Blowing up the power of a singular cardinal of uncountable cofinality with collapses

Sittinon (New) Jirattikansakul

RIMS Set Theory Workshop

November 18th, 2020
Outline

- Definitions
- Main theorem
- Extenders
- Big Pictures
- Forcings
- Forcings extensions
- Some conclusions
Definitions

Definition

The Singular Cardinal Hypothesis (SCH) states that if κ is singular strong limit, then $2^{\kappa} = \kappa^+$.

Definitions

Definition

The Singular Cardinal Hypothesis (SCH) states that if κ is singular strong limit, then $2^\kappa = \kappa^+$.

Violating SCH requires large cardinal. For example, $2^{\aleph_\omega} > \aleph_{\omega+1}$ is equiconsistent with the existence of a cardinal κ whose Mitchell order is κ^{++}.
Definitions

The Singular Cardinal Hypothesis (SCH) states that if κ is singular strong limit, then $2^\kappa = \kappa^+$. Violating SCH requires large cardinal. For example, $2^{\aleph_\omega} > \aleph_{\omega+1}$ is equiconsistent with the existence of a cardinal κ whose Mitchell order is κ^{++}.

Definition

Extenders E on (κ, λ) and F on (κ', λ) are coherent if $j_F(E) \upharpoonright \lambda = E$ where j_F is an embedding derived from F.

Sittinon (New) Jirattikansakul (RIMS Set Theory Workshop)
Blowing up the power of a singular cardinal of uncountable cofinality
November 18th, 2020
Definitions

Definition

The Singular Cardinal Hypothesis (SCH) states that if κ is singular strong limit, then $2^\kappa = \kappa^+$.

Violating SCH requires large cardinal. For example, $2^{\aleph_\omega} > \aleph_{\omega+1}$ is equiconsistent with the existence of a cardinal κ whose Mitchell order is κ^{++}.

Definition

Extenders E on (κ, λ) and F on (κ', λ) are coherent if $j_F(E) \upharpoonright \lambda = E$ where j_F is an embedding derived from F.

From the definition above, we have that E is Mitchell below F in the sense that $E \in \text{Ult}(V, F)$.
Main theorem

Theorem (J.)

Given an increasing sequence of cardinals $\langle \kappa_\alpha : \alpha < \eta \rangle$ where $\eta < \kappa_0$ is limit. Let $\lambda = (\sup_{\alpha < \eta} \kappa_\alpha)^{++}$.
Main theorem

Theorem (J.)

Given an increasing sequence of cardinals $\langle \kappa_\alpha : \alpha < \eta \rangle$ where $\eta < \kappa_0$ is limit. Let $\lambda = (\sup_{\alpha < \eta} \kappa_\alpha)^{++}$. Assume for each α, there is a (κ_α, λ)-extender E_α such that:

1. If $j: V \to M$ is an ultrapower such that $\text{crit}(j) = \kappa_\alpha$, $j(\kappa_\alpha)$ and M computes cardinals correctly up to and including λ.

2. There is a function $\sigma_\alpha: \kappa_\alpha \to \kappa_\alpha$ such that $j(\sigma_\alpha(\kappa_\alpha)) = \lambda$.

3. $E_\alpha: \kappa_\alpha < \kappa_0$ is pairwise coherent.

Then there is a \Diamond-c.c. forcing extension such that in the generic extension, for limit $\kappa < \kappa_0$, $2^\kappa > \kappa^{++}$ and $2^{\kappa_0} = \kappa_0^{++}$.
Main theorem

Theorem (J.)

Given an increasing sequence of cardinals $\langle \kappa_\alpha : \alpha < \eta \rangle$ where $\eta < \kappa_0$ is limit. Let $\lambda = (\sup_{\alpha < \eta} \kappa_\alpha)^{++}$. Assume for each α, there is a (κ_α, λ)-extender E_α such that:

1. If $j_\alpha : V \to M_\alpha = \text{Ult}(V, E_\alpha)$, we have $\text{crit}(j_\alpha) = \kappa_\alpha$, $j_\alpha(\kappa_\alpha) \geq \lambda$, $\kappa_\alpha M_\alpha \subseteq M_\alpha$ and M_α computes cardinals correctly up to and including λ.

2. There is a function $s_\alpha : \kappa_\alpha \to \kappa_\alpha$ such that $j_\alpha(s_\alpha(\kappa_\alpha)) = \kappa_\alpha$.

3. $\delta E_\alpha : \kappa_\alpha \times \lambda$ is pairwise coherent. Then there is a δ-c.c. forcing extension such that in the generic extension, for limit $\alpha < \lambda$, $2^{\alpha(2^{\alpha} + 1)} = 2^{\lambda(2^{\lambda} + 1)}$.

Sittinon (New) Jirattikansakul (RIMS Set Theory Workshop)

Blowing up the power of a singular cardinal of uncountable cofinality with collapses

November 18th, 2020
Main theorem

Theorem (J.)

Given an increasing sequence of cardinals $\langle \kappa_\alpha : \alpha < \eta \rangle$ where $\eta < \kappa_0$ is limit. Let $\lambda = \left(\sup_{\alpha < \eta} \kappa_\alpha \right)^{++}$. Assume for each α, there is a (κ_α, λ)-extender E_α such that:

1. If $j_\alpha : V \rightarrow M_\alpha = \text{Ult}(V, E_\alpha)$, we have $\text{crit}(j_\alpha) = \kappa_\alpha$, $j_\alpha(\kappa_\alpha) \geq \lambda$, $\kappa_\alpha M_\alpha \subseteq M_\alpha$ and M_α computes cardinals correctly up to and including λ.
2. There is a function $s_\alpha : \kappa_\alpha \rightarrow \kappa_\alpha$ such that $j_\alpha(s_\alpha)(\kappa_\alpha) = \lambda$.
Main theorem

Theorem (J.)

