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Abstract. Many stability results in the theory of stochastic hereditary systems and their applications
were obtained by construction of appropriate Lyapunov functionals. One general method of Lyapunov
functionals construction was proposed and developed by the authors during last decade for stability
investigation of deterministic and stochastic functional-differential and difference equations. In this
paper a survey of some typical examples of this method application and at the same time some new
features of this method for stochastic functional differential equations of neutral type are shown, which
allow to use the method more effectively. The considered method is illustrated by a lot of figures of
stability regions obtained by numerical calculations.
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1 Statement of the problem

A lot of processes in automatic regulation, physics, mechanics, biology, ecology, economy etc. can
be modelled by functional differential equations [1-14]. Many stability results in the theory of func-
tional differential equations and their applications were obtained using appropriate Lyapunov function-
als. One general method of Lyapunov functionals construction both for deterministic and stochastic
functional-differential and difference equations was proposed and developed by authors in [15-29].
Some applications of this method for stability investigation of the mathematical models of some real
biological and mechanical systems are considered in [30-32]. Here a survey of some typical examples
and some new features of this method for stochastic differential equations of neutral type are shown,
which allow to use the method more effectively. A lot of figures with stability regions obtained by
numerical calculations illustrate the considered method.
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Consider the stochastic differential equation of neutral type

d(x(t)−G(t, xt)) = a1(t, xt)dt+ a2(t, xt)dξ(t),
t ≥ 0, x(t) ∈ Rn, x(s) = ϕ(s), s ≤ 0. (1.1)

Here xt = x(t+ s), s ≤ 0, ξ(t) ∈ Rm is a standard Wiener process, G(t, 0) ≡ 0, ai(t, 0) ≡ 0, i = 1, 2.
It is supposed that conditions for existence and unique of the solution of equation (1.1) hold, in
particular,

|G(t,ϕ)−G(t,ψ)| ≤
Z ∞

0
|ϕ(−s)− ψ(−s)|dK(s),

Z ∞

0
dK(s) < 1. (1.2)

Definition 1.1. The trivial solution of equation (1.1) is called mean square stable if for any ² > 0
there exists a δ > 0 such that IE|x(t)|2 < ², t ≥ 0, if kϕk2 = sups≤0 IE|ϕ(s)|2 < δ. If, besides,
limt→∞ IE|x(t)|2 = 0 for every initial function ϕ(s) then the trivial solution of equation (1.1) is called
asymptotically mean square stable.

Theorem 1.1 [8]. Let condition (1.2) holds and there exists the functional

V (t,ϕ) =W (t,ϕ) + |ϕ(0)−G(t,ϕ)|2,

such that
0 ≤ IEW (t, xt) ≤ c1kxtk2,
IELV (t, xt) ≤ −c2IE|x(t)|2,

where ci > 0, i = 1, 2, L is the generator of equation (1.1). Then the trivial solution of equation (1.1)
is asymptotically mean square stable.

2 Procedure of Lyapunov functionals construction

This procedure consists of four steps.
Step 1. Transform equation (1.1) to the form

dz(t, xt) = (b1(t, x(t)) + c1(t, xt))dt+ (b2(t, x(t)) + c2(t, xt))dξ(t), (2.1)

where z(t, xt) is some functional on xt, z(t, 0) = 0, functionals bi, i = 1, 2, depend on t and x(t) only
and do not depend on the previous values x(t+ s), s < 0, of the solution, bi(t, 0) = 0.

Step 2. Assume that the trivial solution of the auxiliary equation without memory

dy(t) = b1(t, y(t))dt+ b2(t, y(t))dξ(t). (2.2)

is asymptotically mean square stable and therefore there exists a Lyapunov function v(t, y), for which
the condition L0v(t, y) ≤ −|y|2 holds. Here L0 is the generator of equation (2.2).

Step 3. A Lyapunov functional V (t, xt) is constructed in the form V = V1 + V2, where V1(t, xt) =
v(t, z(t, xt)). Here the argument y of the function v(t, y) is replaced on the functional z(t, xt) from the
left-hand part of equation (2.1).

Step 4. Usually, the functional V1 almost satisfies the conditions of Theorem 1.1. In order to satisfy
these conditions completely it is necessary to calculate LV1 and estimate it. Then the additional
component V2 can be easily chosen in a standard way.

Note that representation (2.1) is not unique. This fact allows us, using different representations
(2.1) or different ways of LV1 estimation, to construct different Lyapunov functionals and, as a result,
to get different sufficient conditions of asymptotic mean square stability.
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3 Application of Lyapunov functionals construction procedure

3.1 Linear differential equation of neutral type

Using the proposed procedure let us construct conditions of asymptotic mean square stability for the
equation of neutral type

ẋ(t) + ax(t) + bx(t− h) + cẋ(t− h) + σx(t− τ)ξ̇(t) = 0, |c| < 1. (3.1)

3.1.1 The first way of Lyapunov functional construction.

Following Step 1 of the procedure, rewrite equation (3.1) in the form

ż(xt) = −ax(t)− bx(t− h)− σx(t− τ)ξ̇(t),

z(xt) = x(t) + cx(t− h).

