Problems from Previous Tests

1. (25 pts)

(a) Give the definition of the integral of a step function.

(b) Let s be a step function defined on [a, b], and c any real number. Prove

$$\int_a^b c \cdot s(x) \, dx = c \int_a^b s(x) \, dx$$

2. (25 points)

Using mathematical induction prove that for integers $n \geq 4$ the inequality $2^n < n!$ holds.

3. (25 points)

(a) Give the definition of supremum and infimum.

(b) Prove the following: Given two nonempty subsets S and T of \mathbf{R} such that

for every s in S and every t in T. Then S has a supremum, and T has an infimum, and they satisfy

$$\sup S < \inf T$$
.

4. (25 points)

(a) Prove $0 \cdot a = 0$ for every real number a.

(b) If $a \cdot b = 0$, then a = 0 or b = 0. [Some axioms and the cancellation law for addition are listed for your convenience:

A1: x + y = y + x xy = yx

A2:
$$x + (y + z) = (x + y) + z$$
 $x(yz) = (xy)z$

A3: x(y + z) = xy + xz

A4: There exists two distinct numbers, which we denote by 0 and 1, such that, x + 0 = x. $1 \cdot x = x$.

A5: For every real number x, there is a real number y such that x + y = 0

A6: For every real number $x \neq 0$, there is a real number y such that xy = 1.

Cancellation Law: If a + c = b + c then a = b.

5. (25 pts)

(a) State the definition of integrability for a function f on the interval [a, b].

(b) **Prove the following:** Let f and g be integrable on [a,b] and $f(x) \leq g(x)$ for every x in [a,b], then

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx$$

6. (25 points)

Compute the integral

$$\int_{-\pi}^{x} \left| \frac{1}{2} + \cos t \right| dt \qquad 0 \le x \le \pi/2$$

1

7. (25 points) Compute

$$\lim_{x\to 0}\frac{\sin(\tan x)}{\sqrt{|x|}}$$

8. (25 points) **Definition:** (Infinite Limits) The symbolism

$$\lim_{x\to a} f(x) = +\infty$$

means that for every M>0, there is a $\delta>0$ such that

$$f(x) > M$$
 whenever $0 < |x - a| < \delta$.

Prove using the definition: If g(x) > f(x) for all x and $\lim_{x\to a} f(x) = +\infty$, then $\lim_{x\to a} g(x) = +\infty$

9. (20 pts) Let f be differentiable on $I \supseteq [a,b]$, and let $|f'(x)| \le 1$ for all $x \in I$. Prove that f satisfies

$$|f(x) - f(y)| \le |x - y|$$
 for all $x, y \in [a, b]$

10. (20 points) Sketch the graph of

$$f(x) = \frac{x-1}{x^2+1}$$

.

11. (20 points) Compute the partial derivative f_x, f_y for the function

$$f(x,y) = \cos(\sin(xy) + y)$$

12. (20 points) Use the first fundamental theorem of calculus and the chain rule to prove the following: If f is continuous, and g is differentiable, then

$$\frac{d}{dx} \int_0^{g(x)} f(t)dt = f(g(x)) \cdot g'(x)$$

٠

13. (20 points) Prove that among all rectangles inscribed in a circle, the square has the maximum area.