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Abstract

Many processes in automatic regulation, physics, mechanics, biology, economy, ecology etc. can be modelled by hereditary

equations (see, e.g. [1±6]). One of the main problems for the theory of stochastic hereditary equations and their applications is

connected with stability. Many stability results were obtained by the construction of appropriate Lyapunov functionals. In [7±

11], the procedure is proposed, allowing, in some sense, to formalize the algorithm of the corresponding Lyapunov functionals

construction for stochastic functional differential equations, for stochastic difference equations. In this paper, stability

conditions are obtained by using this procedure for the mathematical model of the spread of infections diseases with delays

influenced by stochastic perturbations. # 1998 IMACS/Elsevier Science B.V.
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1. Problem statement

Consider the mathematical model of the spread of infections diseases. Let S(t) be the number of
members of a population susceptible to the disease, I(t) be the number of infective members and R(t) be
the number of members who have been removed from the possibility of infection through full
immunity. Then the epidemic model can be described by the system [4,13]

_S�t� � ÿ�S�t�
Zh
0

f �s�I�t ÿ s� dsÿ �1S�t� � b
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_I�t� � �S�t�
Zh
0

f �s�I�t ÿ s� dsÿ ��2 � ��I�t� (1)

_R�t� � �I�t� ÿ �3R�t�
It is assumed that �, b, �, �1, �2, �3 are positive constants, �1�min(�1, �2, �3), f(s) is nonnegative
function, such that

Zh
0

f �s� ds � 1;

Zh
0

sf �s� ds <1

It is easy to see that positive point of equilibrium for system (1) is given by E��(S*, I*, R*), where

S� � �2 � �
�

; I� � bÿ �1S�

�S�
; R� � �I�

�3

(2)

provided that

S� � �2 � �
�

<
b

�1

(3)

Remark that models of type (1) were considered in numerous papers [4,12,13]. A particular case of this
model with fixed delay was proposed first in [12]. The stability properties of the system (1) by
�1��2��3�b�� were considered in [13].

Here we assume that stochastic perturbations are of white noise type, which are directly proportional
to distances S(t), I(t), R(t) from values of S*, I*, R*, influence on the _S�t�; _I�t�; _R�t�, respectively. By this
way, the system (1) will be reduced to the form

_S�t� � ÿ�S�t�
Zh
0

f �s�I�t ÿ s� dsÿ �1S�t� � b� �1�S�t� ÿ S�� _w1�t�

_I�t� � �S�t�
Zh
0

f �s�I�t ÿ s� dsÿ ��2 � ��I�t� � �2�I�t� ÿ I�� _w2�t� (4)

_R�t� � �I�t� ÿ �3R�t� � �3�R�t� ÿ R�� _w3�t�
Here �1, �2, �3 are constants, w1(t), w2(t), w3(t) are independent from each other standard Wiener
processes [14].

Let us centre the system (4) on the positive equilibrium E� by the change of variables u1�SÿS*,
u2�IÿI*, u3�RÿR*. By this way, we obtain

_u1 � ÿ��I� � �1�u1 ÿ �S�
Zh
0

f �s�u2�t ÿ s� dsÿ �u1

Zh
0

f �s�u2�t ÿ s� ds� �1u1 _w1
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_u2 � �I�u1 ÿ �S�u2 � �S�
Zh
0

f �s�u2�t ÿ s� ds� �u1

Zh
0

f �s�u2�t ÿ s� ds� �2u2 _w2; (5)

_u3 � �u2 ÿ �3u3 � �3u3 _w3

It is easy to see that the stability of the system (4) equilibrium is equivalent to the stability of zero
solution of Eq. (5).

Below we will obtain the sufficient conditions for stability in a probability sense of zero solution of
system (5). Along with the system (5) we will consider the linear part of the system (5)

_z1 � ÿ��I� � �1�z1 ÿ �S�
Zh
0

f �s�z2�t ÿ s� ds� �1z1 _w1

_z2 � �I�z1 ÿ �S�z2 � �S�
Zh
0

f �s�z2�t ÿ s� ds� �2z2 _w2 (6)

_z3 � �z2 ÿ �3z3 � �3z3 _w3

and the auxiliary system without delays

_y1 � ÿ��I� � �1�y1 � �1y1 _w1

_y2 � �I�y1 ÿ �S�y2 � �2y2 _w2 (7)

_y3 � �y2 ÿ �3y3 � �3y3 _w3

2. Definitions, auxiliary statements

Consider the stochastic differential equation [14]

dx�t� � a�t; xt�dt � b�t; xt�dw�t�; x0 � ' 2 H: (8)

Let {
, �, P} be the probability space, {ft, t�0} be the family of �-algebras, ft2�, H be the space of f0-
adapted functions '(s)2Rn, s�0, k'k0 � sups�0j'�s�j; k'k2

1 � sups�0Mj'�s�j2, M is the mathematical
expectation, xt�x(t�s), s�0, w(t) is m-dimensional ft-adapted Wiener process, n-dimensional vector
a(t, ') and n�m-dimensional matrix b(t, ') are defined by t�0, '2H, a(t, 0)�0, b(t, 0)�0.