Suppose that a > 0. Then the function v = y2 is a Lyapunov function for the auxiliary equation
ẏ(t) = −ay(t), since v̇ = −2ay2. Thus, the trivial solution of the auxiliary equation is asymptotically
stable. Put V1 = z2(xt). Then

LV1 = 2z(xt)(−ax(t)− bx(t− h)) + σ2x2(t− τ) =

= −2ax2(t)− 2bcx2(t− h)− 2(ac+ b)x(t)x(t− h) + σ2x2(t− τ) ≤
≤ (−2a+ |ac+ b|)x2(t) + ρx2(t− h) + σ2x2(t− τ),

where ρ = |ac+ b|− 2bc if |ac+ b| > 2bc and ρ = 0 if |ac+ b| ≤ 2bc.
Let

V2 = ρ

Z t

t−h
x2(s)ds+ σ2

Z t

t−τ
x2(s)ds,

Then for the functional V = V1 + V2 we obtain

LV ≤ (−2a+ |ac+ b|+ ρ+ σ2)x2(t).

So, if |ac+ b|+ ρ+ σ2 < 2a then the trivial solution of equation (3.1) is asymptotically mean square
stable. Using two representations for ρ, we obtain two stability conditions:

2bc ≥ |ac+ b|, σ2 + |ac+ b| < 2a (3.2)

and

2bc < |ac+ b|, p+ |ac+ b|− bc < a, p =
σ2

2
. (3.3)

From (3.2) and a > 0 we have bc = |bc| and |ac+ b| = a|c|+ |b|. So, inequalities (3.2) take the form
2|bc| ≥ a|c| + |b| and σ2 + a|c| + |b| < 2a. The first from these inequalities is impossible if 2|c| < 1.
Suppose that 2|c| ≥ 1. Then

σ2 + |b|
2− |c| < a ≤

µ
2− 1

|c|
¶
|b|. (3.4)

It is easy to see, that these inequalities are incompatible. Really, from (3.4) the impossible inequality
σ2|c|+ 2|b|(1− |c|)2 < 0 follows. Thus, condition (3.2) is impossible.

Consider condition (3.3). Suppose that bc ≥ 0. From here and a > 0 we have bc = |bc|, |ac+ b| =
a|c|+ |b| and condition (3.3) takes the form

2|bc| < a|c|+ |b|, a > |b|+ p

1− |c| .
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If 2|c| < 1 then the first inequality holds for all a and b. If 2|c| ≥ 1 then the second inequality implies
the first one. So, if bc ≥ 0 then from condition (3.3) we have

bc ≥ 0, a > |b|+ p

1− |c| . (3.5)

Let bc < 0. Then the first inequality (3.3) holds and condition (3.3) takes the form

bc < 0, p+ |ac+ b|− bc < a. (3.6)

Since bc < 0 then |ac+ b| = |a|c|− |b||. So, if a|c| ≥ |b| then from (3.6) we have

p

1− |c| − a < |b| ≤ a|c|. (3.7)

If a|c| < |b| then
a|c| < |b| < a− p

1 + |c| . (3.8)

Combining (3.7) and (3.8), we obtain

bc < 0,
p

1− |c| − a < |b| < a−
p

1 + |c| . (3.9)

Note that the system

|b| = p

1− |c| − a, |b| = a− p

1 + |c| ,

by bc < 0 has the solution

a =
p

1− c2 , b = − pc

1− c2 . (3.10)

So, combining (3.5), (3.9), (3.10), we obtain the stability condition in the form

a >


p
1−c + b, b > − pc

1−c2 ,

p
1+c − b, b ≤ − pc

1−c2 .
(3.11)

Thus, if condition (3.11) holds, then the trivial solution of equation (3.1) is asymptotically mean
square stable.

The stability regions for equation (3.1), given by stability conditions (3.11), are shown on Fig.3.1
for c = −0.5, h = 1 and different values of p: 1) p = 0, 2) p = 0.5, 3) p = 1, 4) p = 1.5. On Fig.3.2
the stability regions are shown for c = 0.5 and the same values of other parameters.

3.1.2 Second way of Lyapunov functional construction.

To get another stability condition represent equation (3.1) in the form

ż(xt) = −(a+ b)x(t)− σx(t− τ)ξ̇(t),

z(zt) = x(t) + cx(t− h)− b
Z t

t−h
x(s)ds.

Using condition (1.2) it is necessary to suppose that

|c|+ |b|h < 1. (3.12)
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Suppose also that a+b > 0. Then the function v = y2 is a Lyapunov function for the auxiliary equation
ẏ(t) = −(a + b)y(t), since v̇ = −2(a + b)y2. Thus, the trivial solution of the auxiliary equation is
asymptotically stable. Put V1 = z2(xt). Then

LV1 = −2(a+ b)x(t)z(xt) + σ2x2(t− τ) = −2(a+ b)x2(t)−

− 2(a+ b)cx(t)x(t− h) + 2(a+ b)b
Z t

t−h
x(t)x(s)ds+ σ2x2(t− τ)

≤ (a+ b)(−2 + |c|+ |b|h)x2(t) + σ2x2(t− τ)+

+ (a+ b)

µ
|c|x2(t− h) + |b|

Z t

t−h
x2(s)ds

¶
.

Let

V2 = (a+ b)

Z t

t−h
[|c|+ |b|(s− t+ h)]x2(s)ds+ σ2

Z t

t−τ
x2(s)ds.

