Neurol, Parallel & Scwnnfic Computatiens 100 2002 ) 199-208

NUMERICAL SIMULATION AND STABILITY OF
STOCHASTIC SYSTEMS WITH MARKOVIAN SWITCHING

Leonid SHAIKHET

Department of Mathematics, Informatics and Computing,
Donetsk State Academy of Mannagement,
Chelyuskintsev 163-a, Donetsk 83015, Ukraine

ABSTRACT: A numerical procedure for investigation of stability of stochastic systems
with Markovian switching is proposed. The procedure can te used in the cases when
analitical conditions of stability are absent. Some examples of the proposed procedure
using are considered. Results of ealculations are presented by a quantity of figures.
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Introduction

Investigation of systems with Markovian switching (or in more general sense: systems
with stochastic structure) was begun more than forty years age in the work [1] which was
very conceptually rich one and the last time it received a great deal of attention again [2-
8]. Taking into account that it is enough difficult in each case lo get analitical conditions
of stability it is very interesting to have numerical methods of stability investigation.
One of such methods is considered here.

1. Linear equation of first order

Consider the scalar differential equation with delay

£(t) = n(e)=(t) + ba(t - h),

z(s) = @(s), s [—h,0] (1.1)
Here 7(t) is a Markov chain with two states {a;,az}, an initial distribution
P=P{n(0)=a}, i=12, (1.2)
and probabilities of transition F;;(A), which have the form
Pij(D) = P{n(t +-‘3'.|' = a; fﬂif? = {,H} = Aijbs +o(B), (13)
$,i=12 i#ij
It is supposed also that
az <0, ay > laz| > b >0, Az > A > 0. (1.4)
Statement 1.1. Let bh < 1 and there erist positive numbers py, pz, such that
2(a; +b)pi + Aij(pj — i) + hlpi + B) < 0, (1.5)
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where y
fi = bl{ai + B)pi + Aij(py — pi)l, B = maxify, @),

ﬁi=ﬁbz)'ij|Pj—Pi|'+Pi- L,1=12, FF

Then the trivial solution of equation (1.1) is asymptotically mean square stable.
Statement 1.1 (in more general ease) iz proven in [8].
Let us transform condition (1.5) to more visual form. From (1.4) it follows that for
P1 = p2 and 1 = 1 condition (1.5) is impossible. So, put p; > ps. Then from (1.6) it
follows

(1.6)

m < b{{ay + b)ps + Awa(py — p2)),
P2 < bllaz + bjps + A21(pr = pa)),

! 1.7
B < By =blay +b)py + Az(1 + bh)(py = pa)), {1.7)
B2 < By = b{laz + blps + Aoy (1+ bh) (py - P2)).
Using (1.4) we obtain Jaz + b| = —a; - b= laz] = b < ay + b. Since, besides, p; > p; and
A1z > Az then B, > B,. Thus, condition (1.5) follows from '
2(ai + b)p + Aij(ps — pi) + hip + By) < 0. (1.8)
In addition, using (1.7) we obtain that (1.8) follows from
2(ay + b)p1 + Ma(pz — pi)+
+hb[2(ay + b)py + A2 (2 + bh)(p1 = p2)] < 0,
2az + b)p2 + Ana(p1 — pa)+
+hb[(laz| — b)pa + (a1 + B)p, + (Aaz(1 +Bh) + Xgy)(py — pz)] < 0.
Putting v = E.t € (0,1) we can rewrite these inequalities in th* form
2ay +8) + Ma(y — 1)+
+hb[2(ay + b) + A12(2 + bh)(1 = )] < 0, (L9
2(az + By + Az (1 - )+ o
+hb[(lazl = B)y + as + b+ (As2(1 + bh) + Az )(1 = 4)] < 0,
Suppose now that
bh < /2 -1. (1.10)
Then from (1.9) we obtain
A+ (ag + b)bh 2(ay + b)(1 + bA)
— 1.
A+ (2= th)(Jaa] =) <7 <1 B ' ()
where
A=Az + A2bh)(1 4+ 0h), B = Az(1 = 261 — B K7). (1.12)

Note that from (1.10) it follows that B > 0. At last using (1.¢) and. (1.11) we obtain

B(2 - bh)(laz| - b) B
Bbh + 2(1+ bh)[A + (2 — bh)(jag] = )]

laz] < ay < b (1.13)

Thus, by condition (1.10) if conditions (1.13) hold then there exists ¥ € (0,1) such that
conditions (1.11) hold too and therefore the conditions of Statement 1.1 hold. It means
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that by condition (1.10) conditions (1.13), (1.12) are sufficient conditions of asymptotic
mean square stability of the trivial solution of equation (1.1).

