which gives the possibility of expressing the term in the asymptotics (1) of the function
Eg(kyy).
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ASYMPTOTIC STABILITY OF LINEAR STOCHASTIC DIFFERENTIAL
EQUATIONS OF NEUTRAL TYPE

L. E. Shaikhet

We consider a scalar linear stochastic differential equation of neutral type

#(t)+ax(t)+ba (t—h)+ei (t—h) +oz(t—1)w () =0 (1)

with initial condition x(s} = ¢,(s), s < 0. Here w(t) is a standard Wiener process, a, b,
¢ are arbitrary constants, [c| < 1, ¥, € Hy, Hy is the set of random functions @,(s), s €
{=hg, 0], hy = max[h, 1], right continuous and having left limits, with the norm | g,l|*=
sup M| g ()| *-

With the aid of the method of Lyapunov functionals one has obtained the domains of
variation of the coefficients a and b of Eq. (1) (for various ¢ and ¢) for which the triv-
ial solution of this equation is mean square asymptotically stable.

We mention that for ¢ = 0 or ¢ = 0 Eq. (1) has been for long the classical example for
the illustration of domains of stability of this kind (see, for example, [1-4]). The stabil-
ity conditions obtained here form a natural generalization of the known results on stochastic
differential equations of neutral type.

We consider the functional
VL, z) = (2(t) +ex (t—h) ) v (2 (t) +ex (t—h) —
' . ot . .
—m&mxmﬂ)+VMM+MwHﬁTk—”IMM+ (2)
1 I
4+ Aos 2 (s)ds + (v + 1) o s % (5) ds,
i—h T

.
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where A, = |ca + b + ve(a+ b)| + 2|bc|p(be), v 2 0, p{s) = 0 for s 2 0 and p(s) = 1 for
s < 0, % iz the trajectory of the process x(s) for = < t.

From [3] it follows that for the mean square asymptotic stability of the trivial solu-
tion of Eq. (1) it is sufficient that for some k > 0 and any 0 < t;, < t, the functional (2)
should satisfy the condition

MV [ty z0)=— MV {1y, :.,']ag_k S:It Mz (s) ds. {3)

We obtain conditions on the parameters of Eq. (1), under which the functional (2) satis-
fies the inequality (3) and which, consequently, are sufficient for the mean square asymp-
totic stability of the trivial solution of Eq. (1).

Making use of Ito's stochastic differentiation [5], we obtain that

av it, =) =[:*m{-zam2u¢a+ﬁ}+{{:+uo= £ Ayt vh|b{a +B)|)—

—2z(t)z{t — k) (ca + b + ve(a 4 BY) + =2t — R} (— 2be— Ag) +
! H
v+t z@zds—v(bE+)|| Eds]d+
=N t—h E

+ 2ozt —1) [f\r + D= lt) + cx (t —h))— vbs:_h x{s) :ls} die {£).
From here for p = 02f2 it follows that
C MV, o) — MV ([, 1) =
<2{ et —a—via+ b + (v + Do+ ¥k bla +B)|
+|ca + b+ vela + b)| + | be| p(be)) — Mz (s — &) (be + | be | p (be))] ds-

Since be + |be|p(be) 2 0, for the mean square asymptotic stability it is sufficient
that for some v 2 0 we have the inequality

a+v(a+b)>(v+1) p+vh|ba+b)|+|catb+ve{atd)|+]belplbe),

which can be rewritten in the form

a+b>p+ .
. vh|bla+b)|+|ca+b4velat-b)| +|be|plbe) -+ (4)
4= inf z
vl \'—i-"l.
Since icq + b+ vela+b)| < |b|(L =c) +(v+ 1)|e{a+ b}|, strengthening somewhat the
inequality (4), we obtain
g Fb>p-|ela4-B)|+
vk |b(a+ )| < |+ belptbe) + b+ [b](1 —0) (5)
-+ inf C
g v+ 1

It is easy to see that the right-hand side of the inequality (5) is nonnegative. Con-
sequently, e+ b > 0 and the inequality {5) can be rewritten in the form

e b —]e|)>p+ _
: vh|b|(a + b) 4 |be|ptbe) + b+ |b|{1 —c) (6)
+ inf "
\,-;;.u ?+1
We investigate the inequality (6). Assume first that bc : 0. Then p{bc) = 0 and in-
equality (6) assumes the form

vh|b|(a +8)+ b+ [B](1—e) (7)
v+ 1 ’

fe+&(l—|cl}>=p+ inf
vau

let b s 0, ¢ s 0. From (7) it follows that
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(a + &) (1 +c1:;p+ig£ﬂ§l{jﬂrbl+

If h{a+ b) < |c|, then the infimum is attained for v = = and the stability condition
is described by the inequality (a+ b)(1 + ¢ + bh) > p. If h{a+ b) > |.:F1 then the infimum
is attained for v = 0, Thena(l + ¢) > p = b.

et b 2 0, c z 0. From (7) it follows that

) L, wifa+B+2—¢
fa - ) (1 ~—r=J";>P+:g£ — b.

As before, we obtain ( @+ b){1 — ¢ = bh) > p for h(a+ b) ¢ 2 — ¢ and a(l =c) > p + b
for h{a+ b} > 2 - ¢. '

Assume now that be < 0. Then p{bc) = 1 and inequality (6) assumes the form

L v b|le b4 (b [B]I{l—x)
fe=&{1l—|cl)=p+ :g:vl la = ! . (a)

In the case b < 0, ¢ > 0 from (8) we obtain (a+ b){l — ¢} > p. Let b >0, ¢ < 0.
From (8) it follows that

; hfe 0+ 201 —
M+Mﬂ+q}p+$ﬂ{¢:E}{ ..

Consaquently, (a+ b)}(1 + ¢ — bh) > p for h{a+ b} £ 2(1 = ¢) and a(l + ¢) > p + b(1 -
3c) for h(a+ b) > 2(1 - e).

Thus, sufficient conditions of the mean square asymptotic stahility of the trivial solu-
tion of Eq. (1) are determined by the following inequalities:
1) O0=c=<1;
a) b=0, a=pf{i—c)—b,
b 0<b<({1=c)/h—p/(2~c). a>p/{i—c—bh)—b:
c} b {1—c)fh—p/(2—c),  a>(p+b)/(1—c);

2) O=g>—14, I
a) 054>~ [1+E}HI—P,I'¢. ﬂ:"ﬂﬂl l:'.'l+£+bh} —b:
b) b<~—(1+c)/h—ple, a>(p—b)/(1+c);

O<b<(i+e)th—p/2f{1—c), a=p/{1+c—bh)—b;
;'; b?[i-ﬁiﬂ}fﬂ"pfﬂf[‘l—c}, az(p+b{1-3c))/(1+e).
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