Then for the functional V = V1 + V2 we obtain

LV ≤ [−2(a+ b)(1− |c|− |b|h) + σ2]x2(t).

Thus, using (3.12) we obtain that the stability condition has the form

p < (a+ b)(1− |c|− |b|h), p =
σ2

2

or

a >
p

1− |c|− |b|h − b, |b| < 1− |c|
h

. (3.13)

The stability regions for equation (3.1), given by stability condition (3.13), are shown on Fig.3.3
for |c| = 0.5, h = 0.2 and different values of p: 1) p = 0.2, 2) p = 0.6, 3) p = 1, 4) p = 1.4 and on
Fig.3.4 for |c| = 0.5, p = 0.4 and different values of h: 1) h = 0.1, 2) h = 0.15, 3) h = 0.2, 4) h = 0.25.

It is easy to check, that for b ≤ 0 condition (3.11) is better than (3.13). So, condition (3.13) is
better to use for b > 0 only in the form

a >
p

1− |c|− bh − b, 0 < b <
1− |c|
h

. (3.14)

The stability regions for equation (3.1), given by stability conditions (3.11) and (3.14) together,
are shown on Fig.3.5 for c = −0.6, p = 0.4 and different values of h: 1) h = 0.05, 2) h = 0.1, 3)
h = 0.15, 4) h = 0.2. On Fig.3.6 the stability regions are shown for c = 0.6 and the same values of
other parameters.

3.1.3 Some particular cases.

1) Note that for h→ 0 condition (3.14) takes the form

a >
p

1− |c| − b, b > 0. (3.15)

On the other hand for h = 0 we have LV = [−2(a+ b)(1 + c) + σ2]x2(t). So, for h = 0 the necessary
and sufficient condition of asymptotic mean square stability has the form

a >
p

1 + c
− b. (3.16)

For b > 0 and c > 0 condition (3.15) is essentially worse than (3.16). But for b > 0 and c ≤ 0 condition
(3.15) coincides with (3.16). The second condition of (3.11) coincides with condition (3.16) as well.
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2) For c = 0 the necessary and sufficient condition of asymptotic mean square stability of the
trivial solution of equation (3.1) has the form

Q > p, (3.17)

where

Q =


a+b cos(qh)

1+bq−1 sin(qh) , q =
√
b2 − a2, |a| ≤ |b|,

a+b cosh(qh)
1+bq−1 sinh(qh) , q =

√
a2 − b2, |a| > |b|.

(3.18)

On Fig.3.7 the stability regions, given by sufficient conditions (3.11), (3.14) and necessary and sufficient
conditions (3.17), (3.18), are shown for different values of p: 1) p = 0, 2) p = 0.5, 3) p = 1, 4) p = 1.5,
5) p = 2. On Fig.3.8 the same stability regions are shown in another scale. We can see that sufficient
conditions (3.11), (3.14) give us the stability region, which is enough close to exact one.

3) For p = 0 from (3.11), (3.14) it follows

a >


b, b ≥ 1−|c|

h ,

−b, b < 1−|c|
h .

(3.19)

On Fig.3.9 the exact stability regions are shown for 1) c = 0.5, 2) c = −0.5 and stability region,
given by sufficient conditions (3.19) for 3) |c| = 0.5. On Fig.3.10 the similar regions are shown for 1)
c = 0.85, 2) c = −0.85, 3) |c| = 0.85.

3.2 Linear differential equation with two delays in deterministic part

Consider the equation

ẋ(t) + ax(t− h1) + bx(t− h2) + σx(t− τ)ξ̇(t) = 0, h1 ≤ h2. (3.20)

Using different representations of this equation we will obtain different conditions of asymptotic mean
square stability for the trivial solution of equation (3.20).

3.2.1 The first way of Lyapunov functional construction.

Represent equation (3.20) in the form

ż(xt) = −ax(t)− bx(t− h2)− σx(t− τ)ξ̇(t),

z(xt) = x(t)− a
Z t

t−h1
x(s)ds.

Putting V1 = z2(xt) we obtain

LV1 = 2z(xt)(−ax(t)− bx(t− h2)) + σ2x2(t− τ)

= −2ax2(t)− 2bx(t)x(t− h2)+

+ 2a2
Z t

t−h1
x(t)x(s)ds+ 2ab

Z t

t−h1
x(t− h2)x(s)ds+ σ2x2(t− τ)

≤ −2ax2(t) + |b|(x2(t) + x2(t− h2)) + a2
µ
x2(t)h1 +

Z t

t−h1
x2(s)ds

¶
+

+ |ab|
µ
x2(t− h2)h1 +

Z t

t−h1
x2(s)ds

¶
+ σ2x2(t− τ)

= (−2a+ a2h1 + |b|)x2(t) + (a2 + |ab|)
Z t

t−h1
x2(s)ds+

+ (|b|+ |ab|h1)x2(t− h2) + σ2x2(t− τ).
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Putting

V2 = (a
2 + |ab|)

Z t

t−h1
(s− t+ h1)x2(s)ds+

+ (|b|+ |ab|h1)
Z t

t−h2
x2(s)ds+ σ2

Z t

t−τ
x2(s)ds,

for V = V1 + V2 we obtain

LV ≤ 2(−a+ a2h1 + |b|+ |ab|h1 + p)x2(t), p =
σ2

2
.

