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Abstract

We consider the reliability of some numerical methods in preserving the

stability properties of the linear stochastic functional differential equation

ẋ(t) = αx(t) + β

∫

t

0

x(s)ds + σx(t − τ )Ẇ (t),

where α, β, σ, τ ≥ 0 are real constants, and W (t) is a standard Wiener process.

We adopt the shorthand notation of ẋ(t) to represent the differential dx(t) etc.

Our choice of test equation is a stochastic perturbation of the classical

deterministic Brunner & Lambert test equation for σ = 0 and so our investi-

gation may be thought of as an extension of their work.

Sufficient conditions for the asymptotic mean square stability of solutions

to both the differential equation and discrete analogues are derived using

the general method of Lyapunov functionals construction proposed by Kol-

manovskii & Shaikhet which has previously been successfully employed for

deterministic and stochastic differential and difference equations with delay.

The areas of the regions of asymptotic stability for each θ method, in-

dicated by the sufficient conditions for the discrete system, are shown to be

equal and we show that an upper bound can be put on the time-step parameter

for the numerical method fo which the system is asymptotically mean-square

stable.

We illustrate our results by means of numerical experiments and various

stability diagrams. We examine the extent to which the continuous system

can tolerate stochastic perturbations before losing its stability properties and

we illustrate how one may accurately choose a numerical method to preserve

the stability properties of the original problem in the numerical solution. Our

numerical experiments also indicate that the quality of the sufficient conditions

is very high.
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1 Introduction

Volterra integro-differential equations arise in the modelling of hereditary systems

(i.e. systems where the past influences the present) such as population growth,

pollution, financial markets and mechanical systems (see [4], [1] for example). The

long-term behaviour and stability of such systems is an important area for investi-

gation. For example - will a population decline to dangerously low levels? Could

a small change in the environmental conditions have drastic consequences on the

long-term survival of the population? There is a growing body of work devoted to

such investigations (see [19], [6] for example). Analytical solutions to such problems

are generally unavailable and numerical methods are adopted for obtaining approx-

imate solutions. A natural question to ask is “do the numerical solutions preserve

the stability properties of the exact solution?”. We refer the reader to a number

of works where the answers to such questions are investigated: [2], [3], [7], [8], [5],

[21].

Many real-world phenomena are subject to random noise or perturbations (for ex-

ample, freak weather conditions may adversely affect the supports of a bridge,

possibly changing the long-term integrity of the structure). It is a natural exten-

sion of the deterministic work carried out by ourselves and others to consider the

stablility of stochastic systems and of numerical solutions to such systems. We re-

fer the readers to a number of texts which discuss the role of stochastic systems in

mathematical modelling: [9], [1], [20].

In this paper we consider the scalar linear test equation

ẋ(t) = αx(t) + β

∫ t

0

x(s)ds + σx(t − τ)Ẇ (t), (1.1)

x(s) = ϕ(s), s ∈ [−τ, 0],

where α, β, σ, τ ≥ 0 are real constants, and W (t) is a standard Wiener process.

In particular if σ = 0 then this equation reduces to the deterministic linear test

equation of Brunner and Lambert [2].

When considering stability of a system we must decide on a suitable definition for

stability. There are a number of definitions for the stability of stochastic systems.

A common choice of definition amongst numerical analysts investigating stochastic

differential equations is that of mean square stability and asymptotic mean square

stability. We derive asymptotic mean square stability conditions for the linear test

equation (1.1). An analagous approach is used to derive conditions for asymptotic

mean square stability of a linear stochastic difference equation. It is shown that our

choice of numerical methods are special cases of this particular difference equation,

thereby allowing us to produce stability conditions for the numerical solutions to

the original problem. Finally, we present some stability diagrams and numerical

experiments to illustrate our results.
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The main conclusion of our investigation here can be formulated in the following

way: if the trivial solution of the initial functional differential equation is asymp-

totically mean square stable then there exist a way and a step of discretization of

this equation that the trivial solution of the corresponding difference equation is

asymptotically mean square stable too. Moreover, it is possible to find an upper

bound for the step of discretization for which the corresponding discrete analogue

preserves the properties of stability.

The conditions for asymptotic mean square stability are obtained here by virtue of

Kolmanovskii and Shaikhet’s general method of Lyapunov functionals construction

([11] to [17]) which is applicable for both differential and difference equations, both

for deterministic and stochastic systems with delay.

Let us remind ourselves here of some definitions and statements which will be used.

