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The general method of Lyapunov functionals construction has been developed during
the last decade for stability investigations of stochastic differential equations with after-
effect and stochastic difference equations. After some modification of the basic Lyapunov
type theorem this method was successfully used also for difference Volterra equations
with continuous time. The latter often appear as useful mathematical models. Here
this method is used for a stability investigation of some nonlinear stochastic difference
equation with continuous time.
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1. Introduction. Auxiliary Results

Many processes in automatic regulation, physics, mechanics, biology, economics,
etc. can be modelled by functional differential or difference equations (also called
hereditary equations or equations with memory or equations with delay or, in par-
ticular, Volterra equations). Consequently, a considerable amount of results con-
cerning their theoretical analysis and applications has been developed [1, 5, 6, 8–12,

14, 15, 17, 18, 30, 33, 35, 36, 44]. One of the main problems in the theory of equations
with memory and their applications is connected with stability. Different methods
for performing stability investigations were obtained, in particular, by modifica-
tions of the direct Lyapunov method [31]. Using this method many stability results
were obtained by constructing appropriate Lyapunov functionals. However, it is a
very difficult problem to find suitable Lyapunov functionals for a given hereditary
system. In many cases each such functional appeared to be a guess (or an art) of its
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author. To solve this problem the general method of Lyapunov functionals construc-
tion for stability investigations of hereditary systems was proposed and successfully
applied during the last decade (see [7, 13, 16, 19–28, 34, 39]) both for stochastic dif-
ferential equations with aftereffect and stochastic difference equations. Applications
of this method to some biological and mechanical problems are given in [2, 4, 40].
It was also shown [41–43] that after some modification of the basic Lyapunov
type stability theorem this method can be successfully used also for difference
Volterra equations with continuous time, which are a quite popular topic of research
[3, 29, 32, 37, 38]. In the current article the general method of Lyapunov functionals
construction developed in [42] is used for the investigation of mean-square stability
of some nonlinear stochastic difference equation with continuous time.

Let {Ω, F,P} be a probability space, {Ft, t ≥ t0} be a nondecreasing family of
sub-σ-algebras of F, i.e. Ft1 ⊂ Ft2 for t1 < t2, E be the expectation with respect
to the measure P and Et = E(./Ft) be the conditional expectation with respect to
the σ-algebra Ft.

Consider the stochastic difference equation

x(t + h0) = a1(t, x(t), x(t − h1), x(t − h2), . . .)

+ a2(t, x(t), x(t − h1), x(t − h2), . . .)ξ(t + h0), t > t0 − h0, (1.1)

with the initial condition

x(θ) = φ(θ), θ ∈ Θ =
[
t0 − h0 − max

j≥1
hj, t0

]
. (1.2)

Here x ∈ R
n, h0, h1, . . . are positive constants and the functionals a1 ∈ R

n and
a2 ∈ R

n×m satisfy the condition

|al(t, x0, x1, x2, . . .)|2 ≤
∞∑

j=0

alj |xj |2, A =
2∑

l=1

∞∑
j=0

alj < ∞ .

Further, φ(θ), θ ∈ Θ, is an Ft0 -measurable function and the perturbation ξ(t) ∈ R
m

is a Ft-measurable stationary stochastic process such that Etξ(t + h0) = 0, Etξ(t +
h0)ξ′(t + h0) = I, t > t0 − h0.

A solution of problem (1.1), (1.2) is an Ft-measurable process x(t) = x(t; t0, φ),
which is equal to the initial function φ(t) from (1.2) for t ≤ t0 and with probability
1 is defined by Eq. (1.1) for t > t0.

Definition 1.1. The trivial solution of Eqs. (1.1), (1.2) is called mean square stable
if for any ε > 0 and t0 there exists a δ = δ(ε, t0) > 0 such that E|x(t; t0, φ)|2 < ε

for all t ≥ t0 if ‖φ‖2 = supθ∈Θ E|φ(θ)|2 < δ.

Definition 1.2. The trivial solution of Eqs. (1.1), (1.2) is called asymptotically
mean-square quasistable if it is mean-square stable and for each t ∈ [t0, t0 + h0)
and each initial function φ one has limj→∞ E|x(t + jh0; t0, φ)|2 = 0.