From here and (1.2) it follows that if

|b| < a(1− ah1)− p
1 + ah1

, 0 < a <
1

h1
, (3.21)

then the trivial solution of equation (3.20) is asymptotically mean square stable.

Remark 3.1. Representing equation (3.20) in the form

ż(xt) = −bx(t)− ax(t− h1)− σx(t− τ)ξ̇(t),

z(xt) = x(t)− b
Z t

t−h2
x(s)ds

and using a symmetry we obtain another sufficient condition of asymptotic mean square stability of
the trivial solution of equation (3.20)

|a| < b(1− bh2)− p
1 + bh2

, 0 < b <
1

h2
. (3.22)

3.2.2 The second way of Lyapunov functional construction.

Represent equation (3.20) in the form

ż(xt) = −(a+ b)x(t) + bx(t− h1)− bx(t− h2)− σx(t− τ)ξ̇(t),

z(xt) = x(t)− (a+ b)
Z t

t−h1
x(s)ds.

Putting V1 = z2(xt) we obtain

LV1 = 2z(xt)[−(a+ b)x(t) + bx(t− h1)− bx(t− h2)] + σ2x2(t− τ)

= −2(a+ b)x2(t) + 2bx(t)x(t− h1)− 2bx(t)x(t− h2)+

+ 2(a+ b)2
Z t

t−h1
x(t)x(s)ds− 2(a+ b)b

Z t

t−h1
x(t− h1)x(s)ds+

+ 2(a+ b)b

Z t

t−h1
x(t− h2)x(s)ds+ σ2x2(t− τ)

≤ −2(a+ b)x2(t) + |b|(x2(t) + x2(t− h1)) + |b|(x2(t) + x2(t− h2))+

+ (a+ b)2
µ
x2(t)h1 +

Z t

t−h1
x2(s)ds

¶
+ σ2x2(t− τ)+

+ |(a+ b)b|
µ
x2(t− h1)h1 + x2(t− h2)h1 + 2

Z t

t−h1
x2(s)ds

¶
= [−2(a+ b) + (a+ b)2h1 + 2|b|]x2(t) + σ2x2(t− τ)+

+ |b|(1 + |a+ b|h1)(x2(t− h1) + x2(t− h2))+

+ ((a+ b)2 + 2|b(a+ b)|)
Z t

t−h1
x2(s)ds.
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Putting

V2 = ((a+ b)
2 + 2|b(a+ b)|)

Z t

t−h1
(s− t+ h1)x2(s)ds+

+ |b|(1 + |a+ b|)h1)
µZ t

t−h1
x2(s)ds+

Z t

t−h2
x2(s)ds

¶
+ σ2

Z t

t−τ
x2(s)ds,

for V = V1 + V2 we obtain

LV ≤ 2[−(a+ b) + (a+ b)2h1 + 2|b|(1 + (a+ b)h1) + p]x2(t).
From here and (1.2) it follows that if

2|b| < (a+ b)(1− (a+ b)h1)− p
1 + (a+ b)h1

, 0 < a+ b <
1

h1
, (3.23)

then the trivial solution of equation (3.20) is asymptotically mean square stable.

Remark 3.2. Similarly to Remark 3.1 using a symmetry we obtain another sufficient condition of
asymptotic mean square stability of the trivial solution of equation (3.20)

2|a| < (a+ b)(1− (a+ b)h2)− p
1 + (a+ b)h2

, 0 < a+ b <
1

h2
. (3.24)

3.2.3 The Third way of Lyapunov functional construction.

Represent equation (3.20) in the form

ż(xt) = −(a+ b)x(t)− σx(t− τ)ξ̇(t),

z(xt) = x(t)− a
Z t

t−h1
x(s)ds− b

Z t

t−h2
x(s)ds. (3.25)

Putting V1 = z2(xt) we obtain

LV1 = 2z(xt)(−(a+ b))x(t) + σ2x2(t− τ) =

= −2(a+ b)x2(t) + 2a(a+ b)
Z t

t−h1
x(t)x(s)ds+

+ 2b(a+ b)

Z t

t−h2
x(t)x(s)ds+ σ2x2(t− τ). (3.26)

Therefore,

LV1 ≤ −2(a+ b)x2(t) + |a(a+ b)|
µ
x2(t)h1 +

Z t

t−h1
x2(s)ds

¶
+

+ |b(a+ b)|
µ
x2(t)h2 +

Z t

t−h2
x2(s)ds

¶
+ σ2x2(t− τ)

= [−2(a+ b) + |a+ b|(|a|h1 + |b|h2)]x2(t) + σ2x2(t− τ)+

+ |a+ b|
µ
|a|
Z t

t−h1
x2(s)ds+ |b|

Z t

t−h2
x2(s)ds

¶
.

Putting

V2 = |a(a+ b)|
Z t

t−h1
(s− t+ h1)x2(s)ds+

+ |b(a+ b)|
Z t

t−h2
(s− t+ h2)x2(s)ds+ σ2

Z t

t−τ
x2(s)ds,
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for V = V1 + V2 we obtain

LV ≤ 2[−(a+ b) + |a+ b|(|a|h1 + |b|h2) + p]x2(t).
From here and (1.2) it follows that if

a+ b >
p

1− |a|h1 − |b|h2 , |a|h1 + |b|h2 < 1, (3.27)

then the trivial solution of equation (3.20) is asymptotically mean square stable.

