1. Let the sequence \(a_0, a_1, \ldots \) be defined by \(a_0 = 2, a_1 = 8 \) and \(a_i = \sqrt{a_{i-1}a_{i-2}} \) for \(i \geq 2 \). Determine \(\lim_{n \to \infty} a_n \).

 Hint: This is a generating functions question.

2. Prove that any edge coloring of the edge set of \(K_{17} \) with the colors Red, Blue and Green has a monochromatic triangle.

3. Let \(k \geq 3 \) and \(n = (k - 1)^2 \). Give an explicit 2-coloring of the edges of \(K_n \) that does not have a monochromatic \(K_k \).

4. If \(G = (V, E) \) is a graph and \(v \in V \) then the *degree* of \(v \), denoted \(d(v) \), is the number of edges in \(G \) that contain \(v \) (e.g. the degree of every vertex in the complete graph \(K_n \) is \(n - 1 \)).

 Let \(n \geq 2 \) be an integer. Does there exist a graph with vertex set \(V = \{v_1, \ldots, v_n\} \) such that \(d(v_i) = i - 1 \) for \(i = 1, \ldots, n \)?

5. A graph \(G = (V, E) \) is **bipartite** if there exists a partition \(V = A \cup B \) such that

 \[E \cap \binom{A}{2} = \emptyset \quad \text{and} \quad E \cap \binom{B}{2} = \emptyset. \]

 In other words, every edge has one vertex in \(A \) and one vertex in \(B \). The sets \(A \) and \(B \) are the parts of the bipartition of \(G \).

 A graph \(G = (V, E) \) is **\(d \)-regular** if every vertex in \(G \) has degree \(d \).

 Let \(G \) be a \(d \)-regular bipartite graph with parts \(A, B \). Prove that if \(d \geq 1 \) then \(|A| = |B| \).

6. We say that a pair of events \(A, B \) in a probability space are **independent** if

 \[\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B). \]

 (a) Let \(A \) and \(B \) be independent events in a probability space defined on the set \(\Omega \).

 Prove that \(\overline{A} = \Omega \setminus A \) and \(\overline{B} = \Omega \setminus B \) are independent events.

 (b) Define a probability space with three events \(A, B, C \) with the following properties:

 i. \(A \) and \(B \) are independent events,

 ii. \(A \) and \(C \) are independent events,

 iii. \(B \) and \(C \) are independent events, but

 iv. \(\mathbb{P}(A \cap B \cap C) \neq \mathbb{P}(A)\mathbb{P}(B)\mathbb{P}(C) \).