Definition 1.3. The solution of Eq. (1.1) with initial condition (1.2) is called mean-
square integrable if for each initial function φ one has

∫∞
t0

E|x(t; t0, φ)|2 dt < ∞.
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Theorem 1.1. ([42]) Let there exist a non-negative functional V (t) = V (t, x(t),
x(t − h1), x(t − h2), . . .) and positive numbers c1, c2, such that

EV (t) ≤ c1 sup
s≤t

E|x(s)|2, t ∈ [t0, t0 + h0), (1.3)

E∆V (t) ≤ −c2E|x(t)|2, t ≥ t0, (1.4)

where ∆V (t) = V (t + h0) − V (t). Then the trivial solution of Eqs. (1.1), (1.2) is
asymptotically mean square quasistable.

Remark 1.1. ([42]) If the conditions of Theorem 1.1 hold then the solution of
Eq. (1.1) for each initial function (1.2) is mean-square integrable.

From Theorem 1.1 and Remark 1.1 it follows that an investigation of the behav-
ior of the solution of Eq. (1.1) can be reduced to the construction of appropriate
Lyapunov functionals. In the remainder of this article we will apply the method of
Lyapunov functionals construction for the stability investigation of some classes of
nonlinear stochastic difference equations.

Remark 1.2. Suppose that in Eq. (1.1) one sets h0 = h > 0, hj = jh, j = 1, 2, . . . .

Putting t = t0 + sh, y(s) = x(t0 + sh), η(s) = ξ(t0 + sh), one can write Eq. (1.1) in
the form

y(s + 1) = b1(s, y(s), y(s − 1), y(s − 2), . . .)

+ b2(s, y(s), y(s − 1), y(s − 2), . . .)η(s + 1), s > −1,

y(θ) = φ(θ), θ ≤ 0.

(1.5)

Subsequently equations of the type (1.5) will be considered.

2. Nonlinear Stochastic Difference Equations

Consider the scalar difference equation

x(t + 1) = −
[t]+r∑
j=0

a(t, j)g(x(t − j)) +
[t]+r∑
j=0

σ(t, j)f(x(t − j))ξ(t + 1), t > −1,

x(s) = φ(s), s ∈ [−(r + 1), 0], (2.1)

where the functions g(x), f(x) and the stochastic process ξ(t) satisfy the conditions

0 < c1 ≤ g(x)
x

≤ c2, x �= 0, |f(x)| ≤ c3|x|,
Etξ(t + 1) = 0, Etξ

2(t + 1) = 1, t > −1.
(2.2)

Put

F (t, j, a, σ) = |a(t, j)|
[t]+r∑
k=0

|σ(t, k)|, (2.3)

G(a, σ) =
1
2

sup
t≥0

∞∑
j=0

(F (t + j, j, a, σ) + F (t + j, j, σ, a)) . (2.4)
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Theorem 2.1. Let the coefficients a(t, j), σ(t, j), t > −1, j = 0, 1, . . . , [t]+r, satisfy
the conditions

a(t, j) ≥ 0, α(t, j) = a(t, j) − a(t, j + 1) ≥ 0, (2.5)

α(t, j − 1) − α(t + 1, j) = a(t + 1, j + 1) − a(t + 1, j)

− a(t, j) + a(t, j − 1) ≥ 0, (2.6)

a = sup
t>−1

(a(t + 1, 0) + a(t, 0) − a(t + 1, 1))

< 2
[

1
c2

− c3

c1

(
c3G(σ, σ) +

c2 − c1

2
G(a, σ)

)]
(2.7)

(here and everywhere below it is assumed that a(t,−1) = a and a(t, j) = 0 for
j > [t] + r). Then the trivial solution of Eq. (2.1) is asymptotically mean square
quasistable.