Remark 3.3. Note that condition (3.27) follows from condition (3.22), condition (3.22) follows from
condition (3.24), condition (3.21) follows from condition (3.23). Let us show, for example, that if
condition (3.22) holds then condition (3.27) holds too. Really, rewrite (3.22) and (3.27) in the form

p < b(1− bh2)− |a|(1 + bh2), 0 < b <
1

h2
p < (a+ b)(1− |a|h1 − |b|h2), |a|h1 + |b|h2 < 1.

It is enough to prove that b(1− bh2)− |a|(1+ bh2) ≤ (a+ b)(1− |a|h1− |b|h2) or |a|(a+ b)h1+ abh2 ≤
a+ |a|+ |a|bh2. Consider at first the case a ≥ 0. Then we obtain (a+ b)h1 < 2. Using h1 ≤ h2 and
ah1 + bh2 < 1 we have (a+ b)h1 ≤ ah1 + bh2 < 1 < 2. Let now a < 0. Then it is necessary to prove
that (a+ b)h1 ≤ 2bh2. But it follows from (a+ b)h1 < bh1 ≤ bh2 ≤ 2bh2.

3.2.4 The fourth way of Lyapunov functional construction.

Let us show that using the same representations of the initial equation but different ways of LV1
estimation we can get different stability conditions.

Represent equation (3.20) in form (3.25) and put V1 = z2(xt) again. Using (3.26) and condition
a+ b > 0, let us estimate LV1 by the following way

LV1 = −2(a+ b)x2(t) + 2(a+ b)2
Z t

t−h1
x(t)x(s)ds+

+ 2(a+ b)b

Z t−h1

t−h2
x(t)x(s)ds+ σ2x2(t− τ)

≤ −2(a+ b)x2(t) + (a+ b)2
µ
h1x

2(t) +

Z t

t−h1
x2(s)ds

¶
+

+ (a+ b)|b|
µ
(h2 − h1)x2(t) +

Z t−h1

t−h2
x2(s)ds

¶
+ σ2x2(t− τ)

= [−2(a+ b) + (a+ b)2h1 + (a+ b)|b|(h2 − h1)]x2(t) + σ2x2(t− τ)+

+ (a+ b)2
Z t

t−h1
x2(s)ds+ (a+ b)|b|

Z t−h1

t−h2
x2(s)ds.

Putting

V2 = (a+ b)
2

Z t

t−h1
(s− t+ h1)x2(s)ds+ (a+ b)|b|

Z t−h1

t−h2
(s− t+ h2)x2(s)ds+

+ (a+ b)|b|(h2 − h1)
Z t

t−h1
x2(s)ds+ σ2

Z t

t−τ
x2(s)ds,

for the functional V = V1 + V2 we obtain

LV ≤ 2[−(a+ b) + (a+ b)2h1 + (a+ b)|b|(h2 − h1) + p]x2(t), p =
σ2

2
.
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From here and (1.2) it follows that if

a+ b >
p

1− (a+ b)h1 − |b|(h2 − h1) , |a|h1 + |b|h2 < 1, (3.28)

then the trivial solution of equation (3.20) is asymptotically mean square stable.
It is easy to see that condition (3.28) coincides with (3.27) for p = 0. If p > 0 then condition (3.28)

coincides with (3.27) for a ≥ 0, b ≥ 0, but in the case ab < 0 condition (3.28) is weaker than (3.27).
Using Remark 3.3 we can conclude that stability conditions (3.21) and (3.28) together are better than
all other.

Put p = 0, h2 = 1. On Fig.3.11 the stability regions, given by conditions (3.21)-(3.24), (3.27)
(with numbers 1-5 correspondingly), are shown for h1 = 0.1. On Fig.3.12 the similar picture is shown
for h1 = 0.2 with addition of the bound of the stability region, given by the necessary and sufficient
condition of asymptotic stability. On Fig.3.13 we can see how the picture on Fig.3.12 is changed for
h1 = 0.25. On Fig.3.14 stability region, given by condition (3.21), is shown for h1 = 0.01 together
with the bound of the stability region, given by the necessary and sufficient condition of asymptotic
stability.

Consider now the case p > 0, h2 = 1. On Fig.3.15 the stability regions, given by conditions
(3.21)-(3.24), (3.27), (3.28) (with numbers 1-6 correspondingly), are shown for p = 0.1, h1 = 0.1. On
Fig.3.16 these stability regions are shown for p = 0.1, h1 = 0.5 and on Fig.3.17 for p = 0.25, h1 = 0.5.