Generating operator L of Eq. (8) is defined [14] by formula

LV�t; '� � lim�!0

Mt;'V�t ��; yt��� ÿ V�t; '�
�

Here a scalar functional V(t, ') is defined by t�0, '2H and x(s) is the solution of Eq. (8) by s�t with
initial function xt�'2H.

Let us describe one class of functionals V(t, ') for which the operator L can be calculated in final
form. We reduce the arbitrary functional V(t, '), t�0, '2H, to the form V(t, ')�V(t, '(0), '(s)), s<0

E. Beretta et al. / Mathematics and Computers in Simulation 45 (1998) 269±277 271



and define the function

V'�t; x� � V�t; '� � V�t; xt� � V�t; x; x�t � s��; s < 0; ' � xt; x � '�0� � x�t�
Let D be the class of functionals V(t, ') for which function V'(t, x) has two continuous derivations

with respect to x and one bounded derivative with respect to t for almost all t�0. For functionals from D
the generating operator L of Eq. (8) is defined and is equal to

LV�t; xt� � @V'�t; x�
@t

� a0�t; xt� @V'�t; x�
@x

� 1

2
Tr b0�t; xt� @

2V'�t; x�
@x2

b�t; xt�
� �

Definition 1 The zero solution of Eq. (8) is called mean square stable if for any �>0 there exists a �>0
such that Mjx�t�j2 < � for any t�0 provided that k'k2

1 < �.

Definition 2 The zero solution of Eq. (8) is called asymptotically mean square stable if it is mean
square stable and limt!1Mjx�t�j2 � 0.

Definition 3 The zero solution of Eq. (8) is called stable in probability if for any �1>0 and �2>0 there
exists �>0 such that solution x(t)�x(t, ') of Eq. (8) satisfies

Pfjx�t; '�j > �1g < �2

for any initial function '2H such that Pfj'j � �g � 1. Here P{�} is the probability of the event
enclosed in braces.

Theorem 4 Let there exists the functional V(t, ')2D such that

c1Mjx�t�j2 �MV�t; xt� � c2kxtk2
1; MLV�t; xt� � ÿc3Mjx�t�j2

ci>0. Then the zero solution of Eq. (8) is asymptotically mean square stable.

Theorem 5 Let there exists the functional V(t, ')2D such that

c1jx�t�j2 � V�t; xt� � c2kxtk2
0; LV�t; xt� � 0

ci>0, for any function '2H such that Pfj'j � �g � 1, where �>0 is sufficiently small. Then the zero

solution of Eq. (8) is stable in probability.

The proofs of these theorems can be found in [1,2].
By this way, the construction of stability conditions is reduced to construction of Lyapunov

functionals. Below we will use the general method of Lyapunov functionals construction [7±11]
allowing to obtain stability conditions immediately in terms of parameters of system under
consideration.

3. Formal description of the Lyapunov functional: construction procedure

Let us consider the stochastic differential equation of neutral type

d�x�t� ÿ G�t; xt�� � a1�t; xt�dt � a2�t; xt�d��t�; t � 0; x�t� 2 Rn (9)
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Here xt�x(t�s), s�0, �(t)2Rm is a standard Wiener process, G(t,0)�ai(t, 0)�0, i�1, 2, functionals ai

are assumed satisfying usual conditions sufficient for the existence of the solution of Eq. (9) with initial
conditions x0�'(s), where '2Rn is a given function.

The problem is to construct stability conditions of the trivial solution with respect to the disturbances
of the initial condition. From Theorems 4 and 5, it follows that construction of the stability conditions
can be reduced to the construction of special Lyapunov functionals V(t, xt) satisfying the assumptions of
these theorems.

The proposed procedure of Lyapunov functionals construction consists of four steps.

1. Let us transform the Eq. (9) to the form

dz�t; xt� � �b1�t; x�t�� � c1�t; xt��dt � �b2�t; x�t�� � c2�t; xt��d��t� (10)

where z(t, xt) is some functional on xt, z(t, 0)�0, functionals bi, i�1, 2, depend on t and x(t) only and
do not depend on the previous values x(t�s), s<0, of the solution, bi(t, 0)�0.

