number (see [7]), but in general it is a separate question. The later
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evolution of the process, where Theorem 1.4 no longer applies, is also an
intriguing topic for further study.
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