Let {Ω,F ,P} be a basic probability space with a family of σ-algebras ft ⊂ F , t ≥ 0,

H be a space of f0-adapted functions ϕ(s), s ≤ 0, E is the sign of expectation.

Consider a stochastic differential equation with aftereffect

ẋ(t) = a(t, x(t)) + b(t, x(t))Ẇ (t), x0 = ϕ ∈ H. (1.2)

Hence W (t) ∈ R
m is an m-dimensional Wiener process, the functionals a(t, ϕ) ∈ R

n

and b(t, ϕ) ∈ R
n×m are defined for t ≥ 0, ϕ ∈ H , a(t, 0) = 0, b(t, 0) = 0, xt(s) =

x(t + s), s ≤ 0, is a trajectory of the process x(s) for s ≤ t.

Definition 1.1 The trivial solution of equation (1.2) is called

(i) mean square stable if for every ε > 0 there exists a δ = δ(ε) > 0 such that

E|x(t)|2 < ε for all t ≥ 0 if sups≤0E|ϕ(s)|2 < δ;

(ii) asymptotically mean square stable if it is mean square stable and

limt→∞E|x(t)|2 = 0 for every initial function ϕ ∈ H.

Let D be a space of functionals V (t, ϕ), for which t ≥ 0, ϕ ∈ H , for which the

function

Vϕ(t, x) = V (t, xt) = V (t, x(t), x(s), s ≤ t), x = x(t),

has one continuous derivative with respect to t and two continuous derivatives with

respect to x. For each functional V from D the differential operator L is defined by

the formula

LV (t, ϕ) =
∂

∂t
Vϕ(t, x)+a′(t, ϕ)

∂

∂x
Vϕ(t, x)+

1

2
tr

[

b′(t, ϕ)
∂2

∂x2
Vϕ(t, x)b(t, ϕ)

]

, (1.3)

where the prime symbol ’ denotes transpose.
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Theorem 1.1 Let there exist a functional V = V (t, ϕ) ∈ D such that

EV (t, xt) ≥ c1E|x(t)|2,
EV (0, ϕ) ≤ c2sups≤0E|ϕ(s)|2,

ELV (t, xt) ≤ −c3E|x(t)|2,

where ci > 0, i = 1, 2, 3. Then the trivial solution of equation (1.2) is asymptotically

mean square stable.

Let {Ω,F ,P} be a basic probability space, fi ∈ F , i ∈ Z = {0, 1, . . .} be a sequence

of σ-algebras, ξi ∈ R
m, i ∈ Z be fi+1-adapted and mutually independent random

variables, Eξi = 0, Eξiξ
′
i = I, where I is an identity matrix.

Consider a stochastic difference equation

xi+1 = a(i, x−m, . . . , xi) + b(i, x−m, . . . , xi)ξi, i ∈ Z. (1.4)

Here a ∈ R
n, b ∈ R

n×m, a(i, 0, . . . , 0) = 0, b(i, 0, . . . , 0) = 0, xi = ϕi, i ∈ [−m, 0].

Definition 1.2 The trivial solution of equation (1.4) is called:

(i) mean square stable if for every ε > 0 there exists δ = δ(ε) > 0 such that

E|xi|2 < ε, i ∈ Z, if supi∈[−m,0]E|ϕi|2 < δ;

(ii) asymptotically mean square stable if limi→∞E|xi|2 = 0 for every initial func-

tion ϕi.

Theorem 1.2 Let there exist a nonnegative functional Vi = V (i, x−m, . . . , xi),

which satisfies the conditions

EV (0, x−m, . . . , x0) ≤ c1supi≤0E|ϕi|2,

E∆Vi ≤ −c2E|xi|2, i ∈ Z,

where c1 > 0, c2 > 0, ∆Vi = Vi+1 − Vi. Then the trivial solution of equation (3.1)

is asymptotically mean square stable.

2 A linear stochastic Volterra

integro-differential equation

Consider equation (1.1). It is well known [10] that for β = 0 the inequality

2α + σ2 < 0 (2.1)

is the necessary and sufficient condition for asymptotic mean square stability of the

trivial solution of equation (1.1).
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If σ = 0 then equation (1.1) reduces to the Brunner and Lambert test equation [2]

and also takes the differential form

ẍ(t) = αẋ(t) + βx(t).

In this case the inequalities

α < 0, β < 0, (2.2)

are the necessary and sufficient condition for asymptotic stability of the trivial

solution of equation (1.1).

We proceed in the following way to obtain asymptotic mean square stability con-

ditions for the trivial solution of (1.1) via Lyapunov’s second method. Following

conditions (2.1), (2.2) we will suppose that the conditions

2α + σ2 < 0, β < 0, (2.3)

hold.