3.2.5 One generalization for equation with n delays

Consider the equation with n delays in deterministic part and nonlinear stochastic part

ẋ(t) +
nX
i=1

aix(t− hi) + σ(t, xt)ξ̇(t) = 0. (3.29)

Here it is supposed that

h1 ≤ h2 ≤ ... ≤ hn,
|σ(t,ϕ)| ≤

Z ∞

0
|ϕ(−s)|dR(s), R =

Z ∞

0
dR(s). (3.30)

Represent equation (3.29) in the form

ż(xt) = −S1x(t)− σx(t− τ)ξ̇(t),

z(xt) = x(t)−
nX
i=1

ai

Z t

t−hi
x(s)ds,

Sj =
nX
i=j

ai, j = 1, ..., n. (3.31)

Using the functional V = V1 + V2, where V1 = z2(xt),

V2 = S1

nX
i=1

|ai|
Z t

t−hi
(s− t+ hi)x2(s)ds+R

Z ∞

0

Z t

t−s
x2(θ)dθdR(s),

similar to (3.27) we obtain a sufficient condition of asymptotic mean square stability for the trivial
solution of equation (3.29) in the form

S1 > p

Ã
1−

nX
i=1

|ai|hi
!−1

,
nX
i=1

|ai|hi < 1, p =
1

2
R2.
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This condition is a generalization of condition (3.27).
Let us obtain a generalization of condition (3.28). Using representation (3.31), consider the func-

tional V = V1 + V2, where V1 = z2(xt). Then using (3.30), (3.31), we get

LV1 = −2S1x2(t) + 2S1x(t)
nX
i=1

ai

Z t

t−hi
x(s)ds+ σ2(t, xt)

= −2S1x2(t) + 2S1x(t)
nX
i=1

ai

Z t

t−h1
x(s)ds+

i−1X
j=1

Z t−hj

t−hj+1
x(s)ds

+ σ2(t, xt)

≤ −2S1x2(t) + S21
µ
h1x

2(t) +

Z t

t−h1
x2(s)ds

¶
+

+ S1

n−1X
j=1

|Sj+1|
Ã
(hj+1 − hj)x2(t) +

Z t−hj

t−hj+1
x(s)ds

!
+R

Z ∞

0
x2(t− s)dR(s)

=

−2S1 + S21h1 + S1 n−1X
j=1

|Sj+1|(hj+1 − hj)
x2(t)+

+ S21

Z t

t−h1
x2(s)ds+ S1

n−1X
j=1

|Sj+1|
Z t−hj

t−hj+1
x(s)ds+R

Z ∞

0
x2(t− s)dR(s).

Putting

V2 = S
2
1

Z t

t−h1
(s− t+ h1)x2(s)ds+R

Z ∞

0

Z t

t−s
x2(θ)dθdR(s)+

+ S1

n−1X
j=1

|Sj+1|
"Z t−hj

t−hj+1
(s− t+ hj+1)x2(s)ds+ (hj+1 − hj)

Z t

t−hj
x2(s)ds

#
,

for the functional V = V1 + V2 we obtain

LV ≤ 2
−S1 + S21h1 + S1 n−1X

j=1

|Sj+1|(hj+1 − hj) + p
x2(t).

From here and (1.2) we obtain a generalization of condition (3.28) in the form

S1 > p

1− S1h1 − n−1X
j=1

|Sj+1|(hj+1 − hj)
−1 , nX

i=1

|ai|hi < 1.

To prove that this condition is weaker than previous one it is enough to show that

S1h1 +
n−1X
j=1

|Sj+1|(hj+1 − hj) ≤
nX
i=1

|ai|hi.

Rewrite this inequality in the form

n−1X
j=0

|Sj+1|hj+1 ≤
n−1X
j=1

|Sj+1|hj +
nX
i=1

|ai|hi,

that is equivalent to
nX
j=1

|Sj |hj ≤
n−1X
j=1

|Sj+1|hj +
nX
j=1

|aj |hj .

Now it is enough to note that |Sj | ≤ |Sj+1|+ |aj |, j = 1, ..., n− 1 and Sn = an.
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3.3 Nonlinear scalar equation

Consider the nonlinear equation of neutral type

dz(xt) = (b− ax(t))z(xt)(dt+ σdξ(t)),

z(xt) = x(t)− cx(t− h), (3.32)

where a > 0, b > 0, h ≥ 0, |c| < 1, σ are some constants. Let us investigate mean—square stability of
the solution x0(t) ≡ x0 = a−1b with respect to perturbations of the initial function φ, satisfying the
following inequality

z(0) = φ(0)− cφ(−h) > 0. (3.33)

Put h = 0. Then system (3.32) takes the form

dx(t) = −a(x(t)− x0)x(t)(dt+ σdξ(t)). (3.34)

Let us show that if

0 < pb < 1, p =
σ2

2
, (3.35)

then the function

v(x(t)) = x(t)− x0 − x0 ln x(t)
x0

(3.36)

is a Lyapunov function for auxiliary equation (3.34).
First of all note that v(x0) = 0 and since x− 1− lnx ≥ 0 for x > 0 then

v(x(t)) = x0

µ
x(t)

x0
− 1− ln x(t)

x0

¶
≥ 0.

Using ax0 = b we obtain

Lv(x(t)) = −a(x(t)− x0)x(t)
µ
1− x0

x(t)

¶
+ pa2(x(t)− x0)2x2(t) x0

x2(t)

= −a(1− bp)(x(t)− x0)2.
So, by condition (3.35) function (3.36) is a Lyapunov function for solution x0 of auxiliary equation
(3.34).