2. Consider equation without memory

dy�t� � b1�t; y�t��dt � b2�t; y�t��d��t� (11)

Let us assume that the zero solution of Eq. (11) is uniformly asymptotically mean square stable and
therefore there exists Lyapunov function v(t, y), for which the condition L0v�t; y� � ÿjyj2 hold. Here
L0 is generating operator of Eq. (11).

3. We'll construct the Lyapunov functional V(t, xt) in the form V�V1�V2. Let us replace argument y of
the function v(t, y) on the functional z(t, xt) from left-hand part of Eq. (10). As a result we obtain the
main component V1(t, xt)�v(t, z(t, xt)) of the functional V(t, xt).

4. Usually the functional V1 almost satisfies the requirements of stability theorem for Eq. (1). In order
that these conditions would be completely satisfied the auxiliary component V2 can be easily chosen
by standard way.

Remark that the representation (10) is not unique. This fact allows using different representations (10)
to construct different Lyapunov functionals and as a result to get different sufficient stability conditions.

4. Main results

In this section, as a result we will obtain conditions of stability in probability for the zero solution of
nonlinear system (5). Preliminary to this, let us prove some auxiliary statements.

Lemma 6 Let be

�2
1 < 2�1; �2

2 < 2��2 � ��; �2
3 < 2�3 (12)

Then the zero solution of the system (7) is asymptotic mean square stable.

Proof Let us show that the function

v � py2
1 � y2

2 � p2y2
3 � q�y1 � y2�2 (13)
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is Lyapunov function for the system (7) for some q > 0 and p > 0. Let L0 be the generating
operator [14] of the system (7). Then

L0v = −2(py1 + q(y1 + y2))(βI∗ + µ1)y1 + 2β(y2 + q(y1 + y2))(I
∗y1 − S∗y2)

+2p2y3(λy2 − µ3y3) + (p + q)σ2
1y

2
1 + (1 + q)σ2

2y
2
2 + p2σ2

3y
2
3

≤ −2p(βI∗ + µ1)y
2
1 − 2q(y1 + y2)(µ1y1 + βS∗y2) + 2βI∗y1y2 − 2βS∗y2

2

+p2λ(y2
2/p + py2

3)− 2p2µ3y
2
3 + (p + q)σ2

1y
2
1 + (1 + q)σ2

2y
2
2 + p2σ2

3y
2
3

≤ y2
1(p + q)(σ2

1 − 2µ1) + y2
2((1 + q)(σ2

2 − 2βS∗) + pλ)

+p2y2
3(pλ− 2µ3 + σ2

3) + 2y1y2(βI∗ − q(µ1 + βS∗))

Let be

q =
βI∗

µ1 + βS∗
(14)

By this way we obtain

L0v ≤ −y2
1(p + q)(2µ1 − σ2

1)− y2
2((1 + q)(2βS∗ − σ2

2)− pλ)− p2y2
3(2µ3 − σ2

3 − pλ)

Let us choose p such that

p <
1

λ
min

[
(1 + q)(2βS∗ − σ2

2), 2µ3 − σ2
3

]

From Eq.(12) it follows that there exists c > 0 such that L0v ≤ −c|y|2, where y = (y1, y2, y3). It
means (Theorem 4) that the zero solution of the system (7) is asymptotic mean square stable.
Lemma is proved.

Theorem 7 Let be

σ2
1 < 2µ1, σ2

2 <
2q(µ2 + λ)

1 + q
, σ2

3 < 2µ3 (15)

where q is described by Eq.(14). Then the zero solution of the system (6) is asymptotic mean
square stable.

Proof Following of the formal procedure of Lyapunov functionals construction we will construct
Lyapunov functional V for the system (6) in the form V = V1 + V2, where V1 is Lyapunov
function (13) for the auxiliary system (7) without delays:

V1 = pz2
1 + z2

2 + p2z2
3 + q(z1 + z2)

2 (16)