We transform equation (1.1) in the following way. Let

y1(t) =

∫ t

0

x(s)ds, y2(t) = x(t).

Then equation (1.1) is transformed into the system of equations

ẏ1(t) = y2(t)

ẏ2(t) = βy1(t) + αy2(t) + σy2(t − τ)Ẇ (t)

or in the matrix form

ẏ(t) = Ay(t) + By(t − τ)Ẇ (t), (2.4)

where

y =

(

y1

y2

)

, A =

(

0 1

β α

)

, B =

(

0 0

0 σ

)

.

Following the general method of Lyapunov functionals construction [11], [12] we will

construct a Lyapunov functional for equation (2.4) in the form V = V1 + V2, where

the main part V1 of the functional V must be chosen as a Lyapunov function for some

auxiliary differential equation without delay (in this case it is equation (2.4) with

B = 0.) Let us choose V1 in the form V1 = y′(t)Py(t) where P =

(

p11 p12

p12 p22

)

is

a positive definite matrix. Calculating for equation (2.4) the operator L defined by

(1.3) we obtain

LV1 = y′(t) (PA + A′P ) y(t) + y′(t − τ)B′PBy(t − τ). (2.5)

Let us choose the additional functional V2 in the form

V2 =

∫ t

t−τ

y′(s)B′PBy(s)ds.
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Then

LV2 = y′(t)B′PBy(t) − y′(t − τ)B′PBy(t − τ) (2.6)

and from (2.5), (2.6) for the functional V = V1 + V2 it follows

LV = y′(t) (PA + A′P + B′PB) y(t). (2.7)

Suppose that the matrix P is a positive definite solution of the matrix equation

PA + A′P + B′PB = −I, (2.8)

where I is the identity matrix. Matrix equation (2.8) is equivalent to the system of

the equations

2βp12 = −1,

p11 + αp12 + βp22 = 0,

2p12 +
(

2α + σ2
)

p22 = −1,

with the solution

p11 =
α

2β
− 1 − β

2α + σ2
, p12 = − 1

2β
, p22 =

1 − β

β (2α + σ2)
. (2.9)

Note that by conditions (2.3) p11 > 0 and p22 > 0. Also, using (2.3) we have

p11p22 =

(

α

2β
− 1 − β

2α + σ2

)(

1 − β

β (2α + σ2)

)

>
α(1 − β)

2β2 (2α + σ2)

>
1

4β2

2α

(2α + σ2)

≥ 1

4β2

= p2
12.

Therefore the matrix P with elements (2.9) is positive definite, as required. From

here and (2.7), (2.8) it follows that there exists a positive definite functional V , for

which LV = − |y(t)|2. Recalling our originally supposed conditions, (2.1) and (2.3)

we can now state the following result.

Theorem 2.1 The system of inequalities

2α + σ2 < 0, β ≤ 0, (2.10)

is the necessary and sufficient condition for asymptotic mean square stability of the

trivial solution of equation (1.1).
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3 A linear stochastic Volterra difference

equation

Let {Ω,F , P} be a basic probability space, fi ∈ F , i ∈ Z = {0, 1, . . .}, be a sequence

of σ-algebras, ξi, i ∈ Z, be scalar fi+1-adapted and mutually independent random

variables, Eξi = 0, Eξ2
i = 1, where E is the sign for expectation. Consider the

scalar stochastic difference equation

x1 = (a + b)x0 + σx−mξ0,

x2 = ax1 + b (θx0 + (1 − θ)x1) + σx1−mξ1,

xi+1 = axi + b



θx0 +

i−1
∑

j=1

xj + (1 − θ)xi



+ σxi−mξi, i ≥ 2. (3.1)

Here a, b, σ are constants, θ ∈ [0, 1], m ≥ 0 is integer. Note that if b = 0 then the

inequality

a2 + σ2 < 1 (3.2)

is the necessary and sufficient condition for asymptotic mean square stability of the

trivial solution of equation (3.1) [22].