On Fig.1.1 the stability regions, given by conditions (1.13), (1.12), are shown for
Mz = 28, A;; = 0.05, b = 1 and different values of parameter h: 1) h=0.01,2) h = 0.02,
3) h=0.03,4) h=10.04.

On Fig.1.2 the stability region is shown, given by conditiors (1.13), (1.12), for Az =
15, Az = 1, b = 0.2, h = 0.2. Putting A;z = 5 and using the same values of other
parameters, we obtain the stability region, which is shown on Fig.1.3. We can see that
in the case Ay2 = 15 (Fig.1.2) the point

(a1,az) = (1,-0.5) (1.14)

helongs to the stability region and therefore in this point the trivial solution of equation
(1.1) is asymptotically mean square stable. From the other hand in the case A2 = 5
(Fig.1.3) the paint (1.14) does not belong to the stability regioa. Since conditions (1.13),
(1.12) are sufficient conditions only then for Az = 5§ in the point (1.14) the trivial solution
of equation (1.1) can he either stable or unstable.

Let us investigate a stability of the trivial solution of equation (1.1} in point (1.14)
using the following numerical method. Consider difference an:logue of equation (1.1} in
the form

Tit1 = (1 + pidd)zi + bziomdd,
where z; = z(t;), si = nlts), i = 1A, h=mA, A> D
Simulation of the Markov chain #;, i = 0,1, .., can be reduced to a more simple prob-

lem: simulation of a sequence of independent random variables (;, which are uniformly
distributed on [0,1]. Really, using (1.2) we have

P],:P{f}n:ﬂl}:P{cu{Pi}.l Pg:P{ﬂﬂ=u2}=P{I:ﬂ}P1}- {115]

So, if as a result of simulation (p we obtain {p < P; then we put 7o = a3, if we obtain
Cg = Py then we put mg = az.
Further, if 7y_3 = a1, i > 0, then from (1.3) for small enough A > 0 we have

Pl = azfni-1 = a1} = P{§ < A2} = A2,
P{m=ai/nici = a1} = P{{ > A2A} =1 = A

Therefore, we obtain the following algorithm: if as a result of simulation {; we have
Ci > A2 then we put 1; = a; else we put 1 = az. Analogously, if ni_y = a3, 1 > 0,
then from (1.3) for small enough A > 0 we have

P{ni = a1/mi—1 = a2} = P{{; < And} = And,
Plni = az/ni-1= a2} = P{{ > AnlA} =1-And.

Therefore, if as a result of simulation {; we have {; < Az A then we put 7; = a; else we
put n; = as.

On Fig.1.4 one of the possible trajectories of the Markov chain #(t) and one of the
corresponding trajectories of the solution of equation (1.1) are shown for the following
values of parameters: a; = 1, az = =0.5, b = 0.2, h = 0.2, =(s) = 3.5 for s £ 0,
Py = P; = 0.5, M1z = 15, A3 = 1, & = 0.01. On Fig.1.5 hindred trajectories of the
solution of equation [1.1) are shown for these values of parameters. We can see that all
trajectories converge to zero in the whole accordance with the properties of stabiity.

Putting Ayz = 5 for the same values of the other parameters we obtain (Fig.1.6 and
Fig.1.7) another situation: the trajectories of the solution fill by itself whole admissible
space (between the solutions of equation (1.1) with n(t) = a1 and 5(t) = az) that says
us about instability of the trivial solution of equation (1.1).

(1.16)

(1.17)
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2. Mathematical pendulum

Consider the controllable system
£(t) + n(t)z(t) = uft), (2.1)

where 7(t) is a Markov chain with two states {a;, az}, such that a; > 0 and a; < 0, an
initial distribution (1.2) and probabilities of transition {1.3). It is easy to see that for
u(t) = 0 the trivial solution of equation (2.1) is stable but not asymptotically stable in
the case 5(t) = a; > 0 (mathematical pendulum) and unstable: in the case () = a; < 0
(inverted mathematical pendulum).

The problem is to stabilize the trivial solution of equation '2.1) using control

u(t) = byz(t — hy) + baz(t = ha). (2.2)

The initial condition for system (2.1), (2.2) has the form z(s) = w(s), s € [=h,0],
h = max(hy, ha).