Given an increasing sequence of cardinals $\langle \kappa_\alpha : \alpha < \eta \rangle$ where $\eta < \kappa_0$ is limit. Let $\lambda = (\sup_{\alpha < \eta} \kappa_\alpha)^{++}$. Assume for each α, there is a (κ_α, λ)-extender E_α such that:

1. If $j_\alpha : V \rightarrow M_\alpha = \text{Ult}(V, E_\alpha)$, we have $\text{crit}(j_\alpha) = \kappa_\alpha$, $j_\alpha(\kappa_\alpha) \geq \lambda$, $\kappa_\alpha M_\alpha \subseteq M_\alpha$ and M_α computes cardinals correctly up to and including λ.

2. There is a function $s_\alpha : \kappa_\alpha \rightarrow \kappa_\alpha$ such that $j_\alpha(s_\alpha)(\kappa_\alpha) = \lambda$.

3. $\langle E_\alpha : \alpha < \eta \rangle$ is pairwise coherent.
Main theorem

Theorem (J.)

Given an increasing sequence of cardinals $\langle \kappa_{\alpha} : \alpha < \eta \rangle$ where $\eta < \kappa_0$ is limit. Let $\lambda = (\sup_{\alpha < \eta} \kappa_{\alpha})^{++}$. Assume for each α, there is a $(\kappa_{\alpha}, \lambda)$-extender E_{α} such that:

1. If $j_{\alpha} : V \to M_{\alpha} = \text{Ult}(V, E_{\alpha})$, we have $\text{crit}(j_{\alpha}) = \kappa_{\alpha}$, $j_{\alpha}(\kappa_{\alpha}) \geq \lambda$, $\kappa_{\alpha} M_{\alpha} \subseteq M_{\alpha}$ and M_{α} computes cardinals correctly up to and including λ.

2. There is a function $s_{\alpha} : \kappa_{\alpha} \to \kappa_{\alpha}$ such that $j_{\alpha}(s_{\alpha})(\kappa_{\alpha}) = \lambda$.

3. $\langle E_{\alpha} : \alpha < \eta \rangle$ is pairwise coherent.

Then there is a λ-c.c. forcing extension such that in the generic extension, for limit $\beta < \eta$, $2^{\aleph_{\beta}} > \aleph_{\beta+1}$ and $2^{\aleph_{\eta}} = \aleph_{\eta+2}$.
Recall $\lambda = \sup_{\alpha < \eta} \kappa_\alpha^{++}$.

Definition $mc(d) = (j(d))^1 = \{(j(a)), a \in d\}$. Abbreviate $mc(d)$ by mc.

Definition $A_{2E}(d) = mc_{2j(A)}$.

Sittinon (New) Jirattikansakul (RIMS Set Theory Workshop)
Blowing up the power of a singular cardinal of uncountable cofinality
November 18th, 2020
Recall $\lambda = \sup_{\alpha < \eta} \kappa_\alpha^{++}$.

Definition

d_α is an α-domain if $d_\alpha \in [\lambda]^{\kappa_\alpha}$ and $\kappa_\alpha + 1 \subseteq d_\alpha$.
Recall $\lambda = \sup_{\alpha < \eta} \kappa_\alpha^{++}$.

Definition

d_α is an α-domain if $d_\alpha \in [\lambda]^{\kappa_\alpha}$ and $\kappa_\alpha + 1 \subseteq d_\alpha$.

Recall $j_\alpha : V \rightarrow M_\alpha$ and $\kappa_\alpha M_\alpha \subseteq M_\alpha$.

Definition

$mc_\alpha(d_\alpha) = (j_\alpha \upharpoonright d_\alpha)^{-1} = \{(j_\alpha(\gamma), \gamma) : \gamma \in d_\alpha\}$.
Recall $\lambda = \sup_{\alpha<\eta} \kappa_\alpha^{++}$.

Definition

d_α is an α-domain if $d_\alpha \in [\lambda]^{\kappa_\alpha}$ and $\kappa_\alpha + 1 \subseteq d_\alpha$.

Recall $j_\alpha : V \to M_\alpha$ and $\kappa_\alpha M_\alpha \subseteq M_\alpha$.

Definition

$mc_\alpha(d_\alpha) = (j_\alpha \upharpoonright d_\alpha)^{-1} = \{(j_\alpha(\gamma), \gamma) : \gamma \in d_\alpha\}$. *Abbreviate* $mc_\alpha(d_\alpha)$ *by* mc_α.
Recall $\lambda = \sup_{\alpha < \eta} \kappa_\alpha^{++}$.

Definition

d_α is an α-domain if $d_\alpha \in [\lambda]^{\kappa_\alpha}$ and $\kappa_\alpha + 1 \subseteq d_\alpha$.

Recall $j_\alpha : V \to M_\alpha$ and $\kappa_\alpha M_\alpha \subseteq M_\alpha$.

Definition

$mc_\alpha(d_\alpha) = (j_\alpha \upharpoonright d_\alpha)^{-1} = \{(j_\alpha(\gamma), \gamma) : \gamma \in d_\alpha\}$. *Abbreviate* $mc_\alpha(d_\alpha)$ *by* mc_α.

Definition

$A \in E_\alpha(d_\alpha)$ *iff* $mc_\alpha \in j_\alpha(A)$.
Extenders

Definition

$\text{OB}_\alpha(d_\alpha)$ is the collection of functions μ such that

1. $\text{dom}(\mu) \subseteq d_\alpha$, $\text{rge}(\mu) \subseteq \mathcal{P}(\alpha)$, and $\alpha \notin \text{rge}(\mu)$,
2. $\text{dom}(\mu) | \text{dom}(\mu) = \mu(\mathcal{P}(\alpha))$, which is below $\mathcal{P}(\alpha)$, and $\mu(\mathcal{P}(\alpha))$ is inaccessible,
3. $\text{dom}(\mu) \setminus \mathcal{P}(\alpha) = \mu(\mathcal{P}(\alpha))$.
4. μ is order-preserving.
5. For $\beta \in \text{dom}(\mu) \setminus \mathcal{P}(\alpha)$, $\mu(\beta) = \beta$.