Suppose that b 6= 0. We transform equation (3.1) for i ≥ 2 in the following way:

xi+1 = (a + b (1 − θ))xi + bxi−1 + b



θx0 +

i−2
∑

j=0

xj



+ σxi−mξi

= (a + b (1 − θ))xi + bxi−1 + σxi−mξi + xi

− (a + b (1 − θ))xi−1 − σxi−1−mξi−1

= (a + b (1 − θ) + 1)xi + (bθ − a)xi−1 + σxi−mξi − σxi−1−mξi−1

As a result we obtain equation (3.1) in the form

xi+1 = Axi + Bxi−1 + σ1xi−mξi + σ2xi−1−mξi−1, i ≥ 2, (3.3)

where

A = a + b(1 − θ) + 1, B = bθ − a, σ1 = σ, σ2 = −σ. (3.4)

It is known [22] that for σ2 = 0 the necessary and sufficient condition for asymptotic

mean square stability of the trivial solution of equation (3.3) is

|A| < 1 − B, |B| < 1, (3.5)

σ2
1 <

1 + B

1 − B

(

(1 − B)
2 − A2

)

. (3.6)

We now obtain a necessary and sufficient condition for asymptotic mean square

stability of the trivial solution of equation (3.3) for arbitrary σ1 and σ2. Let

x(i) =

(

xi−1

xi

)

, A1 =

(

0 1

B A

)

, Bk =

(

0

σk

)

, k = 1, 2. (3.7)
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Then equation (3.3) takes the following matrix form:

x(i + 1) = A1x(i) + B1xi−mξi + B2xi−1−mξi−1. (3.8)

Following the general method of Lyapunov functional construction let us construct

a Lyapunov functional Vi for equation (3.8) in the form Vi = V1i + V2i, where the

main part V1i of the functional Vi must be chosen as a Lyapunov function for some

auxiliary difference equation without delay (in this case it is equation (3.8) with

B1 = B2 = 0.) Let us choose V1i in the form

V1i = x′(i)Dx(i), D =

(

d11 d12

d12 d22

)

, (3.9)

and D is a positive semi-definite solution of the matrix equation

A′
1DA1 − D = −U, U =

(

0 0

0 1

)

, (3.10)

with d22 > 0. Calculating E∆V1i = E (V1,i+1 − V1i), by virtue of (3.9), (3.8) we

obtain

E∆V1i = E (x′(i + 1)Dx(i + 1) − x′(i)Dx(i))

= E((A1x(i) + B1xi−mξi + B2xi−1−mξi−1)
′
D(A1x(i)

+B1xi−mξi + B2xi−1−mξi−1) − x′(i)Dx(i))

= E(x′(i) (A′
1DA1 − D)x(i) + B′

1DB1x
2
i−mξ2

i

+B′
2DB2x

2
i−1−mξ2

i−1 + 2B′
1DA1x(i)xi−mξi

+2B′
2DA1x(i)xi−1−mξi−1 + 2B′

1DB2xi−mxi−1−mξiξi−1).

(3.11)

From (3.10) it follows that

Ex′(i) (A′
1DA1 − D) x(i) = −Ex2

i . (3.12)

Using (3.7), (3.9) and the properties of ξi, we obtain

Ex2
i−mξ2

i = Ex2
i−m,

Ex(i)xi−mξi = 0,

Exi−mxi−1−mξiξi−1 = 0,

B′
2DA1 = (σ2Bd22, σ2 (d12 + Ad22)) ,

B′
kDBk = σ2

kd22, k = 1, 2,

Ex(i)xi−1−mξi−1 = (0,Exixi−1−mξi−1)
′
.

(3.13)
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Using (3.3), we have

Exixi−1−mξi−1 = E(Axi−1 + Bxi−2 + σ1xi−1−mξi−1

+σ2xi−2−mξi−2)xi−1−mξi−1

= σ1Ex2
i−1−m.

(3.14)

Using (3.11) to (3.14) we obtain

E∆V1i = −Ex2
i + σ2

1d22Ex2
i−m

+
(

σ2
2d22 + 2σ1σ2 (d12 + Ad22)

)

Ex2
i−1−m.

(3.15)

Using (3.7), (3.9) we have

A′
1DA1 =

(

0 B

1 A

)(

d11 d12

d12 d22

)(

0 1

B A

)

=

(

0 B

1 A

)(

Bd12 d11 + Ad12

Bd22 d12 + Ad22

)

=

(

B2d22 B (d12 + Ad22)

B (d12 + Ad22) d11 + 2Ad12 + A2d22

)

.

(3.16)

From (3.9), (3.10), (3.16) it follows that equation (3.10) can be transformed into

the system of equations

B2d22 − d11 = 0,

B (d12 + Ad22) − d12 = 0,

d11 + 2Ad12 + A2d22 − d22 = −1.

(3.17)

The solution of system (3.17) has the form

d11 = B2d22,

d12 =
AB

1 − B
d22,

d22 =

(

1 + B

1 − B

(

(1 − B)
2 − A2

)

)−1

.