Let L1 be the generating operator [14] of the system (6). Then

L1V1 � ÿ2�pz1 � q�z1 � z2�����I� � �1�z1 � �S�
Zh
0

f �s�z2�t ÿ s� ds�

� 2��z2 � q�z1 � z2���I�z1 ÿ S�z2 � S�
Zh
0

f �s�z2�t ÿ s� ds� � 2p2z3��z2 ÿ �3z3�

� �p� q��2
1z2

1 � �1� q��2
2z2

2 � p2�2
3z2

3 � 2q�1�2z1z2 � z2
1��p� q���2

1 ÿ 2�1� ÿ 2p�I��
� z2

2��1� q���2
2 ÿ 2�S�� � p�� � p2z2

3��2
3 ÿ 2�3 � p��

� 2z1z2��I� � q��1�2 ÿ �1 ÿ �S��� � 2�S��z2 ÿ pz1�
Zh
0

f �s�z2�t ÿ s� ds

Using Eq. (14) we obtain

L1V1 � z2
1q��2

1 ÿ 2�1� � z2
2��1� q���2

2 ÿ 2�S�� � p�� � p2z2
3��2

3 ÿ 2�3 � p��

� p�S��z2
1 �

Zh
0

f �s�z2
2�t ÿ s� ds�� � �S��z2

2 �
Zh
0

f �s�z2
2�t ÿ s� ds��

� z2
1�q��2

1 ÿ 2�1� � p�S�� � z2
2��1� q���2

2 ÿ 2�S�� � p�� �S��

� p2z2
3��2

3 ÿ 2�3 � p�� � �S��1� p�
Zh
0

f �s�z2
2�t ÿ s� ds

Following [7±11] let us choose V2 in the form

V2 � �S��1� p�
Zh
0

f �s�
Zt
tÿs

z2
2��� d� ds (17)

Using Eq. (15), for functional V�V1�V2 we obtain

L1V � ÿz2
1�q�2�1 ÿ �2

1� ÿ p�S��� ÿ z2
2�2q�S� ÿ �1� q��2

2 ÿ p��� �S���
ÿ p2z2

3�2�3 ÿ �2
3 ÿ p�� (18)

From Eq. (15) it follows that there exists p>0 such that

p < min
q�2�1 ÿ �2

1�
�S�

;
2q�S� ÿ �1� q��2

2

�� �S�
;

2�3 ÿ �2
3

�

� �
Therefore, there exists c>0 such that L1V � ÿcjzj2, where z�(z1, z2, z3). It means (Theorem 4) that the
zero solution of the system (6) is asymptotic mean square stable. Theorem is proved.
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Remark 8 It is known [15] that if the initial nonlinear system has a nonlinearity order more than one,
then the conditions providing the asymptotic mean square stability of linear part of the initial system, in
the same time provide the stability in probability of the initial system. Let us show it for the system (5).

Theorem 9 Let the conditions of Theorem 7 hold. Then the zero solution of the system (5) is stable in
probability.

Proof Let L be the generating operator of the system (5). Consider the functional V�V1�V2, where V1

and V2 are defined by Eq. (16) and Eq. (17), i.e.

V � pu2
1 � u2

2 � p2u2
3 � q�u1 � u2�2 � �S��1� p�

Zh
0

f �s�
Zt
tÿs

u2
2��� d� ds

Then analogously to Eq. (18) we obtain

LV � ÿ2�pu1 � q�u1 � u2�� ��I� � �1�u1 � �S�
Zh
0

f �s�u2�t ÿ s� ds� �u1

Zh
0

f �s�u2�t ÿ s� ds

24 35
� 2��u2 � q�u1 � u2�� I�u1 ÿ S�u2 � S�

Zh
0

f �s�u2�t ÿ s� ds� u1

Zh
0

f �s�u2�t ÿ s� ds

24 35
� 2p2u3��u2 ÿ �3u3� � �1� p��S�u2

2 ÿ �1� p��S�
Zh
0

f �s�u2
2�t ÿ s� ds� �p� q��2

1u2
1

� �1� q��2
2u2

2 � p2�2
3u2

3 � 2q�1�2u1u2 � ÿu2
1�q�2�1 ÿ �2

1� ÿ p�S��
ÿ u2

2�2q�S� ÿ �1� q��2
2 ÿ p��� �S��� ÿ p2u2

3�2�3 ÿ �2
3 ÿ p��

� 2�u1�u2 ÿ pu1�
Zh
0

f �s�u2�t ÿ s� ds

Let us suppose that Pfju2�s�j < �g � 1. Then

2�ju1�u2 ÿ pu1�
Zh
0

f �s�u2�t ÿ s� dsj � ���u2
1�1� 2p� � u2

2�

Therefore,

LV � ÿu2
1�q�2�1 ÿ �2

1� ÿ p�S� ÿ ���1� 2p�� ÿ u2
2�2q�S� ÿ �1� q��2

2 ÿ p��� �S�� ÿ ���
ÿ p2u2

3�2�3 ÿ �2
3 ÿ p��

Hence, for sufficiently small �>0 we obtain LV�0. It means (Theorem 5) that the zero solution of the
system (5) is stable in probability. Theorem is proved.
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