Lemma $\text{OB}_\alpha(d_\alpha) \subseteq \mathcal{E}_\alpha(d_\alpha)$.

Sittinon (New) Jirattikansakul (RIMS Set Theory Workshop)

Blowing up the power of a singular cardinal of uncountable cofinality

November 18th, 2020
Extenders

Definition

$\text{OB}_\alpha(d_\alpha)$ is the collection of functions μ such that

1. $\text{dom}(\mu) \subseteq d_\alpha$, $\text{rge}(\mu) \subseteq \kappa_\alpha$, and $\kappa_\alpha \in \text{dom}(\mu)$.
Extenders

Definition

$OB_\alpha(d_\alpha)$ is the collection of functions μ such that

1. $\text{dom}(\mu) \subseteq d_\alpha$, $\text{rge}(\mu) \subseteq \kappa_\alpha$, and $\kappa_\alpha \in \text{dom}(\mu)$.
2. $|\text{dom}(\mu)| = \mu(\kappa_\alpha)$, which is below κ_α, and $\mu(\kappa_\alpha)$ is inaccessible.
Extenders

Definition

\(\text{OB}_\alpha(d_\alpha) \) is the collection of functions \(\mu \) such that

1. \(\text{dom}(\mu) \subseteq d_\alpha, \ \text{rge}(\mu) \subseteq \kappa_\alpha, \ \text{and} \ \kappa_\alpha \in \text{dom}(\mu). \)
2. \(|\text{dom}(\mu)| = \mu(\kappa_\alpha), \ which \ is \ below \ \kappa_\alpha, \ and \ \mu(\kappa_\alpha) \) is inaccessible.
3. \(\text{dom}(\mu) \cap \kappa_\alpha = \mu(\kappa_\alpha). \)
Extenders

Definition

$\text{OB}_\alpha(d_\alpha)$ is the collection of functions μ such that

1. $\text{dom}(\mu) \subseteq d_\alpha$, $\text{rge}(\mu) \subseteq \kappa_\alpha$, and $\kappa_\alpha \in \text{dom}(\mu)$.
2. $|\text{dom}(\mu)| = \mu(\kappa_\alpha)$, which is below κ_α, and $\mu(\kappa_\alpha)$ is inaccessible.
3. $\text{dom}(\mu) \cap \kappa_\alpha = \mu(\kappa_\alpha)$.
4. μ is order-preserving.
Extenders

Definition

$\text{OB}_\alpha(d_\alpha)$ is the collection of functions μ such that

1. $\text{dom}(\mu) \subseteq d_\alpha$, $\text{rge}(\mu) \subseteq \kappa_\alpha$, and $\kappa_\alpha \in \text{dom}(\mu)$.
2. $|\text{dom}(\mu)| = \mu(\kappa_\alpha)$, which is below κ_α, and $\mu(\kappa_\alpha)$ is inaccessible.
3. $\text{dom}(\mu) \cap \kappa_\alpha = \mu(\kappa_\alpha)$.
4. μ is order-preserving.
5. For $\beta \in \text{dom}(\mu) \cap \kappa_\alpha$, $\mu(\beta) = \beta$.
Extenders

Definition

\(\text{OB}_\alpha(d_\alpha) \) is the collection of functions \(\mu \) such that

1. \(\text{dom}(\mu) \subseteq d_\alpha, \text{rge}(\mu) \subseteq \kappa_\alpha, \text{ and } \kappa_\alpha \in \text{dom}(\mu). \)
2. \(|\text{dom}(\mu)| = \mu(\kappa_\alpha), \text{ which is below } \kappa_\alpha, \text{ and } \mu(\kappa_\alpha) \text{ is inaccessible}. \)
3. \(\text{dom}(\mu) \cap \kappa_\alpha = \mu(\kappa_\alpha). \)
4. \(\mu \text{ is order-preserving}. \)
5. For \(\beta \in \text{dom}(\mu) \cap \kappa_\alpha, \mu(\beta) = \beta. \)

Lemma

\(\text{OB}_\alpha(d_\alpha) \subseteq E_\alpha(d_\alpha). \)
Recall $mc_\alpha = \{(j_\alpha(\gamma), \gamma) : \gamma \in d_\alpha\}$. Also $(j_\alpha(\kappa_\alpha), \kappa_\alpha) \in mc_\alpha$ because $\kappa_\alpha \in d_\alpha$.
Recall $mc_\alpha = \{(j_\alpha(\gamma), \gamma) : \gamma \in d_\alpha\}$. Also $(j_\alpha(\kappa_\alpha), \kappa_\alpha) \in mc_\alpha$ because $\kappa_\alpha \in d_\alpha$.

Proof.

1. $(\text{dom}(\mu) \subseteq d_\alpha, \text{rge}(\mu) \subseteq \kappa_\alpha, \text{and } \kappa_\alpha \in \text{dom}(\mu))$.
Recall $mc_\alpha = \{(j_\alpha(\gamma), \gamma) : \gamma \in d_\alpha\}$. Also $(j_\alpha(\kappa_\alpha), \kappa_\alpha) \in mc_\alpha$ because $\kappa_\alpha \in d_\alpha$.

Proof.

1. $(\text{dom}(\mu) \subseteq d_\alpha$, $\text{rge}(\mu) \subseteq \kappa_\alpha$, and $\kappa_\alpha \in \text{dom}(\mu))$.