(3.18)

Note that d22 > 0 if and only if condition (3.5) holds. Substituting (3.18) into

(3.15), we have

E∆Vi1 = −Ex2
i + σ2

1d22Ex2
i−m + γd22Ex2

i−1−m, (3.19)
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where

γ = σ2
2 + 2σ1σ2

A

1 − B
. (3.20)

Put γ0 = max(γ, 0) and choose the additional functional V2i in the form

V2i = d22





(

σ2
1 + γ0

)

m
∑

j=1

x2
i−j + γ0x

2
i−1−m



 . (3.21)

Then

∆V2i = d22





(

σ2
1 + γ0

)





m
∑

j=1

x2
i+1−j −

m
∑

j=1

x2
i−j



+ γ0

(

x2
i−m − x2

i−1−m

)





= d22

((

σ2
1 + γ0

) (

x2
i − x2

i−m

)

+ γ0

(

x2
i−m − x2

i−1−m

))

= d22

((

σ2
1 + γ0

)

x2
i − σ2

1x
2
i−m − γ0x

2
i−1−m

)

.

(3.22)

So, using (3.15), (3.22) for the functional Vi = V1i + V2i we have

E∆Vi = −
(

1 − d22

(

σ2
1 + γ0

))

Ex2
i + d22 (γ − γ0)Ex2

i−1−m. (3.23)

If γ ≥ 0 then γ0 = γ and, using (3.20), we obtain

E∆Vi = −
(

1 − d22

(

σ2
1 + 2σ1σ2

A

1 − B
+ σ2

2

))

Ex2
i . (3.24)

From here and representation (3.17) for d22 it follows [22] that the inequality

σ2
1 + 2σ1σ2

A

1 − B
+ σ2

2 <
1 + B

1 − B

(

(1 − B)
2 − A2

)

(3.25)

is the necessary and sufficient condition for asymptotic mean square stability of the

trivial solution of equation (3.3).

Consider the situation if γ < 0. In this case γ0 = 0 and (3.23) takes the form

E∆Vi = −
(

1 − σ2
1d22

)

Ex2
i + γd22Ex2

i−1−m. (3.26)

So, if γ < 0 then the inequality σ2
1d22 < 1 is a sufficient condition of asymptotic

mean square stability of the trivial solution of equation (3.3). Let us suppose that

γ < 0 and σ2
1d22 ≥ 1. Summing (3.26) from i = 0 to i = n, we have

EVn+1 − EV0 = −
(

1 − σ2
1d”2

)

n
∑

i=0

Ex2
i

+γd22

(

n−1−m
∑

i=0

Ex2
i +

−1
∑

i=−1−m

Ex2
i

)

.

From here, using Vn+1 ≥ 0 and γ < 0, we obtain

(

1 − σ2
1d22

)

n
∑

i=0

Ex2
i − γd22

n−1−m
∑

i=0

Ex2
i ≤ EV0.
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or
(

1 − d22

(

σ2
1 + γ

))

n
∑

i=0

Ex2
i ≤ EV0 + |γ|d22

n
∑

i=n−m

Ex2
i .

Note that by virtue of (3.5) we have

σ2
1 + γ = σ2

1 + 2σ1σ2
A

1 − B
+ σ2

2

> σ2
1 − 2 |σ1σ2| + σ2

2 = (|σ1| − |σ2|)2 ≥ 0.

Therefore, by condition (3.25), that is equivalent to d22

(

σ2
1 + γ

)

< 1, each mean

square bounded solution of equation (3.3), i.e. Ex2
i ≤ C, satisfies the condition

limi→∞ Ex2
i = 0.

So, in any case by condition (3.25) the mean square bounded solution of equation

(3.3) is asymptotically mean square trivial, i.e. limi→∞ Ex2
i = 0.. Note also that

for σ2 = 0 condition (3.25) coincides with (3.6).

Using (3.4), (3.5), we rewrite condition (3.25) in terms of the parameters of equation

(3.1):

σ2 < (1 − a + bθ)

(

1 + a − b

(

θ − 1

2

))

,

b

(

θ − 1

2

)

− 1 < a < bθ + 1,

−4 < b < 0. (3.27)

If b → 0 then condition (3.27) takes the form (3.2). Conditions (3.27), (3.2) can be

written also in the form

(

a −
(

θ − 1

4

)

b

)2

+ σ2 <

(

1 +
b

4

)2

or
(

θ − 1

4

)

b −

√

(

1 +
b

4

)2

− σ2 < a

<

(

θ − 1

4

)

b +

√

(

1 +
b

4

)2

− σ2,

−4 (1 − |σ|) < b ≤ 0. (3.28)

Stability regions, obtained by virtue of condition (3.28) for σ = 0 and different

values of θ are shown in figure 3.1 with the following key:

1. θ = 0,

2. θ = 0.25,

3. θ = 0.5,

4. θ = 0.75,
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5. θ = 1.

