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Known Nicholson’s blowflies equation (which is one of the most important models in
ecology) with stochastic perturbations is considered. Stability of the positive (nontriv-
ial) point of equilibrium of this equation and also a capability of its discrete analogue to
preserve stability properties of the original differential equation are studied. For this pur-
pose, the considered equation is centered around the positive equilibrium and linearized.
Asymptotic mean square stability of the linear part of the considered equation is used to
verify stability in probability of nonlinear origin equation. From known previous results
connected with B. Kolmanovskii and L. Shaikhet, general method of Lyapunov function-
als construction, necessary and sufficient condition of stability in the mean square sense
in the continuous case and necessary and sufficient conditions for the discrete case are de-
duced. Stability conditions for the discrete analogue allow to determinate an admissible
step of discretization for numerical simulation of solution trajectories. The trajectories
of stable and unstable solutions of considered equations are simulated numerically in the
deterministic and the stochastic cases for different values of the parameters and of the
initial data. Numerous graphical illustrations of stability regions and solution trajectories
are plotted.

Copyright © 2007 N. Bradul and L. Shaikhet. This is an open access article distributed

under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Consider the nonlinear differential equation with exponential nonlinearity

x(t) = ax(t — h)e =M — cx (1), (1.1)



2 Discrete Dynamics in Nature and Society

which is one of the most important ecological models. It describes the population dy-
namics of Nicholson’s blowflies. Here x(¢) is the size of the population at time ¢, a is the
maximum per capita daily egg production rate, 1/b is the size at which the population
reproduces at the maximum rate, ¢ is the per capita daily adult death rate, and A is the
generation time.

Equation (1.1) is enough popular with researches [1-11]. The majority of the results
on (1.1) deal with the global attractiveness of the positive point of equilibrium and oscil-
latory behaviors of solutions [2, 4, 6-9, 12—14]. In connection with numerical simulation,
a special interest has an investigation of discrete analogues of (1.1) [1, 4, 7, 10].

In this paper, we consider stability in probability of the positive point of equilibrium
of (1.1) by stochastic perturbations and also of one discrete analogue of this equation. A
capability of a discrete analogue to preserve stability properties of the original differential
equation is studied. Sufficient stability conditions for discrete analogue obtained here are
much more better than similar conditions known earlier in deterministic case [4, 10].

The following method for stability investigation is used here. The considered nonlinear
equation is exposed to stochastic perturbations and is linearized in the neighborhood of
the positive point of equilibrium. Conditions for asymptotic mean square stability of the
trivial solution of the constructed linear equation are obtained. In the case if the order
of nonlinearity is more than 1, these conditions are sufficient ones (both for continuous
and discrete time [15-19]) for stability in probability of the initial nonlinear equation by
stochastic perturbations.

This method was used already for stability investigation of other biological systems
with delays: SIR epidemic model [15] predator-prey model [19]. Conditions for asymp-
totic mean square stability that are used here were obtained via the general method of
Lyapunov functionals construction for stability investigation of stochastic differential and
difference equations [22-28].

2. Some definitions and auxiliary statements

Let {Q,0,P} be a probability space and let E be the expectation. Consider stochastic dif-
ferential equation [20, 21, 29]

2(t) =a(t,z) to(t,z)w(t), t=0,

z(s) = ¢o(s), s<0. 2.1)
Here z(t) is a value of the process z at time t, z; is a trajectory of the process z to the time
t, w is a standard Wiener process, a, ¢ are functionals on T X H, where T = {t: ¢ > 0},
H is a space of trajectories ¢ of (2.1). It is supposed also that a(t,0) = o(t,0) = 0. In this
case, (2.1) has the trivial solution.
Two definitions for stability of the trivial solution of (2.1) are used here.