Proof. It is enough to construct for Eq. (2.1) a Lyapunov functional V (t) satis-
fying the conditions of Theorem 1.1. Following the general method of Lyapunov
functionals construction (GMLFC) let us first consider a simple auxiliary difference
equation

x(t + 1) = −a(t, 0)g(x(t)). (2.8)

This equation is an equation without delay. Obtaining a Lyapunov function for the
auxiliary equation (2.8) via GMLFC one can extend it and construct a Lyapunov
functional for the original equation (2.1). Consider, for instance, the function v(t) =
x(t)g(x(t)) + pα(t, 0)g2(x(t)), where p is a positive number that will be defined
below. From conditions (2.2), (2.5), (2.7) it follows that the function v(t) is non-
negative and satisfies condition (1.3). Calculating and estimating ∆v(t) one can
show that v(t) also satisfies condition (1.4). In fact,

∆v(t) = v(t + 1) − v(t) = x(t + 1)g(x(t + 1)) − x(t)g(x(t))

+ p[α(t + 1, 0)g2(x(t + 1)) − α(t, 0)g2(x(t))].

To estimate ∆v(t) note that via (2.2), (2.6) we have x(t)g(x(t)) ≥ c1x
2(t) and

α(t + 1, 0)g2(x(t + 1)) − α(t, 0)g2(x(t)) = (α(t + 1, 0) − α(t,−1))g2(x(t + 1))

+ α(t,−1)g2(x(t + 1)) − α(t, 0)g2(x(t))

≤ q(t),

where

q(t) = α(t,−1)g2(x(t + 1)) + α(t, 0)(g(x(t + 1)) + g(x(t)))2 − α(t, 0)g2(x(t))

= (α(t,−1) + α(t, 0))g2(x(t + 1)) + 2α(t, 0)g(x(t))g(x(t + 1)).

Note that for Eq. (2.8) one has that a(t, j) = 0 for j > 0. Therefore, from (2.5)
it follows that α(t, 0) = a(t, 0) and α(t,−1) + α(t, 0) = a. Then using (2.2) for
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x �= 0 we have g2(x) = g(x)
x xg(x) ≤ c2xg(x). So, via (2.8) one obtains q(t) ≤

−(2 − ac2)x(t + 1)g(x(t + 1)). From (2.7) it follows that ac2 < 2. As a result, by
putting p = (2−ac2)−1 we obtain ∆v(t) ≤ −c1x

2(t)+[1−p(2−ac2)]x(t+1)g(x(t+
1)) = −c1x

2(t).
So, the function v(t) is a Lyapunov function for the auxiliary equation (2.8).

Following the GMLFC we will construct a Lyapunov functional for the original
equation (2.1) in the form of a sum of the functional V1(t) = v(t) and some addi-
tional functionals that will be constructed below. Similar to the estimation of ∆v(t)
for ∆V1(t) we have

∆V1(t) ≤ −c1x
2(t) + 2pα(t, 0)g(x(t + 1))g(x(t))

+ [1 + p(α(t,−1) + α(t, 0))c2]x(t + 1)g(x(t + 1)).

Note that using (2.5) for Eq. (2.1) we obtain α(t,−1)+α(t, 0) = a−a(t, 1), α(t, 0) =
a(t, 0) − a(t, 1). So,

∆V1(t) ≤ −c1x
2(t) + 2p(a(t, 0) − a(t, 1))g(x(t + 1))g(x(t))

+ [1 + p(a − a(t, 1))c2]x(t + 1)g(x(t + 1))

= −c1x
2(t) + (1 + pac2)x(t + 1)g(x(t + 1)) + 2pg(x(t + 1))a(t, 0)g(x(t))

− pa(t, 1)g(x(t + 1))(2g(x(t)) + c2x(t + 1)).

Substituting a(t, 0)g(x(t)) from (2.1) and using p = (2 − ac2)−1 we have

∆V1(t) ≤ −c1x
2(t) + (1 + pac2)x(t + 1)g(x(t + 1)) + 2pg(x(t + 1))

×

−x(t + 1) −

[t]+r∑
j=1

a(t, j)g(x(t − j)) +
[t]+r∑
j=0

σ(t, j)f(x(t − j))ξ(t + 1)




− pa(t, 1)g(x(t + 1))(2g(x(t)) + c2x(t + 1))

= − c1x
2(t) − pa(t, 1)g(x(t + 1))(2g(x(t)) + c2x(t + 1))

+ 2pg(x(t + 1))


− [t]+r∑

j=1

a(t, j)g(x(t − j))+
[t]+r∑
j=0

σ(t, j)f(x(t − j))ξ(t + 1)


.