Stability regions, obtained by virtue of condition (3.28) for θ = 1 and different

values of σ2 are shown in figure 3.2 with the following key:

1. σ2 = 0,

2. σ2 = 0.1,

3. σ2 = 0.2,

4. σ2 = 0.3,

5. σ2 = 0.4,

6. σ2 = 0.5,

7. σ2 = 0.6,

8. σ2 = 0.7,

9. σ2 = 0.8,

10. σ2 = 0.9.

Figure 3.3 uses the same key as figure 3.2 and is for θ = 0.375.

Remark 3.1 Note that the stability region, given by condition (3.28) depends on

θ and σ, but the area S of this stability region depends on σ only and does not

depend on θ, i.e. S = S(σ). It is easy to see that

S(σ) = 2

∫ 0

−4(1−|σ|)

√

(

1 +
b

4

)2

− σ2db

= 8

∫ 1

|σ|

√

x2 − σ2dx.

Putting t = x +
√

x2 − σ2, we obtain

S(σ) = 2

∫ 1+
√

1−σ2

|σ|

(

t2 − σ2
)2

t3
dt

= 2

∫ 1+
√

1−σ2

|σ|

(

t +
σ4

t3
− 2σ2

t

)

dt

=

[

t4 − σ4

t2
− 4σ2ln(t)

]1+
√

1−σ2

|σ|

= 4

(

√

1 − σ2 − σ2ln

(

1 +
√

1 − σ2

|σ|

))

.

In particular, S(0) = 4, S(0.5) = 2
√

3 − ln
(

2 +
√

3
)

> 2, S(1) = 0.
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Figure 3.1: Stability diagram, σ = 0, differing θ values
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Figure 3.2: Stability diagram, θ = 1, differing σ2 values
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Figure 3.3: Stability diagram, θ = 0.375, differing σ2 values
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4 Stability of difference analogues to the

integro-differential equation

If we discretise equation (1.1) using a numerical method based on the Euler-Maruyama

scheme for the stochastic differential equation part and a θ method to approximate

the integral with a quadrature, then we obtain a family of numerical methods of

the form

x1 =
(

1 + αh + βh2
)

x0 + σh
1

2 x−mξ0

x2 = (1 + αh)x1 + βh2 (θx0 + (1 − θ)x1) + σh
1

2 x1−mξ1

xi+1 = (1 + αh)xi + βh2



θx0 +

i−1
∑

j=1

xj + (1 − θ)xi



+ σh
1

2 xi−mξi, (4.1)

i ≥ 2,

where θ ∈ [0, 1], τ = mh, ξi = h− 1

2 (ξ (ti+1) − ξ (ti)). Equation (4.1) has the form

of equation (3.1) with

a = 1 + αh, b = βh2, σ → σh
1

2

Stability condition (3.28) for equation (4.1) therefore takes the form

1

h



−1 +

(

θ − 1

4

)

βh2 −

√

(

1 +
1

4
βh2

)2

− σh



 < α

<
1

h



−1 +

(

θ − 1

4

)

βh2 +

√

(

1 +
1

4
βh2

)2

− σ2h



 ,

−4
(

1 − |σ|h 1

2

)

< βh2 ≤ 0. (4.2)

The stability regions in the (α, β) space, obtained by condition (4.2) for θ = 1,

σ2 = 0 are shown in figure 4.1 for different values of the stepsize h of the numerical

method, using the following key:

1. h = 0,

2. h = 0.01,

3. h = 0.02,

4. h = 0.03,

5. h = 0.04,

6. h = 0.05,

7. h = 0.06,
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8. h = 0.07,

9. h = 0.08,

10. h = 0.1,

11. h = 0.15.

Figure 4.2 and figure 4.3 show similar pictures with θ = 1 and h as indicated above

but with σ2 = 1 and σ2 = 3 respectively.

Figure 4.4 illustrates the stability region in the (α, β) space for σ2 = 0, h = 0.05

and different values θ (i.e. different numerical schemes) according to the following

key:

1. θ = 0,

2. θ = 0.25,

3. θ = 0.5,

4. θ = 0.75,

5. θ = 1.

Figure 4.5 is a similar picture for the same values of h and θ but with σ2 = 1.