Definition 2.1. The trivial solution of (2.1) is called stable in probability if for any €; >0
and €, > 0, there exists § > 0 such that the solution z(#) = z(t,¢y) satisfies the condition
P{sup,.,|2z(t,¢0)| > €1} < €, for any initial function ¢y € H such that P{sup,_, [¢o(s)| <
6 =1.
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Definition 2.2. The trivial solution of (2.1) is called mean square stable if for any € >
0, there exists § > 0 such that the solution z(¢) = z(t,¢) satisfies the condition E|z(t,
$0)|?> < € for any initial function ¢y € H such that sup,_,El¢o(s)|> < 8. If besides
lim;— E|z(t,¢)|> = 0 for any initial function ¢y € H, then the trivial solution of (2.1) is
called asymptotically mean square stable.

Consider scalar linear stochastic differential equation with delay

z(t) = —az(t) — bz(t — h) + oz(t)w(t). (2.2)
Here a, b, ¢ are arbitrary constants and h > 0. Put

1,
= -0". 2.3
p=30 (23)
LEmMA 2.3 [30]. Necessary and sufficient condition for asymptotic mean square stability of

the trivial solution of (2.2) is

a+b>0, pG<1, (2.4)
where
(1+bq 'sin(gh) e
a+bcos(gh) ’ b>lal, q= b —a’,
1+ah
G=1 P b=a>0, (2.5)
1+bgq~!sinh(gh) B
a+bcosh(gh) ’ a>|bl, q=a*=b2.

In particular, if p >0, h = 0 then stability condition (2.4), (2.5) takes the form a +
b > p;if p=0, h >0 then the region of stability is bounded by the lines a+ b = 0 and
a+bcos(qgh) = 0.

Consider the scalar stochastic difference equation

Zi+1 = az;t+ bZ,;k + (TZ,'{H.], i=0,1,2,.... (26)

Here &;, i = 1,2,..., are mutually independent random variables such that E¢; = 0, E¢? =
1, a, b, 0 are arbitrary constants and k > 0 is an integer.

Two sufficient conditions for asymptotic mean square stability of the trivial solution
of (2.6) are given by the following lemma.

LEMMA 2.4 (24, 26]. If at least one of the following inequalities holds

(lal+1b) > +02 < 1, (2.7)
(a+b)*+2k|bla+b—-1)| +0* <1, (2.8)

then the trivial solution of (2.6) is asymptotically mean square stable.
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Consider also the necessary and sufficient condition for asymptotic mean square sta-
bility of the trivial solution of (2.6).

Let U and A be two square matrices of dimension k + 1 such that U = [lz2;; | has all
zero elements except for ug41 k11 = 1 and

0 1 0 0
0 0 1 .. 0 O
A=1... .. . 0 . (2.9)
0 0 O 0 1
b 0 0 0 a
LeEMMaA 2.5 [31]. Let the matrix equation
A'DA-D=-U (2.10)

have a positively semidefinite solution D with di1 k+1 > 0. Then the inequality
U2dk+1,k+1 <1 (2.11)

is the necessary and sufficient condition for asymptotic mean square stability of the trivial
solution of (2.6).

Remark 2.6. For k = 1. Lemma 2.5 gives the following necessary and sufficient condition
for asymptotic mean square stability of the trivial solution of (2.6):
1-b 2

0<de=ma-or-a) 7

(2.12)

In particular, if 0 = 0, this condition has the form |b| < 1, |a] <1 —b.

For k = 2 from (2.10), (2.11) follows the necessary and sufficient condition for asymp-
totic mean square stability of the trivial solution of (2.6) in the form

2a*b(a+b) )‘1 o2

— Aoyt
o<~ (1-a'-t 1—b(a+b)

(2.13)

3. Positive point of equilibrium, stochastic perturbations, centering, and linearization

Let us suppose thatin (1.1) a > ¢ > 0, b > 0. By these conditions, (1.1) has a positive point
x* of equilibrium. This point is obtained from the condition x(t) = 0 and is defined as
follows:

«_ 1,4
X —blnc. (3.1)

As it was proposed in [15, 19] and used later in [32, 33] let us assume that (1.1) is
exposed to stochastic perturbation, which is of white noise type, is directly proportional
to the deviation of x(¢) from the point of equilibrium x*, and influences on x(t) imme-
diately. In this way, (1.1) is transformed to the form

x(t) = ax(t — h)e ™M —cx(t) + o (x(t) — x*)w(t). (3.2)
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FIGURE 4.1. Region of necessary and sufficient stability condition for (3.4): p =0, h = 0.