Thus, the achieved estimate for ∆V1(t) contains only one “good” term, i.e. −c1x
2(t).

All the other terms need to be neutralized using some additional functionals. Usu-
ally this can be done with additional functionals of some standard type.

Let us show that the first sum on the right of the estimate for ∆V1(t) can be
neutralized via the additional functional V2(t), which is of the form

V2(t) = p

[t]+r∑
j=1

α(t, j)

(
j∑

k=0

g(x(t − k))

)2

.

In fact, for the functional

V0(t) = V1(t) + V2(t) = x(t)g(x(t)) + p

[t]+r∑
j=0

α(t, j)

(
j∑

k=0

g(x(t − k))

)2
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using (2.6) we have

∆V0(t) = −x(t)g(x(t)) + x(t + 1)g(x(t + 1))

+ p

[t]+1+r∑
j=0

α(t + 1, j)

(
j∑

k=0

g(x(t + 1 − k))

)2

− p

[t]+r∑
j=0

α(t, j)

(
j∑

k=0

g(x(t − k))

)2

≤ −c1x
2(t) + x(t + 1)g(x(t + 1))

+ p

[t]+1+r∑
j=0

(α(t + 1, j) − α(t, j − 1))

(
j∑

k=0

g(x(t + 1 − k))

)2

+ pQ(t)

≤ −c1x
2(t) + x(t + 1)g(x(t + 1)) + pQ(t),

where

Q(t) =
[t]+1+r∑

j=0

α(t, j − 1)

(
j∑

k=0

g(x(t + 1 − k))

)2

−
[t]+r∑
j=0

α(t, j)

(
j∑

k=0

g(x(t − k))

)2

.

Now, we transform Q(t) in the following way

Q(t) = α(t,−1)g2(x(t + 1)) −
[t]+r∑
j=0

α(t, j)

(
j∑

k=0

g(x(t − k))

)2

+
[t]+1+r∑

j=1

α(t, j − 1)

(
j∑

k=0

g(x(t + 1 − k))

)2

= α(t,−1)g2(x(t + 1)) −
[t]+r∑
j=0

α(t, j)

(
j∑

k=0

g(x(t − k))

)2

+
[t]+r∑
j=0

α(t, j)

(
g(x(t + 1) +

j+1∑
k=1

g(x(t + 1 − k))

)2

= α(t,−1)g2(x(t + 1))

+
[t]+r∑
j=0

α(t, j)


(g(x(t + 1)) +

j∑
k=0

g(x(t − k))

)2

−
(

j∑
k=0

g(x(t − k))

)2



= α(t,−1)g2(x(t + 1))+
[t]+r∑
j=0

α(t, j)

[
g2(x(t + 1))+2g(x(t + 1))

j∑
k=0

g(x(t − k))

]

= g2(x(t + 1))
[t]+r∑
j=−1

α(t, j) + 2g(x(t + 1))
[t]+r∑
k=0

g(x(t − k))
[t]+r∑
j=k

α(t, j).
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From (2.5) and a(t, [t] + r + 1) = 0 it follows that
∑[t]+r

j=k α(t, j) = a(t, k),
k = −1, 0, . . . , [t] + r. Since a(t,−1) = a we obtain

∆V0(t) ≤ −c1x
2(t) + x(t + 1)g(x(t + 1)) + pag2(x(t + 1))

+ 2pg(x(t + 1))
[t]+r∑
k=0

a(t, k)g(x(t − k)).

Therefore using (2.2), (2.1) and p = (2 − ac2)−1, for x(t + 1) �= 0 yields

∆V0(t) ≤ −c1x
2(t) + (1 + pac2)x(t + 1)g(x(t + 1))

+ 2pg(x(t + 1))


−x(t + 1) +

[t]+r∑
j=0

σ(t, j)f(x(t − j))ξ(t + 1)




= −c1x
2(t) + 2pg(x(t + 1))

[t]+r∑
j=0

σ(t, j)f(x(t − j))ξ(t + 1).