If we calculate the infimum with respect to θ in the left-hand part and the supremum

in the right-hand part of inequalities (4.2) we obtain

1

h



−1 +
3

4
βh2 −

√

(

1 +
1

4
βh2

)2

− σh



 < α

<
1

h



−1 − 1

4
βh2 +

√

(

1 +
1

4
βh2

)2

− σ2h



 ,

−4
(

1 − |σ|h 1

2

)

< βh2 ≤ 0. (4.3)

It is easy to check that if h → 0 then condition (4.3) coincides with condition (2.10).

It leads to the useful statement.

Theorem 4.1 If α, β and σ satisfy condition (2.10) then there exists a small

enough h that condition (4.3) holds too. And if α, β, σ and h satisfy condition

(4.3) then there exists a θ ∈ [0, 1] such that condition (4.2) holds too and therefore

the trivial solution of equation (4.1) is asymptotically mean square stable.

The stability regions obtained by condition (4.3) for h = 0.1 and different values of

σ are shown in figure 4.6, according to the following key:
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1. σ2 = 0.5,

2. σ2 = 1,

3. σ2 = 2,

4. σ2 = 3.

Figure 4.7 shows a similar picture for σ2 = 1 and different values of h:

1. h = 0.1,

2. h = 0.065,

3. h = 0.045,

4. h = 0.035.

5 Upper bound for the step of discretisation

From condition (4.2) it follows

f(h) = θ

(

θ − 1

2

)

β2h3 −
(

2θ − 1

2

)

αβh2 +
(

α2 − 2βθ
)

h + 2α + σ2 > 0. (5.1)

Using the representation (5.1) consider different possible cases for determining an

upper bound for the step of discretisation.

5.1

Let β = 0. From (5.1), (2.10) we obtain

f(h) = α2h + 2α + σ2 < 0

for h ∈ [0, h1), where

h1 = −2α + σ2

α2
> 0.

For example, if α = −30, β = 0, σ2 = 1 then h1 ≈ 0.0656. Changing α to α = −40,

we obtain h1 ≈ 0.0494. On figure 5.1 which coincides with figure 4.5 (σ2 = 1,

h = 0.05) the points A1(−30, 0) and A2(−40, 0) are shown. One can see that the

point A1 belongs to the stability region but the point A2 does not belong since

h = 0.05 > h1 = 0.0494.

Suppose now that β < 0 and consider the following possibilities for θ.
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Figure 4.1: Stability diagram, θ = 1, σ2 = 0, differing h values
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Figure 4.2: Stability diagram, θ = 1, σ2 = 1, differing h values
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Figure 4.3: Stability diagram, θ = 1, σ2 = 3, differing h values
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Figure 4.4: Stability diagram, σ2 = 0, h = 0.05, differing θ values
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Figure 4.5: Stability diagram, σ2 = 1, h = 0.05, differing θ values
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Figure 4.6: Stability diagram, h = 0.1, differing σ2 values
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Figure 4.7: Stability diagram, σ2 = 1, differing h values
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5.2

Let θ = 0. Then

f(h) =
1

2
αβh2 + α2h + 2α + σ2.

Since 2α + σ2 < 0 and αβ > 0 then f(h) < 0 for h ∈ [0, h1), where

h1 =

√

α4 − 2αβ (2α + σ2) − σ2

αβ
> 0.

For example, if α = −10, β = −1000, σ2 = 1 then h1 ≈ 0.0524. Changing β to

β = −1200 we obtain h1 ≈ 0.0486 < 0.05. On figure 5.1 the point B1(−10,−1000)

belongs to the stability region with θ = 0 and the point B2(−10,−1200) does not

belong.

5.3

Let θ = 1
2 . Then

f(h) = −1

2
αβh2 +

(

α2 − β
)

h + 2α + σ2.

Since

D =
(

α2 − β
)2

+ 2αβ
(

2α + σ2
)

=
(

α2 + β
)2

+ 2αβσ2 > 0

then f(h) < 0 for h ∈ [0, h1), where

h1 =
α2 − β −

√
D

αβ
> 0.

For example, if α = −30, β = −1000, σ2 = 1 then h1 ≈ 0.0545. Changing β on

β = −1200 we obtain h1 ≈ 0.0472. On figure 5.1 the point C1(−30, 1000) belongs

to the stability region with θ = 1
2 and the point C2(−30,−1200) does not belong to

this region.

