1. Show that a graph $G = (V, E)$ has a matching of size k if and only if

$$q(G - S) \leq |S| + |V| - 2k$$

for all $S \subseteq V$.

2. Deduce the Marriage Theorem from Tutte’s 1-factor Theorem.

3. Prove that every connected graph has a vertex that is not a cut-vertex.

4. Prove that if $G = (V, E)$ is 2-connected and

$$\kappa(G - x) = 1 \quad \text{for all } x \in V$$

then $\delta(G) = 2$.

Hint. Consider a vertex-cut $\{x, y\}$ such that $G - x - y$ has a connected component on the minimum number of vertices.

For the remaining questions make use of the following definitions. If G is a graph on more than one vertex and $G - F$ is connected for every set F of fewer than ℓ edges then we say that G is ℓ-edge-connected. The greatest integer ℓ such that G is ℓ-edge-connected is the edge connectivity of G, which is denoted $\lambda(G)$.

5. Let G be an n vertex graph such that

$$d(x) + d(y) \geq n - 1 \quad \text{for all non-adjacent } x, y \in V(G).$$

Prove that $\lambda(G) = \delta(G)$.

6. Suppose $G = (V, E)$ is k-edge-connected and the deletion of any edge of G gives a graph that is not k-edge-connected. Show that G has minimum degree k.

Hint: Consider $X \subseteq V$ with $|E(X, V \setminus X)| = k$ and $|X|$ minimum.