Using the procedure of Lyapunov functionals construction we will construct Lyapunov functional
V for equation (3.32) in the form V = V1 + V2, where

V1 = v(z(xt)) = z(xt)− z0 − z0 ln z(xt)
z0

,

z(xt) := x(t)− cx(t− h), z0 = (1− c)x0.
Calculating LV1 for equation (3.32) we obtain

LV1 = −a(x(t)− x0)z(xt)
µ
1− z0

z(xt)

¶
+ pa2(x(t)− x0)2z2(xt) z0

z2(xt)

= −a(x(t)− x0)(z(xt)− z0) + abp(1− c)(x(t)− x0)2
= −a(x(t)− x0)(x(t)− cx(t− h)− x0 + cx0) + abp(1− c)(x(t)− x0)2
= −a[1− bp(1− c)](x(t)− x0)2 + ac(x(t)− x0)(x(t− h)− x0)
≤ −a[1− bp(1− c)](x(t)− x0)2 + a|c|

2
[(x(t)− x0)2 + (x(t− h)− x0)2]

= −a
·
1− bp(1− c)− |c|

2

¸
(x(t)− x0)2 + a|c|

2
(x(t− h)− x0)2.
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Putting

V2 =
a|c|
2

Z t

t−h
(x(s)− x0)2ds

for the functional V = V1 + V2 we have

LV ≤ −a[1− bp(1− c)− |c|](x(t)− x0)2.

From here it follows that if conditions (3.33) and

0 < bp <


1 + c

1−c ,−1 < c < 0,

1, 0 ≤ c < 1,
(3.37)

hold then the solution x0(t) ≡ a−1b of equation (3.32) is asymptotically mean square stable. Note
that condition (3.37) does not depend on a > 0 and h ≥ 0.

On Fig.3.18 the stability regions are shown for different values of p: 1) p = 0, 2) p = 0.2, 3) p = 0.4,
4) p = 0.6, 5) p = 0.8.

3.4 Integro-differential equation

Let us obtain stability conditions for the equation

ẋ(t) = −ax(t) +
Z ∞

0
x(t− s)dK(s) + σ(t, xt)ξ̇(t). (3.38)

It is supposed that

|σ(t, xt)| ≤
Z ∞

0
|x(t− s)|dR(s), R =

Z ∞

0
dR(s). (3.39)

3.4.1 The first way of Lyapunov functional construction.

Put

k0 =

Z ∞

0
|dK(s)|. (3.40)

The auxiliary equation (2.2) we will consider in the form ẏ(t) = −ay(t), a > 0. Put V = V1 + V2,
where V1 = x2. Calculating LV1, we obtain

LV1 = 2x(t)

µ
−ax(t) +

Z ∞

0
x(t− s)dK(s)

¶
+ σ2(t, xt). (3.41)

From here and (3.39), (3.40) it follows that

LV1 ≤ −2ax2(t) +
Z ∞

0
(x2(t) + x2(t− s))|dK(s)|+R

Z ∞

0
x2(t− s)dR(s)

= (−2a+ k0)x2(t) +
Z ∞

0
x2(t− s)|dK(s)|+R

Z ∞

0
x2(t− s)dR(s).

Putting

V2 =

Z ∞

0

Z t

t−s
x2(θ)dθ|dK(s)|+R

Z ∞

0

Z t

t−s
x2(θ)dθdR(s),

for the functional V = V1 + V2 we obtain

LV ≤ (−2a+ 2k0 +R2)x2(t).
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So, if

a > k0 + p, p =
1

2
R2, (3.42)

then the trivial solution of equation (3.38) is asymptotically mean square stable.

Example 3.1. Put

dK(s) = f(s)ds, f(s) =


b(h− s), s ∈ [0, h],

0, s > h.
(3.43)

In this case condition (3.42) takes the form

a > |b|h
2

2
+ p. (3.44)

On Fig.3.19 stability regions, given by condition (3.39), are shown for h = 0.9 and following values of
the parameter p: 1) p = 0, 2) p = 0.5, 3) p = 1, 4) p = 1.5, 5) p = 2.

3.4.2 The second way of Lyapunov functional construction.

Put

k =

Z ∞

0
dK(s), k1 =

Z ∞

0
s|dK(s)| (3.45)

and represent equation (3.38) in the form

ż(xt) = −(a− k)x(t) + σ(t, xt)ξ̇(t),

z(xt) = x(t) +

Z ∞

0

Z t

t−s
x(θ)dθdK(s).

Note that Z ∞

0

Z t

t−s
x(θ)dθdK(s) =

Z ∞

0

Z s

0
x(t− θ)dθdK(s) =

Z ∞

0
x(t− θ)

Z ∞

θ
dK(s)dθ

and ¯̄̄̄Z ∞

0

Z ∞

θ
dK(s)dθ

¯̄̄̄
≤
Z ∞

0

Z ∞

θ
|dK(s)|dθ =

Z ∞

0

Z s

0
dθ|dK(s)| = k1.

Therefore, following (1.2) and using the auxiliary equation (2.2) in the form ẏ(t) = −(a− k)y(t), we
will suppose that

k < a, k1 < 1. (3.46)

Put V = V1 + V2, where V1 = z2(xt). Calculating LV1 and using (3.45), (3.46), we have

LV1 = −2z(xt)(a− k)x(t) + σ2(t, xt)

≤ (a− k)
·
−2x2(t) +

Z ∞

0

Z t

t−s
(x2(t) + x2(θ))dθ|dK(s)|

¸
+R

Z ∞

0
x2(t− s)dR(s)

= −(a− k)(2− k1)x2(t)+

+ (a− k)
Z ∞

0

Z t

t−s
x2(θ)dθ|dK(s)|+R

Z ∞

0
x2(t− s)dR(s).