5.4

Let θ ∈
(

1
2 , 1
]

. From (5.1) and (2.10) it follows that f(h) < 0 for h ≤ 0. So f(h) < 0

for h ∈ [0, h1), where h1 is the least root of the equation f(h) = 0. For example, if

α = −40, β = −1000, σ2 = 1, θ = 0.75 we obtain

f(h) = 187500h3 − 40000h2 + 3100h− 79 = 0

and h1 ≈ 0.0511. Changing β to β = −1200 we obtain

f(h) = 270000h3 − 48000h2 + 3400h− 79 = 0

with h1 ≈ 0.0431. On figure 5.1 the point D1(−40,−1000) belongs to the stability

region with θ = 3
4 but the point D2(−40,−1200) does not belong to this region.
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5.5

Let θ ∈
(

0, 1
2

)

. From (5.1) and (2.10) it follows that f(0) < 0 and df
dh

(0) > 0.

It means that f(h) < 0 for h ∈ [0, h1) where h1 is the least positive root of the

equation f(h) = 0. For example, if α = −20, β = −1200, σ2 = 1, θ = 1
4 then

f(h) = −90000h3 + 1000h− 39

and h1 ≈ 0.0508. Changing β to β = −1300 we obtain

f(h) = −105625h3 + 1050h− 39 = 0

with h1 ≈ 0.0489. On figure 5.1 the point E1(−20,−1000) belongs to the stability

region with θ = 1
4 but the point E2(−20,−1300) does not belong to this region.

6 Numerical experiments

We illustrate some of our results with trajectories of equation (4.1).

Figure 6.1 shows 50 trajectories of equation (4.1) with m = 0 (i.e. without delay),

x0 = 1, α = −55, β = −1000, σ2 = 1, h = 0.05, θ = 1. The dark line represents

the arithmetic mean of the trajectories, as it does for all the figures in this section.

It is clear that we have a stable system. If we change the parameter h to h = 0.06

we suddenly don’t have a stable system (as shown in figure 6.3), as expected from

examining figure 4.2. Figures 6.2 and 6.4 illustrate the trajectories of the Wiener

process W (tk) = h
1

2

∑k−1
i=0 ξi, k = 0, 1, . . ., where ξi are mutually independent,

normally distributed random variables with mean zero and unit variance.

Figure 4.5 shows the regions of stability for different θ methods. We illustrate

this point with figures 6.5, 6.6 and 6.7. Each figure shows 50 trajectories with

identical parameter values except for θ. For figure 6.5 θ = 0, for figure 6.6 θ =

1, and for figure 6.7 θ = 0.5. The interesting point here is that for particular

parameter values where the integro-differential equation is mean square stable we

can choose a θ method which replicates this stability property. In figure 6.5 the

sufficient conditions for asymptotic mean square stability of the discrete system

(i.e. −38.8603 < α < −0.5147, given the other parameters) are not satisfied and

the trajectories are indeed unstable, whereas in figures 6.6 and 6.7 the conditions

(i.e. −40.1103 < α < −1.7647 for 6.6 and −39.4853 < α < −1.1397 for 6.7, given

the other parameters) are satisfied and we have asymptotic mean-square stability.

Figure 6.8 uses the same parameters as figure 6.5 except that α = −39. In this case

the sufficient conditions are not satisfied for the discrete analogue (we are very close

to satisfying them though) but we still have asymptotic mean square stability, thus

verifying that our conditions are only sufficient and not necessary and sufficient.

However we believe our experiments indicate that the sufficient conditions are very

good ones.
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Figure 5.1: Stability diagram, σ2 = 1, h = 0.05, differing θ values
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Figure 6.1: Trajectories of equation (4.1) with m = 0, α = −55, β = −1000, σ2 = 1,

h = 0.05, θ = 1, x0 = 1
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Figure 6.2: Trajectories of Wiener process for figure 6.1
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Figure 6.3: Trajectories of equation (4.1) with m = 0, α = −55, β = −1000, σ2 = 1,

h = 0.06, θ = 1, x0 = 1
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Figure 6.4: Trajectories of Wiener process for figure 6.3
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Figure 6.5: Trajectories of equation (4.1) with m = 0, α = −40, β = −25, σ2 = 1,

h = 0.05, θ = 0, x0 = 1
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Figure 6.6: Trajectories of equation (4.1) with m = 0, α = −40, β = −25, σ2 = 1,

h = 0.05, θ = 1, x0 = 1
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Figure 6.7: Trajectories of equation (4.1) with m = 0, α = −40, β = −25, σ2 = 1,

h = 0.05, θ = 0.5, x0 = 1
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Figure 6.8: Trajectories of equation (4.1) with m = 0, α = −39, β = −25, σ2 = 1,

h = 0.05, θ = 0, x0 = 1
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