1. Use the Local Lemma to show
\[R(3, t) = \Omega \left(\frac{t^2}{\log^2 t} \right). \]

2. Let \(Y_1, Y_2, \ldots, Y_s \) be chosen uniformly and independently at random from \([m] := \{1, 2, \ldots, m\}\) and set \(Y = \{Y_1, \ldots, Y_s\} \).
 (a) Show that for any \(\emptyset \neq A \subseteq [m] \) and \(i \in [m] \setminus A \) we have
 \[Pr(i \in Y \mid A \subseteq Y) \leq Pr(i \in Y). \]
 (b) Show
 \[Pr(Y = [m]) < [1 - (1 - 1/m)^s]^m. \]

 Hint: Use a coupling.

For a graph \(G = (V, E) \) and sets of colors \((S(v) : v \in V)\), with each \(S(v) \) a subset of some universal set of colors \(\Gamma \), a coloring \(\sigma : V \to \Gamma \) is \(S \)-legal if it is a proper coloring (i.e. adjacent vertices get different colors) and \(\sigma(v) \in S(v) \) for all \(v \in V \).

The list-chromatic number of \(G \), denoted \(\chi_l(G) \), is the smallest \(t \) such that for every choice of \(\{S(v) : v \in V\} \) such that \(|S(v)| = t \ \forall v \) there exists an \(S \)-legal coloring.

3. Show that for a bipartite graph \(G \) of maximum degree \(\Delta \) we have
\[\chi_l(G) = O(\Delta/(\log \Delta)). \]

4. Let \(k \geq 1 \) be fixed. Let \(G = (V, E) \) be a simple graph, and let \(S(v) \) be a set of at least \(10k \) colors for each \(v \in V \). Assume that for each \(v \in V \) and each color \(\gamma \) we have
\[|\{w : w \sim v \text{ and } \gamma \in S(w)\}| \leq k. \]

Prove that \(G \) has an \(S \)-legal coloring.

5. We recall some material from homework 1.

Let \(G \) be a triangle-free graph on \(n \) vertices with maximum degree \(\Delta \), and let \(\mathcal{I} \) be the collection of all independent sets in \(G \). We defined the independence polynomial of \(G \) as
\[P_G(x) = \sum_{I \in \mathcal{I}} x^{|I|}, \]
and we considered the probability distribution on \(\mathcal{I} \) given by
\[Pr(I) = Pr_\gamma(I) = \frac{\gamma^{|I|}}{P_G(\gamma)}. \]
where $\gamma > 0$. We further defined the random variable X to be the cardinality of an independent set chosen at random according to this distribution. Recall that we proved in Homework 1 that we have
\[
\frac{E[X]}{n} \geq \frac{\gamma}{1 + \gamma} \cdot \frac{W(\Delta \log(\gamma + 1))}{\Delta \log(\gamma + 1)}.
\]
where $W(z)$ denotes the unique positive real such that $W(z)e^{W(z)} = z$.

Prove that $E[X]$ is monotone increasing as function of λ, and conclude that we have
\[
\frac{1}{|I|} \sum_{I \in I} |I| \geq (1 + o(1)) \frac{n \log(\Delta)}{\Delta}.
\]