Putting

V2 = (a− k)
Z ∞

0

Z t

t−s
(θ − t+ s)x2(θ)dθ|dK(s)|+

+R

Z ∞

0

Z t

t−s
x2(θ)dθdR(s),
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for the functional V = V1 + V2 we obtain

LV ≤ [−2(a− k)(1− k1) +R2]x2(t).
So, if

a > k + p(1− k1)−1, k1 < 1, p =
1

2
R2. (3.47)

then the trivial solution of equation (3.38) is asymptotically mean square stable.

Example 3.2. In the case (3.43) condition (3.47) takes the form

a > b
h2

2
+ p

µ
1− |b|h

3

6

¶−1
, |b|h

3

6
< 1. (3.48)

On Fig.3.20 stability regions, given by condition (3.48) are shown for h = 0.9 and following values of
the parameter p: 1) p = 0, 2) p = 0.1, 3) p = 0.5, 4) p = 1, 5) p = 1.5, 6) p = 2.

3.4.3 The third way of Lyapunov functional construction.

Let us show that in some particular cases using a special way of LV1 estimation we can get new
stability conditions.

Consider equation (3.38), (3.43) and suppose that b ≤ 0. Choosing V1 in the form V1 = x
2 similar

to (3.41) we obtain

LV1 = 2x(t)

µ
−ax(t) + b

Z h

0
(h− s)x(t− s)ds

¶
+ σ2(t, xt)

≤ −2ax2(t) + 2bx(t)
Z h

0
(h− s)x(t− s)ds+R

Z ∞

0
x2(t− s)dR(s). (3.49)

Choosing V2 in the form

V2 = |b|
Z h

0

µZ t

t−s
x(θ)dθ

¶2
ds+R

Z ∞

0

Z t

t−s
x2(θ)dθdR(s),

we have

LV2 = 2|b|
Z h

0

Z t

t−s
x(θ)dθ(x(t)− x(t− s))ds+

+R2x2(t)−R
Z ∞

0
x2(t− s)dR(s). (3.50)

Note that

2|b|
Z h

0

Z t

t−s
x(θ)dθ(x(t)− x(t− s))ds

= 2|b|
Z h

0

Z s

0
x(t− θ)dθ(x(t)− x(t− s))ds

= 2|b|x(t)
Z h

0

Z s

0
x(t− θ)dθds− 2|b|

Z h

0
x(t− s)

Z s

0
x(t− θ)dθds (3.51)

and

2|b|x(t)
Z h

0

Z s

0
x(t− θ)dθds = 2|b|x(t)

Z h

0

Z h

θ
dsx(t− θ)dθ

= −2bx(t)
Z h

0
(h− s)x(t− s)ds. (3.52)



64 SACTA, Vol.6, No.1, 2004

So, from (3.49)-(3.52) for the functional V = V1 + V2 it follows

LV ≤ (−2a+R2)x2(t)− 2|b|
Z h

0
x(t− s)

Z s

0
x(t− θ)dθds. (3.53)

Changing the order of integration, we have

Z h

0
x(t− s)

Z s

0
x(t− θ)dθds =

Z h

0
x(t− θ)

Z h

θ
x(t− s)dsdθ

=

Z h

0
x(t− s)

Z h

s
x(t− θ)dθds.

Therefore,

2|b|
Z h

0
x(t− s)

Z s

0
x(t− θ)dθds = |b|

Z h

0
x(t− s)

Z s

0
x(t− θ)dθds+

+|b|
Z h

0
x(t− s)

Z h

s
x(t− θ)dθds = |b|

µZ h

0
x(t− s)ds

¶2
≥ 0.

From here and (3.53) it follows

LV ≤ −2(a− p)x2(t), p =
1

2
R2.

So, if

a > p, b ≤ 0, (3.54)

then the trivial solution of equation (3.38), (3.43) is asymptotically mean square stable.
Using (3.44), (3.48), (3.54), we can get sufficient condition of asymptotic mean square stability of

the trivial solution of equation (3.38), (3.43) in the following form. If ph < 3 then

a >


bh

2

2 + p, b ≥ 0,

bh
2

2 + p(1 + b
h3

6 )
−1,−2(3− ph)h−3 ≤ b < 0,

p, b < −2(3− ph)h−3.

(3.55)

If ph ≥ 3 then

a >

 bh
2

2 + p, b ≥ 0,

p, b < 0.

(3.56)

On Fig.3.21 stability regions are shown, given by conditions (3.55), (3.56) for h = 0.9 and following
values of the parameter p: 1) p = 0, 2) p = 0.1, 3) p = 0.3, 4) p = 0.7, 5) p = 1.2, 6) p = 2, 7) p = 2.5,
8) ph = 3.
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Figure 3.1

Figure 3.2

Figure 3.3
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figure 3.4

figure 3.5

Figure 3.6
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Figure 3.7

Figure 3.8
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Figure 3.9

Figure 3.10
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Figure 3.11

Figure 3.12
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Figure 3.13

Figure 3.14
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Figure 3.15

Figure 3.16
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Figure 3.17

Figure 3.18
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Figure 3.19

Figure 3.20
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Figure 3.21
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