 $\text{dom}(mc_\alpha) = j_\alpha[d_\alpha] \subseteq j_\alpha(d_\alpha)$. $\text{rge}(mc_\alpha) = d_\alpha \subseteq \lambda \subseteq j_\alpha(\kappa_\alpha)$.

Recall $mc_\alpha = \{(j_\alpha(\gamma), \gamma) : \gamma \in d_\alpha\}$. Also $(j_\alpha(\kappa_\alpha), \kappa_\alpha) \in mc_\alpha$ because $\kappa_\alpha \in d_\alpha$.

Proof.

1. $(\text{dom}(\mu) \subseteq d_\alpha, \text{rge}(\mu) \subseteq \kappa_\alpha, \text{and } \kappa_\alpha \in \text{dom}(\mu))$.
 $\text{dom}(mc_\alpha) = j_\alpha[d_\alpha] \subseteq j_\alpha(d_\alpha)$. $\text{rge}(mc_\alpha) = d_\alpha \subseteq \lambda \subseteq j_\alpha(\kappa_\alpha)$.

2. $(|\text{dom}(\mu)| = \mu(\kappa_\alpha))$
Recall $mc_\alpha = \{(j_\alpha(\gamma), \gamma) : \gamma \in d_\alpha\}$. Also $(j_\alpha(\kappa_\alpha), \kappa_\alpha) \in mc_\alpha$ because $\kappa_\alpha \in d_\alpha$.

Proof.

1. $(\text{dom}(\mu) \subseteq d_\alpha, \text{rge}(\mu) \subseteq \kappa_\alpha, \text{and } \kappa_\alpha \in \text{dom}(\mu))$.

 $\text{dom}(mc_\alpha) = j_\alpha[d_\alpha] \subseteq j_\alpha(d_\alpha)$. $\text{rge}(mc_\alpha) = d_\alpha \subseteq \lambda \subseteq j_\alpha(\kappa_\alpha)$.

2. $(|\text{dom}(\mu)| = \mu(\kappa_\alpha))$. $|\text{dom}(mc_\alpha)| = \kappa_\alpha = mc_\alpha(j_\alpha(\kappa_\alpha))$.
Recall $mc_\alpha = \{(j_\alpha(\gamma), \gamma) : \gamma \in d_\alpha\}$. Also $(j_\alpha(\kappa_\alpha), \kappa_\alpha) \in mc_\alpha$ because $\kappa_\alpha \in d_\alpha$.

Proof.

1. $(\text{dom}(\mu) \subseteq d_\alpha$, $\text{rge}(\mu) \subseteq \kappa_\alpha$, and $\kappa_\alpha \in \text{dom}(\mu))$.

 $\text{dom}(mc_\alpha) = j_\alpha[d_\alpha] \subseteq j_\alpha(d_\alpha)$. $\text{rge}(mc_\alpha) = d_\alpha \subseteq \lambda \subseteq j_\alpha(\kappa_\alpha)$.

2. $(|\text{dom}(\mu)| = \mu(\kappa_\alpha))$ $|\text{dom}(mc_\alpha)| = \kappa_\alpha = mc_\alpha(j_\alpha(\kappa_\alpha))$.

The rests are straightforward.

If $d_\alpha \subseteq d'_\alpha$, we have a natural projection $\pi_{d'_\alpha, d_\alpha} : \mu \mapsto \mu \upharpoonright d_\alpha$.
Recall $\text{mc}_\alpha = \{(j_\alpha(\gamma), \gamma) : \gamma \in d_\alpha\}$. Also $(j_\alpha(\kappa_\alpha), \kappa_\alpha) \in \text{mc}_\alpha$ because $\kappa_\alpha \in d_\alpha$.

Proof.

1. $(\text{dom}(\mu) \subseteq d_\alpha, \text{rge}(\mu) \subseteq \kappa_\alpha$, and $\kappa_\alpha \in \text{dom}(\mu))$.

 $\text{dom}(\text{mc}_\alpha) = j_\alpha[d_\alpha] \subseteq j_\alpha(d_\alpha)$. $\text{rge}(\text{mc}_\alpha) = d_\alpha \subseteq \lambda \subseteq j_\alpha(\kappa_\alpha)$.

2. $(|\text{dom}(\mu)| = \mu(\kappa_\alpha)) |\text{dom}(\text{mc}_\alpha)| = \kappa_\alpha = \text{mc}_\alpha(j_\alpha(\kappa_\alpha))$.

The rests are straightforward.

If $d_\alpha \subseteq d'_\alpha$, we have a natural projection $\pi_{d'_\alpha,d_\alpha} : \mu \mapsto \mu \upharpoonright d_\alpha$. This induces a projection from $E_\alpha(d'_\alpha)$ to $E_\alpha(d_\alpha)$.
A condition is of the form $p = \langle p_\alpha : \alpha < \eta \rangle$ such that for each α, if p_α is pure,
A condition is of the form $p = \langle p_\alpha : \alpha < \eta \rangle$ such that for each α, if p_α is pure, then

- p_α will have 3 parts: f_α-part, A_α-part, and H_α-part.
A condition is of the form $p = \langle p_\alpha : \alpha < \eta \rangle$ such that for each α, if p_α is pure, then

- p_α will have 3 parts: f_α-part, A_α-part, and \tilde{H}_α-part.
- f_α lives in a Cohen forcing whose domain is an α-domain d_α, range is a subset of κ_α.

If p_α is impure, then p_α will have 3 parts: f_α-part, A_α-part, and \tilde{H}_α-part. f_α lives in a Cohen forcing.
A condition is of the form $p = \langle p_\alpha : \alpha < \eta \rangle$ such that for each α, if p_α is **pure**, then

- p_α will have 3 parts: f_α-part, A_α-part, and \tilde{H}_α-part.
- f_α lives in a Cohen forcing whose domain is an α-domain d_α, range is a subset of κ_α.
- A_α is a measure-one set in $E_\alpha(d_\alpha)$.