As a result for the functional V0 we have

E∆V0(t) ≤ −c1Ex2(t) + 2pZ(t), (2.9)

where

Z(t) =

∣∣∣∣∣∣
[t]+r∑
j=0

σ(t, j)Ef(x(t − j))ξ(t + 1)g(x(t + 1))

∣∣∣∣∣∣ .
The estimate for E∆V0(t) contains only one “bad” summand: 2pZ(t). To neu-

tralize it let us estimate Z(t). Put η(t) = g(x(t))
x(t) , t > 0. Using (2.1), we obtain

Ef(x(t − j))ξ(t + 1)g(x(t + 1))

= Ef(x(t − j))Et[x(t + 1)η(t + 1)ξ(t + 1)]

= Ef(x(t − j))


− [t]+r∑

k=0

a(t, k)g(x(t − k))Et[η(t + 1)ξ(t + 1)]

+
[t]+r∑
k=0

σ(t, k)f(x(t − k))Et[η(t + 1)ξ2(t + 1)]


 .

From (2.2) it follows that Et[η(t + 1)ξ2(t + 1)] ≤ c2 and therefore

Z(t) ≤ E

∣∣∣∣∣∣
[t]+r∑
j=0

σ(t, j)f(x(t − j))

∣∣∣∣∣∣
∣∣∣∣∣∣
[t]+r∑
k=0

a(t, k)g(x(t − k)

∣∣∣∣∣∣ |Et[η(t + 1)ξ(t + 1)]|

+ c2E


[t]+r∑

j=0

σ(t, j)f(x(t − j))




2

.
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To estimate the expression |Et[η(t + 1)ξ(t + 1)]| consider the measure Pt cor-
responding to the conditional expectation Et and put Ω+

t = {ω: ξ(t + 1, ω) ≥ 0},
Ω−

t = {ω: ξ(t + 1, ω) < 0}. From (2.2) it follows that 0 < c1 ≤ η(t) ≤ c2. Therefore

Et[η(t + 1)ξ(t + 1)] =
∫

Ω

η(t + 1, ω)ξ(t + 1, ω)Pt(dω)

=
∫

Ω+
t

η(t + 1, ω)ξ(t + 1, ω)Pt(dω)

+
∫

Ω−
t

η(t + 1, ω)ξ(t + 1, ω)Pt(dω)

≤ c2

∫
Ω+

t

ξ(t + 1, ω)Pt(dω) + c1

∫
Ω−

t

ξ(t + 1, ω)Pt(dω).

Using (2.2), we have

Etξ(t + 1) =
∫

Ω+
t

ξ(t + 1, ω)Pt(dω) +
∫

Ω−
t

ξ(t + 1, ω)Pt(dω) = 0.

So, ∫
Ω+

t

ξ(t + 1, ω)Pt(dω) = −
∫

Ω−
t

ξ(t + 1, ω)Pt(dω) =
∫

Ω−
t

|ξ(t + 1, ω)|Pt(dω)

and

Et|ξ(t + 1)| =
∫

Ω+
t

ξ(t + 1, ω)Pt(dω) +
∫

Ω−
t

|ξ(t + 1, ω)|Pt(dω)

= 2
∫

Ω+
t

ξ(t + 1, ω)Pt(dω).

Therefore, via (2.2)

Et[η(t + 1)ξ(t + 1)] ≤ (c2 − c1)
∫

Ω+
t

ξ(t + 1, ω)Pt(dω) =
c2 − c1

2
Et|ξ(t + 1)|

≤ c2 − c1

2

√
Etξ2(t + 1) =

c2 − c1

2
.