The problem of stabilization of inverted pendulum is considered in [9,10] where the
following statement is proven.

Statement 2.1. Let

ku:bl-l-bg{ﬂz., k]_:b]_.h]_-f*bjhz}u,
4
ka = [by B + [bal2 < _— (2.3)

1+\/1+ (‘—*!,;:‘1)2

Then the trivial solution of system (2.1), (2.2) (with 5(t) = az < 0) is asymptotically
stable,

It is proven also, that for each a; < 0 there exist such numbers by, ba, hq, ho, that
conditions (2.3) hold and therefore the trivial solution of systemn (2.1), (2.2) (with () =
az < 0) is asymptotically stable.

Let us investigate a stability of the trivial solution of system (2.1), (2.2) using a
numerical method and numerical simulation of the Markov chain 7{t) as in the previous
example. In this connection consider difference analogue of system (2.1}, (2.2) in the
form

Tiv1 = (2— Az — 2oy + AP (biTim, + 12Tipm, )
zi=z(h), m=gt), ti=iA, h = myA, hs =mad, A0,

Put a; = 1, a; = -1, by = 1, by = 2.1, hy = 0.8, hy == 0.3, z(s) = 3.5, 3 < 0,
A = 0.01. If 5{t) = a, then the solution of system (2.1), (2.2) goes to +oo. The
trajectories of n(f) and z(t) in this case are shown on Fig.2.1. If 7(t) = a2 then conditions
(2-3) hold and the solution of system (2.1}, (2.2) converges to zero (Fig.2.2).

Put P, = P, = 0.5, A; = 15, A2 = 1. One of the possible srajectories of the Markov
chain n(t) and one of the corresponding trajectories of the sol1tion z(t) of system (2.1),
(2.2) are shown on Fig.2.3. Hundred trajectories of the solution at the same time are
shown on Fig.2.4. We can see that in this case the trivial solution of system (2.1), (2.2)
is unstable,

If Az; = 1, Azz = 15 then the trivial solution of system (2.1), (2.2) is asymptotically
stable. One of the possible trajectories of the Markov chain 1(t) and one of the cor-
responding trajectories of the solution z(t) of system (2.1), (.2) are shown on Fig.2.5.
Hundred trajectories of the solution at the same time are shown on Fig.2.6.
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3. System with stochastic delay

Consider the differential equation

(t) + ba(t = (1)) =0,

2(s) = pls), s € [~h,0) 1)

with random delay. Here b > 0, 5(t) is a Markov chain with two states {a;,a:}, such
that 0 < a; < a; = h, an initial distribution (1.2) and probabilities of transition (1.3).

It is well known [11], that if 5(t) = h = const then the inequality bh < I is the
necessary and sufficient condition of asymptotic stability of the trivial solution of equation
(3.1).

Let us investigate a stability of the trivial solution of differential equation (3.1) using
the numerical method and the numerical simulation of the Markov chain n(t) as in the
previous examples. Consider the difference analogue of equation (3.1) in the form

Ljpl = Iy = ﬂ-bti—q“
zi = z(t), m=qnlt), =i, A0

Put b =1, a, =1, a: = 2, z(s) = const, s < 0, A = 0.001. On Fig.3.1 several
solutions of differential equation (3.1) are shown for n(t) = a, = 1 and different values
of initial function. We can see that all solutions converge to zero. On Fig.3.2 it is shown
that in the case n(t) = 7 all solutions are bounded only but do not converge to zero. In
the case nj(t) = az = 2 all solutions go to %o as it is shown o2 Fig.3.3.

On Fig.3.4 one of the possible trajectories of the Markov chain n(t) and one of the
corresponding trajectories of the solution of equation (3.1) zre shown for P, = P =
0.5, Ay2 = 1, A3y = 3 and the same as before values of other parameters. On Fig.3.5
hundred trajectories of the solution of equation (3.1) are shown for the same values of
the parameters. We can see that all trajectories converge to zero. If Az = 1, Agy = 6,
then hundred trajectories of the solution of equation (3.1) converge to zero more quickly
(Fig.3.6). Using previous investigations we can conclude that in both these cases the
trivial solution of equation (3.1) is asymptotically mean square stable,