If p_α is **impure**, then p_α will have 3 parts: f_α-part, A_α-part, and \tilde{H}_α-part.

f_α lives in a Cohen forcing.

κ_α is a regular cardinal.

\tilde{H}_α is a sequence of conditions in Collapse forcings.
A condition is of the form $p = \langle p_\alpha : \alpha < \eta \rangle$ such that for each α, if p_α is pure, then

- p_α will have 3 parts: f_α-part, A_α-part, and \vec{H}_α-part.
- f_α lives in a Cohen forcing whose domain is an α-domain d_α, range is a subset of κ_α.
- A_α is a measure-one set in $E_\alpha(d_\alpha)$.
- \vec{H}_α is a sequence of functions with domains A or projections of A.
A condition is of the form $p = \langle p_\alpha : \alpha < \eta \rangle$ such that for each α, if p_α is pure, then

- p_α will have 3 parts: f_α-part, A_α-part, and \tilde{H}_α-part.
- f_α lives in a Cohen forcing whose domain is an α-domain d_α, range is a subset of κ_α.
- A_α is a measure-one set in $E_\alpha(d_\alpha)$.
- \tilde{H}_α is a sequence of functions with domains A or projections of A. The values of the functions \tilde{H} are conditions in Collapse forcings.
Big pictures

A condition is of the form \(p = \langle p_\alpha : \alpha < \eta \rangle \) such that for each \(\alpha \), if \(p_\alpha \) is pure, then

- \(p_\alpha \) will have 3 parts: \(f_\alpha \)-part, \(A_\alpha \)-part, and \(\vec{H}_\alpha \)-part.
- \(f_\alpha \) lives in a Cohen forcing whose domain is an \(\alpha \)-domain \(d_\alpha \), range is a subset of \(\kappa_\alpha \).
- \(A_\alpha \) is a measure-one set in \(E_\alpha(d_\alpha) \).
- \(\vec{H}_\alpha \) is a sequence of functions with domains \(A \) or projections of \(A \). The values of the functions \(\vec{H} \) are conditions in Collapse forcings.

If \(p_\alpha \) is impure, then
A condition is of the form $p = \langle p_\alpha : \alpha < \eta \rangle$ such that for each α, if p_α is pure, then

- p_α will have 3 parts: f_α-part, A_α-part, and \tilde{H}_α-part.
- f_α lives in a Cohen forcing whose domain is an α-domain d_α, range is a subset of κ_α.
- A_α is a measure-one set in $E_\alpha(d_\alpha)$.
- \tilde{H}_α is a sequence of functions with domains A or projections of A. The values of the functions \tilde{H} are conditions in Collapse forcings.

If p_α is impure, then

- p_α will have 3 parts: f_α-part, λ_α-part, and \tilde{h}_α-part.
Big pictures

A condition is of the form $p = \langle p_\alpha : \alpha < \eta \rangle$ such that for each α, if p_α is pure, then

- p_α will have 3 parts: f_α-part, A_α-part, and \tilde{H}_α-part.
- f_α lives in a Cohen forcing whose domain is an α-domain d_α, range is a subset of κ_α.
- A_α is a measure-one set in $E_\alpha(d_\alpha)$.
- \tilde{H}_α is a sequence of functions with domains A or projections of A. The values of the functions \tilde{H} are conditions in Collapse forcings.

If p_α is impure, then

- p_α will have 3 parts: f_α-part, λ_α-part, and \tilde{h}_α-part.
- f_α lives in a Cohen forcing.
Big pictures

A condition is of the form $p = \langle p_\alpha : \alpha < \eta \rangle$ such that for each α, if p_α is pure, then

- p_α will have 3 parts: f_α-part, A_α-part, and \vec{H}_α-part.
- f_α lives in a Cohen forcing whose domain is an α-domain d_α, range is a subset of κ_α.
- A_α is a measure-one set in $E_\alpha(d_\alpha)$.
- \vec{H}_α is a sequence of functions with domains A or projections of A. The values of the functions \vec{H} are conditions in Collapse forcings.

If p_α is impure, then

- p_α will have 3 parts: f_α-part, λ_α-part, and \vec{h}_α-part.
- f_α lives in a Cohen forcing.
- λ_α is a regular cardinal.
A condition is of the form $p = \langle p_\alpha : \alpha < \eta \rangle$ such that for each α, if p_α is pure, then

- p_α will have 3 parts: f_α-part, A_α-part, and \vec{H}_α-part.
- f_α lives in a Cohen forcing whose domain is an α-domain d_α, range is a subset of κ_α.
- A_α is a measure-one set in $E_\alpha(d_\alpha)$.
- \vec{H}_α is a sequence of functions with domains A or projections of A. The values of the functions \vec{H} are conditions in Collapse forcings.

If p_α is impure, then

- p_α will have 3 parts: f_α-part, λ_α-part, and \vec{h}_α-part.
- f_α lives in a Cohen forcing.
- λ_α is a regular cardinal.
- \vec{h}_α is a sequence of conditions in Collapse forcings.
Forcings

Instead of giving a formal definition, we start off with a pure condition.
Instead of giving a formal definition, we start off with a pure condition. A pure condition is $p = \langle p_\alpha : \alpha < \eta \rangle$ such that $p_\alpha = \langle f_\alpha, A_\alpha, \vec{H}_\alpha \rangle$ such that...
Forcings

Instead of giving a formal definition, we start off with a pure condition. A pure condition is $p = \langle p_\alpha : \alpha < \eta \rangle$ such that $p_\alpha = \langle f_\alpha, A_\alpha, \tilde{H}_\alpha \rangle$ such that

1. f_α is a partial function from λ to κ_α such that $d_\alpha := \text{dom}(f_\alpha)$ is an α-domain.
Forcings