Similarly

Et[η(t + 1)ξ(t + 1)]

=
∫

Ω+
t

η(t + 1, ω)ξ(t + 1, ω)Pt(dω) +
∫

Ω−
t

η(t + 1, ω)ξ(t + 1, ω)Pt(dω)

≥ c1

∫
Ω+

t

ξ(t + 1, ω)Pt(dω) + c2

∫
Ω−

t

ξ(t + 1, ω)Pt(dω)

= (c1 − c2)
∫

Ω+
t

ξ(t + 1, ω)Pt(dω) =
c1 − c2

2
Et|ξ(t + 1)|

≥ c1 − c2

2

√
Etξ2(t + 1) =

c1 − c2

2
.
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Thus, |Et[η(t + 1)ξ(t + 1)]| ≤ 1
2 (c2 − c1). As a result, we obtain

Z(t) ≤ c2E


[t]+r∑

j=0

σ(t, j)f(x(t − j))




2

+
c2 − c1

2
E

∣∣∣∣∣∣
[t]+r∑
j=0

σ(t, j)f(x(t − j))

∣∣∣∣∣∣
∣∣∣∣∣∣
[t]+r∑
k=0

a(t, k)g(x(t − k))

∣∣∣∣∣∣ . (2.10)

Using (2.2), (2.3), we have

E


[t]+r∑

j=0

σ(t, j)f(x(t − j))




2

≤ c2
3E


[t]+r∑

j=0

|σ(t, j)||x(t − j)|



2

≤ c2
3

[t]+r∑
j=0

F (t, j, σ, σ)Ex2(t − j) (2.11)

and

E

∣∣∣∣∣∣
[t]+r∑
j=0

σ(t, j)f(x(t − j))

∣∣∣∣∣∣
∣∣∣∣∣∣
[t]+r∑
k=0

a(t, k)g(x(t − k))

∣∣∣∣∣∣
≤ c2c3

[t]+r∑
j=0

[t]+r∑
k=0

|σ(t, j)||a(t, k)|E|x(t − j)||x(t − k)|

≤ 1
2
c2c3


[t]+r∑

k=0

F (t, k, a, σ)Ex2(t − k) +
[t]+r∑
j=0

F (t, j, σ, a)Ex2(t − j)




=
1
2
c2c3

[t]+r∑
j=0

[F (t, j, a, σ) + F (t, j, σ, a)]Ex2(t − j). (2.12)

Using (2.9)–(2.12), finally we obtain

E∆V0(t) ≤ −c1Ex2(t) +
[t]+r∑
j=0

Q(t, j)Ex2(t − j),

where

Q(t, j) = 2pc2c3

[
c3F (t, j, σ, σ) +

1
4
(c2 − c1)(F (t, j, a, σ) + F (t, j, σ, a))

]
.

The square form on the right-hand side of this inequality can be neutralized via
the standard additional functional

V3(t) =
[t]+r∑
k=1

x2(t − k)
∞∑

j=k

Q(t − k + j, j).
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In fact,

∆V3(t) =
[t]+1+r∑

k=1

x2(t + 1 − k)
∞∑

j=k

Q(t + 1 − k + j, j) − V3(t)

= x2(t)
∞∑

j=1

Q(t + j, j) +
[t]+1+r∑

k=2

x2(t + 1 − k)
∞∑

j=k

Q(t + 1 − k + j, j) − V3(t)

= x2(t)
∞∑

j=1

Q(t + j, j)

+
[t]+r∑
l=1

x2(t − l)


 ∞∑

j=l+1

Q(t − l + j, j) −
∞∑
j=l

Q(t − l + j, j)




= x2(t)
∞∑

j=1

Q(t + j, j) −
[t]+r∑
l=1

Q(t, l)x2(t − l).

As a result, we obtain for the functional V (t) = V1(t) + V2(t) + V3(t) the estimate

E∆V (t) ≤ −c1Ex2(t) + Ex2(t)
∞∑

j=1

Q(t + j, j) + Ex2(t)Q(t, 0)

=


−c1 +

∞∑
j=0

Q(t + j, j)


Ex2(t)

≤
[
−c1 + 2pc2c3

(
c3G(σ, σ) +

c2 − c1

2
G(a, σ)

)]
Ex2(t),

where G(a, σ) is defined by (2.4), (2.3). From condition (2.7) it follows that the
expression in square brackets is negative. So, the functional V (t) constructed above
satisfies the conditions of Theorem 1.1. Therefore, the trivial solution of Eq. (2.1)
is asymptotically mean-square quasistable. The theorem is proved.