On Fig.3.7 one of the possible trajectories of the Markov chain n(t) and one of the
corresponding trajectories of the solution of equation (3.1) are shown for Py = P» = (.5,
Az = 3, Ay = 1. On Fig.3.8 hundred trajectories of the solution of equation (3.1) are
shown for these values of Ay» and As;. We can see that in tais case all trajectories of
solution go to 4oc and therefore we can conclude that the trivial solution of equation
(3.1) is unstable,

4. Some generalization

Let us show that the proposed numerical simulation (1.15)-(1.17) of a Markov chain with
two states can be generalized for 2 Markov chain n(t) with n states {ay, ...,a,}, an initial
distribution F; = P{5(0) = a;}, i = 1, ....nn, and probabilities of transition

FPii(A) = P{n(t+ A) = a;/n(t) = a;} = Aij&s + 0(A),
4i=1,0an, iZj.
Really, put nx = n(te), tx = kA, A > 0. Reduce a simulation of a Markov chain m,

k=10,1,.., to a simulation of a sequence of independent random variables (., which are
uniformly distributed on [0,1]. Note that

.F'|'=P{w=u|'}‘=P{5|'—1{{ﬂ':si}1 1= 1:-"1“':-
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where

So=0,: Si=)Y P i=lLaan-L M=l
=1
It is easy to see that for each result of simulation {p there exists a number i such that
Sie1 < 0p < 5;. S0, we put mp = a;.
Further, put ;o = 0,

i
Qij = EAII'&1 1 ‘_,: j <,

=1
i—1 ]
Qi =) X+ Y MA, i<j<n.
=1 I=i41

Then

Pl =aj/ma1=a} =P{Qijc1 <G < Qij} =dija for j<ior j>i41],
Pl =aj/mo1=a;} =P{Qiic1 < < Qi) = AjA for j=i+1,
P{m =aifm_1=ai} = P{Qin < G} =1 — Qin-

Thus, we obtain the following algorithm. Let ooy = ai, & > 0. If as a result of
simulation 4 there exists a number j < n such that j # { and

Qiji-1 < < Qi for j<ior 72141,
Qii-1 <G <Qiipy for j=i+1

then we put me = a;. If such number j does not exist, ie. & > Qin for i < n or
Cr = Qu.u—1 for i = n, then we put 5. = q;.

REFERENCES

1. Kac, L.Yn. and Krasovskii, N.N., Adbout stability of systems with stochostic porameters, Prikladunaya
matematikn i mekhaniks 24, N.5 (1960), pp. 809-823 (in Russian).

2. Kac, L.Yn,, Method of Lyapunoe functions in problems of stability ond stebilization of systemas of
stochastic siructure, Ekaterinburg, 1538 (in Russian).

3. 05, Y. and Chizeck, H.J., Controllability, stabihzability and continusts-timne Markovian Jump hnear
quadratic control, IEEE Trans, Automat. Control 35 (1990}, pp. T77-TBB.

4. Maniton, M., Jump Linear Sysiems in Automatic Conirol, Marcel Dekker, 1580,

5. Shaikhet L., Stabudity of Stochastic Hereditory Systems with Markov Sumtching, Theory of stochastic
processes 2(18), MN.3-4 (1996), pp. 180-184,

6. Mao, X., Stability of stockastic differential equations with Markovian switching, Stochastic Processes
and their Applications 79 (1999), pp. 45-67.

7. Moo, X., Matasov, A. snd Piunovskiv, A.B., Stochastic differential d=lay cquations with Maorkowian
suritching, Bernoulli 8(1) (2000), pp. T3-80.

8. Mao X, and Shaikhet L., Delay-Dependent Stability Criteria for Stochastic Differential Delay Equa-
tions wnth Merkowian Switching, Stability and Control: Theory and Application 3, N.2 (2000),
pp.BE-101.

9. Borne P, Kolmanovski ¥. and Shaikhet L., Stabilization of inverfed pendulum by control with delay,
Dynamic Systems and Applications 9, N.4 (2000), pp. 501-515.

10. Borne P., Kolmanovskii V. and Sheikhet L., Steady-state solutions of nonlinear model of tnverfed
pendulum, Proceedings of The Third Ukrainian-Scandinavian CGonferrmee in Probability Theory and
Mathemnticnl Stotistics, June 8-12, 1999, Kyiv, Ukrnine. Theory cf Stochastic Processes 5(21),
M.3-4 (1959), pp. 203-209,

11. Kolmanovskii V.B. and Myshkis A.D., Introduction to the Theory and Applicetions of Functional
Differential Egquations, Kluwer Academic Publishers, Dordrecht, 1993,