Instead of giving a formal definition, we start off with a pure condition. A pure condition is $p = \langle p_\alpha : \alpha < \eta \rangle$ such that $p_\alpha = \langle f_\alpha, A_\alpha, \vec{H}_\alpha \rangle$ such that

1. f_α is a partial function from λ to κ_α such that $d_\alpha := \text{dom}(f_\alpha)$ is an α-domain.
2. $A_\alpha \in E_\alpha(d_\alpha)$.
3. $\vec{H}_\alpha = \langle H^0_\alpha, H^1_\alpha, H^2_\alpha \rangle$.
Forcings

Instead of giving a formal definition, we start off with a pure condition. A pure condition is $p = \langle p_\alpha : \alpha < \eta \rangle$ such that $p_\alpha = \langle f_\alpha, A_\alpha, \check{H}_\alpha \rangle$ such that

1. f_α is a partial function from λ to κ_α such that $d_\alpha := \text{dom}(f_\alpha)$ is an α-domain.
2. $A_\alpha \in E_\alpha(d_\alpha)$.
3. $\check{H}_\alpha = \langle H^0_\alpha, H^1_\alpha, H^2_\alpha \rangle$ where $\text{dom}(H^l_\alpha)$ depends on the measure-one set A_α.
4. $\langle d_\alpha : \alpha < \eta \rangle$ is \subseteq-increasing.
5. ...
Forcing extensions

\[p_0 = \langle f_0, A_0, \tilde{H}_0 \rangle \quad p_1 = \langle f_1, A_1, \tilde{H}_1 \rangle \quad p_2 = \langle f_2, A_2, \tilde{H}_2 \rangle \quad p_3 = \langle f_3, A_3, \tilde{H}_3 \rangle \]

\[q_0 = \langle g_0, B_0, \tilde{K}_0 \rangle \quad q_1 = \langle g_1, B_1, \tilde{K}_1 \rangle \quad q_2 = \langle g_2, B_2, \tilde{K}_2 \rangle \quad q_3 = \langle g_3, B_3, \tilde{K}_3 \rangle \]

Direct extension: \(q \preceq^* p \) if for all \(\alpha \) we have
Forcing extensions

\[p_0 = \langle f_0, A_0, \vec{H}_0 \rangle \quad p_1 = \langle f_1, A_1, \vec{H}_1 \rangle \quad p_2 = \langle f_2, A_2, \vec{H}_2 \rangle \quad p_3 = \langle f_3, A_3, \vec{H}_3 \rangle \]
\[q_0 = \langle g_0, B_0, \vec{K}_0 \rangle \quad q_1 = \langle g_1, B_1, \vec{K}_1 \rangle \quad q_2 = \langle g_2, B_2, \vec{K}_2 \rangle \quad q_3 = \langle g_3, B_3, \vec{K}_3 \rangle \]

Direct extension: \(q \leq^* p \) if for all \(\alpha \) we have

\[g_\alpha \leq f_\alpha. \]
Forcing extensions

\[p_0 = \langle f_0, A_0, \tilde{H}_0 \rangle \quad p_1 = \langle f_1, A_1, \tilde{H}_1 \rangle \quad p_2 = \langle f_2, A_2, \tilde{H}_2 \rangle \quad p_3 = \langle f_3, A_3, \tilde{H}_3 \rangle \]

\[q_0 = \langle g_0, B_0, \tilde{K}_0 \rangle \quad q_1 = \langle g_1, B_1, \tilde{K}_1 \rangle \quad q_2 = \langle g_2, B_2, \tilde{K}_2 \rangle \quad q_3 = \langle g_3, B_3, \tilde{K}_3 \rangle \]

Direct extension: \(q \leq^* p \) if for all \(\alpha \) we have

1. \(g_\alpha \leq f_\alpha \).
2. \(B_\alpha \) projects down to a subset of \(A_\alpha \), meaning
 \(\{ \mu \upharpoonright \text{dom}(f_\alpha) : \mu \in B_\alpha \} \subseteq A_\alpha \).
Forcing extensions

\[
p_0 = \langle f_0, A_0, \vec{H}_0 \rangle \quad p_1 = \langle f_1, A_1, \vec{H}_1 \rangle \quad p_2 = \langle f_2, A_2, \vec{H}_2 \rangle \quad p_3 = \langle f_3, A_3, \vec{H}_3 \rangle
\]
\[
q_0 = \langle g_0, B_0, \vec{K}_0 \rangle \quad q_1 = \langle g_1, B_1, \vec{K}_1 \rangle \quad q_2 = \langle g_2, B_2, \vec{K}_2 \rangle \quad q_3 = \langle g_3, B_3, \vec{K}_3 \rangle
\]

Direct extension: \(q \leq^* p \) if for all \(\alpha \) we have

1. \(g_\alpha \leq f_\alpha \).
2. \(B_\alpha \) projects down to a subset of \(A_\alpha \), meaning
 \[
 \{ \mu \upharpoonright \text{dom}(f_\alpha) : \mu \in B_\alpha \} \subseteq A_\alpha.
 \]
3. For \(l = 0, 1, 2 \), \(K_\alpha^l(\mu) \leq H_\alpha^l(\mu \upharpoonright \text{dom}(f_\alpha)) \).
Forcing extensions

\[\begin{align*}
0 & \quad | & \quad 1 & \quad | & \quad 2 & \quad | & \quad 3 \\
\quad & \quad | & \quad & \quad | & \quad & \quad | \\
0 & \quad & \quad & \quad & \quad & \quad & \quad \\
p_0 = \langle f_0, A_0, \vec{H}_0 \rangle & \quad p_1 = \langle f_1, A_1, \vec{H}_1 \rangle & \quad p_2 = \langle f_2, A_2, \vec{H}_2 \rangle & \quad p_3 = \langle f_3, A_3, \vec{H}_3 \rangle \\
q_0 = \langle t_0, C_0, \vec{L}_0 \rangle & \quad q_1 = \langle t_1, C_1, \vec{L}_1 \rangle & \quad q_2 = \langle g_2, \lambda_2, \vec{h}_2 \rangle & \quad q_3 = \langle f_3, A_3, \vec{H}_3 \rangle
\end{align*} \]