Remark 2.1. Due to Remark 1.1 the conditions of Theorem 2.1 imply that the
solution of Eq. (2.1) is mean square integrable.

Remark 2.2. Suppose that the parameters of Eq. (2.1) do not depend on t, i.e.
a(t, j) = a(j), σ(t, j) = σ(j). It is easy to see that in this case G(a, σ) = âσ̂, where
â =

∑∞
j=0 a(j), σ̂ =

∑∞
j=0 |σ(j)|. So, the stability conditions (2.5)–(2.7) have the

form

a(j) ≥ 0, a(j + 1) − a(j) ≤ 0, a(j + 2) − 2a(j + 1) + a(j) ≥ 0, j = 0, 1, . . . ,

a(0) − a(1)
2

<
1
c2

− c3

c1
σ̂

(
c3σ̂ +

c2 − c1

2
â

)
.

This means, in particular, that the sequence a(j) has non-negative members with
nonpositive first differences and non-negative second differences.
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Remark 2.3. Without loss of generality in condition (2.2) we can put c3 = 1 and
c1 ≤ c2 = 1 or c2 ≥ c1 = 1. In fact, if this is not the case we can put for instance
a(t, j)g(x) = ã(t, j)g̃(x), where ã(t, j) = c2a(t, j), g̃(x) = c−1

2 g(x). In this case the
function g̃(x) satisfies condition (2.2) with c2 = 1.

Example 2.1. Consider the equation

x(t + 1) =
[t]+1∑
j=0

a(t, j)[−λ1g(x(t − j)) + λ2f(x(t − j))ξ(t + 1)], (2.13)

where a(t, j) = t+1−j
(t+2)2 , λl > 0, l = 1, 2, the functions f(x), g(x) and the stochastic

process ξ(t) satisfy conditions (2.2).
Let us construct a stability condition for this equation using Theorem 1.1. It is

easy to check that conditions (2.5), (2.6) hold. Calculating a, we have

a = λ1 sup
t>−1

[
t + 2

(t + 3)2
+

t + 1
(t + 2)2

− t + 1
(t + 3)2

]

= λ1 sup
t>−1

[
1

(t + 3)2
+

t + 1
(t + 2)2

]
= Aλ1.

Here A = 0.383 and A takes this value at the point t = −0.45. Calculating G(a, σ),
we have

G(a, σ) = λ1λ2 sup
t≥0


 ∞∑

j=0

a(t + j, j)
[t]+j+1∑

k=0

a(t + j, k)




= λ1λ2 sup
t≥0


 ∞∑

j=0

t + 1
(t + j + 2)2

[t]+j+1∑
k=0

t + j + 1 − k

(t + j + 2)2




=
λ1λ2

2
sup
t≥0


(t + 1)

∞∑
j=0

(2t − [t] + j + 1)([t] + j + 2)
(t + j + 2)4


 .

Note that (2t − [t] + j + 1)([t] + j + 2) ≤ (t + j + 2)2. So,

G(a, σ) ≤ λ1λ2

2
sup
t≥0


(t + 1)

∞∑
j=0

1
(t + j + 2)2




≤ λ1λ2

2
sup
t≥0

[
(t + 1)

(
1

(t + 2)2
+
∫ ∞

1

ds

(t + 1 + s)2

)]

=
λ1λ2

2
sup
t≥0

[
(t + 1)

(
1

(t + 2)2
+

1
t + 2

)]

=
λ1λ2

2
sup
t≥0

[
(t + 1)(t + 3)

(t + 2)2

]
=

λ1λ2

2
.
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Similarly, G(σ, σ) ≤ 1
2λ2

2. So, if the condition(
Ac1 +

c2 − c1

2
c3λ2

)
λ1

2
+

c2
3λ

2
2

2
<

c1

c2

holds then the trivial solution of Eq. (2.13) is asymptotically mean square
quasistable.

3. Conclusion

Sufficient conditions for asymptotic mean square stability of the trivial solution of
a class of nonlinear stochastic difference Volterra equations with continuous time
are obtained via the general method of Lyapunov functionals construction.
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