One-step extension (example): \(p \) is pure and \(\mu \in A_2 \).
Forcing extensions

One-step extension (example): p is pure and $\mu \in A_2$. One-step extension of p by μ is a condition q such that:

1. $q_\alpha = p_\alpha$ for $\alpha > 2$
Forcing extensions

0

1

2

3

$p_0 = \langle f_0, A_0, \vec{H}_0 \rangle \quad p_1 = \langle f_1, A_1, \vec{H}_1 \rangle \quad p_2 = \langle f_2, A_2, \vec{H}_2 \rangle \quad p_3 = \langle f_3, A_3, \vec{H}_3 \rangle$

$q_0 = \langle t_0, C_0, \vec{L}_0 \rangle \quad q_1 = \langle t_1, C_1, \vec{L}_1 \rangle \quad q_2 = \langle g_2, \lambda_2, \vec{h}_2 \rangle \quad q_3 = \langle f_3, A_3, \vec{H}_3 \rangle$

One-step extension (example): p is pure and $\mu \in A_2$. One-step extension of p by μ is a condition q such that:

1. $q_\alpha = p_\alpha$ for $\alpha > 2$

2. Overwrite g_2 by μ: $\text{dom}(g_2) = \text{dom}(f_2)$ and $g_2(\gamma) = \mu(\gamma)$ if $\gamma \in \text{dom}(\mu)$, otherwise $g_2(\gamma) = f_2(\gamma)$.
Forcing extensions

One-step extension (example): p is pure and $\mu \in A_2$. One-step extension of p by μ is a condition q such that:

1. $q_\alpha = p_\alpha$ for $\alpha > 2$
2. Overwrite g_2 by μ: $\text{dom}(g_2) = \text{dom}(f_2)$ and $g_2(\gamma) = \mu(\gamma)$ if $\gamma \in \text{dom}(\mu)$, otherwise $g_2(\gamma) = f_2(\gamma)$.
3. $\lambda_2 = s_2(\mu(\kappa_2))$ (recall $j_2(s_2)(\kappa_2) = \lambda)$.

$p_0 = \langle f_0, A_0, \vec{H}_0 \rangle$ $p_1 = \langle f_1, A_1, \vec{H}_1 \rangle$ $p_2 = \langle f_2, A_2, \vec{H}_2 \rangle$ $p_3 = \langle f_3, A_3, \vec{H}_3 \rangle$
$q_0 = \langle t_0, C_0, \vec{L}_0 \rangle$ $q_1 = \langle t_1, C_1, \vec{L}_1 \rangle$ $q_2 = \langle g_2, \lambda_2, \vec{H}_2 \rangle$ $q_3 = \langle f_3, A_3, \vec{H}_3 \rangle$
Forcing extensions

One-step extension (example): p is pure and $\mu \in A_2$. One-step extension of p by μ is a condition q such that:

1. $q_\alpha = p_\alpha$ for $\alpha > 2$
2. Overwrite g_2 by μ: $\text{dom}(g_2) = \text{dom}(f_2)$ and $g_2(\gamma) = \mu(\gamma)$ if $\gamma \in \text{dom}(\mu)$, otherwise $g_2(\gamma) = f_2(\gamma)$.
3. $\lambda_2 = s_2(\mu(\kappa_2))$ (recall $j_2(s_2)(\kappa_2) = \lambda$).
4. $\tilde{h}_2 = \tilde{H}_2(\mu)$.

$p_0 = \langle f_0, A_0, \tilde{H}_0 \rangle$ \hspace{1cm} $p_1 = \langle f_1, A_1, \tilde{H}_1 \rangle$ \hspace{1cm} $p_2 = \langle f_2, A_2, \tilde{H}_2 \rangle$ \hspace{1cm} $p_3 = \langle f_3, A_3, \tilde{H}_3 \rangle$

$q_0 = \langle t_0, C_0, \tilde{L}_0 \rangle$ \hspace{1cm} $q_1 = \langle t_1, C_1, \tilde{L}_1 \rangle$ \hspace{1cm} $q_2 = \langle g_2, \lambda_2, \tilde{h}_2 \rangle$ \hspace{1cm} $q_3 = \langle f_3, A_3, \tilde{H}_3 \rangle$
Forcing extensions

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(p_0 = \langle f_0, A_0, \vec{H}_0 \rangle)</td>
<td>(p_1 = \langle f_1, A_1, \vec{H}_1 \rangle)</td>
<td>(p_2 = \langle f_2, A_2, \vec{H}_2 \rangle)</td>
<td>(p_3 = \langle f_3, A_3, \vec{H}_3 \rangle)</td>
</tr>
<tr>
<td></td>
<td>(q_0 = \langle t_0, C_0, \vec{L}_0 \rangle)</td>
<td>(q_1 = \langle t_1, C_1, \vec{L}_1 \rangle)</td>
<td>(q_2 = \langle g_2, \lambda_2, \vec{h}_2 \rangle)</td>
<td>(q_3 = \langle f_3, A_3, \vec{H}_3 \rangle)</td>
</tr>
</tbody>
</table>

One-step extension (example): \(p \) is pure and \(\mu \in A_2 \). One-step extension of \(p \) by \(\mu \) is a condition \(q \) such that:

1. \(q_\alpha = p_\alpha \) for \(\alpha > 2 \)
2. Overwrite \(g_2 \) by \(\mu \): \(\text{dom}(g_2) = \text{dom}(f_2) \) and \(g_2(\gamma) = \mu(\gamma) \) if \(\gamma \in \text{dom}(\mu) \), otherwise \(g_2(\gamma) = f_2(\gamma) \).
3. \(\lambda_2 = s_2(\mu(\kappa_2)) \) (recall \(j_2(s_2)(\kappa_2) = \lambda \)).
4. \(\vec{h}_2 = \vec{H}_2(\mu) \).
5. \(t_0 = f_0 \circ \mu^{-1}, t_1 = f_1 \circ \mu^{-1}, C_0 = A_0 \circ \mu^{-1}, C_1 = A_1 \circ \mu^{-1} \).
Forcing extensions

\[p_0 = \langle f_0, A_0, \tilde{H}_0 \rangle \quad p_1 = \langle f_1, A_1, \tilde{H}_1 \rangle \quad p_2 = \langle f_2, A_2, \tilde{H}_2 \rangle \quad p_3 = \langle f_3, A_3, \tilde{H}_3 \rangle \]

\[q_0 = \langle t_0, C_0, \tilde{L}_0 \rangle \quad q_1 = \langle t_1, C_1, \tilde{L}_1 \rangle \quad q_2 = \langle g_2, \lambda_2, \tilde{h}_2 \rangle \quad q_3 = \langle f_3, A_3, \tilde{H}_3 \rangle \]

\[\kappa_1 < \lambda_2 < \kappa_2 \]
Forcing extensions

\[p_0 = \langle f_0, A_0, \vec{H}_0 \rangle \quad p_1 = \langle f_1, A_1, \vec{H}_1 \rangle \quad p_2 = \langle f_2, A_2, \vec{H}_2 \rangle \quad p_3 = \langle f_3, A_3, \vec{H}_3 \rangle \]

\[q_0 = \langle t_0, C_0, \vec{L}_0 \rangle \quad q_1 = \langle t_1, C_1, \vec{L}_1 \rangle \quad q_2 = \langle g_2, \lambda_2, \vec{h}_2 \rangle \quad q_3 = \langle f_3, A_3, \vec{H}_3 \rangle \]

- \(\kappa_1 < \lambda_2 < \kappa_2 \).
- \(\langle q_0, q_1 \rangle \) will now live in \(\mathbb{P}^\mathcal{P}(E_0 | \lambda_2, E_1 | \lambda_2) \).
Forcing extensions

\[p_0 = \langle f_0, A_0, \tilde{H}_0 \rangle \quad p_1 = \langle f_1, A_1, \tilde{H}_1 \rangle \quad p_2 = \langle f_2, A_2, \tilde{H}_2 \rangle \quad p_3 = \langle f_3, A_3, \tilde{H}_3 \rangle \]

\[q_0 = \langle t_0, C_0, \tilde{L}_0 \rangle \quad q_1 = \langle t_1, C_1, \tilde{L}_1 \rangle \quad q_2 = \langle g_2, \lambda_2, \tilde{h}_2 \rangle \quad q_3 = \langle f_3, A_3, \tilde{H}_3 \rangle \]

- \(\kappa_1 < \lambda_2 < \kappa_2 \).
- \(\langle q_0, q_1 \rangle \) will now live in \(\mathbb{P}^{\langle E_0 \upharpoonright \lambda_2, E_1 \upharpoonright \lambda_2 \rangle} \).
- \(\tilde{h}_2 \in \text{Col}(\kappa_1, < g_2(\kappa_2)) \times \text{Col}(g_2(\kappa_2), s_2(g_2(\kappa_2))^+) \times \text{Col}((s_2(g_2(\kappa_2)))^{+3}, < \kappa_2) \).
Forcing extensions

\[
\begin{align*}
p_0 &= \langle f_0, A_0, \vec{H}_0 \rangle & p_1 &= \langle f_1, A_1, \vec{H}_1 \rangle & p_2 &= \langle f_2, A_2, \vec{H}_2 \rangle & p_3 &= \langle f_3, A_3, \vec{H}_3 \rangle \\
q_0 &= \langle t_0, C_0, \vec{L}_0 \rangle & q_1 &= \langle t_1, C_1, \vec{L}_1 \rangle & q_2 &= \langle g_2, \lambda_2, \vec{h}_2 \rangle & q_3 &= \langle f_3, A_3, \vec{H}_3 \rangle
\end{align*}
\]

- \(\kappa_1 < \lambda_2 < \kappa_2 \).
- \(\langle q_0, q_1 \rangle \) will now live in \(\mathbb{P} \langle E_0 | \lambda_2, E_1 | \lambda_2 \rangle \).
- \(\vec{h}_2 \in \text{Col}(\kappa_1, < g_2(\kappa_2)) \times \text{Col}(g_2(\kappa_2), s_2(g_2(\kappa_2))^+) \times \text{Col}((s_2(g_2(\kappa_2)))^+^3, < \kappa_2) \).
- In particular, a few cardinals in the interval \((\kappa_1, \kappa_2] \) are preserved.
Some conclusions

Let $\kappa_\eta = \sup_{\alpha < \eta} \kappa_\alpha$. Then $\lambda = \kappa_\eta^{++}$.

- The forcing has the Prikry property.
- Only few cardinals in $(\kappa_\alpha, \kappa_{\alpha+1}]$ are preserved, and hence κ_η is a cardinal, and is equal to κ_η.
- Need a special argument to preserve κ_η^+.
- The forcing is λ-c.c., so preserves λ and $\lambda = \aleph_{\eta+2}$ in the extension.
- One can derive a scale on κ_η of length λ. Hence in the extension, $\aleph_{\eta+2} = \lambda = 2^{\kappa_\eta} = 2^{\aleph_\eta}$.
Thank you!