Let us center (3.2) on the positive point of equilibrium using the new variable y(t) =
x(t) — x*. By this way, via (3.1) we obtain

J(t) = —cy(t) + eyt — h)e = 4 %ln % (eI 1) b ay(w(t).  (3.3)

It is clear that stability of (3.2) equilibrium x* is equivalent to stability of the trivial solu-
tion of (3.3).

Along with (3.3), we will consider the linear part of this equation. Using the represen-
tation e’ = 1+ y +o(y) (where o(y) means thatlim,_.¢(o(y)/y) = 0) and neglecting o(y),
we obtain the linear part (process z(t)) of (3.3) in the form

A1) = —cz(t) —c(ln% _ l>z(t—h)+oz(t)m'/(t). (3.4)

As it is shown in [16-18], if the order of nonlinearity of the equation under consid-
eration is more than 1, then a sufficient condition for asymptotic mean square stability
of the linear part of the initial nonlinear equation is also a sufficient condition for stabil-
ity in probability of the initial equation. So, we will investigate sufficient conditions for
asymptotic mean square stability of the linear part (3.4) of nonlinear (3.3).

4. Stability condition in the case of continue time

Note that condition (2.4), (2.5) for (3.4) takes the form

pG<1, (4.1)
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FIGURE 4.2. Region of necessary and sufficient stability condition for (3.4): p = 100, h = 0.
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FIGURE 4.3. Region of necessary and sufficient stability condition for (3.4): p = 12, h = 0.024.

where
r1+(c/q)(ln(a/c)—l)sin(qh) , E( a )
c[1+ (In(a/c) — 1) cos(gh)] ’ azcehq=c 1nc 1nc 2)>
1+ch o,
G = e a = ce*, (4.2)
1+ (¢/q)(In(a/c) — 1) sinh(qh) , ﬂ( B E)
| ¢[1+ (In(a/c) — 1) cosh(gh)] ~ ceasce,qg=c 1nc 2 1nc ’




N. Bradul and L. Shaikhet 7

400

300

200

100

900

FIGURE 5.1. Region of sufficient stability condition for (5.2): p = 12, h = 0.024, A = 0.004.

In particular, if p >0, h = 0, then stability condition takes the form cln(a/c) > p; if
p =0, h >0 then the region of stability is bounded by the lines ¢ =0, c =a and 1 +
(In(a/c) — 1) cos(gh) = 0 for a > ce?.

Condition (4.1), (4.2) gives us regions (in the space of the parameters (a,c)) for asymp-
totic mean square stability of the trivial solution of (3.4) (and at the same time regions
for stability in probability of the positive point of equilibrium x* of (3.2)). In Figure 4.1,
the region of stability given by condition (4.1), (4.2) is shown for p = 0, h = 0. Similar re-
gions of stability are shown also for p = 100, h = 0 (Figure 4.2) and for p = 12, h = 0.024
(Figure 4.3).

Remark 4.1. Note that stability condition (4.1), (4.2) has the following property: if the
point (a,c) belongs to the stability region with some p and h then for arbitrary positive
a, the point (ag,co) (aa,ac) belongs to the stability region with py = ap and hy = a~'h.

5. Stability of the discrete analogue

Consider a difference analogue of nonlinear (3.3) using the Euler scheme
yir1 = (1= cA)y; + cAy;_re Wi+ + %ln %A(e’b?"””‘ —1)+0VAyi&in. (5.1)

Here k is an integer, A = h/k is the step of discretization, y; = y(t;), t; = iA, & = (1/
\/Z)(W(tiﬂ) -w(t)),i=0,1,....
In compliance with (3.4), the linear part of (5.1) is

ziv1 = (1 —cA)z,-+cA(1 —ln%)zi,k+0\/Zzi§,-+1. (5.2)
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FIGURE 5.3. Region of sufficient stability condition for (5.2): p = 12, h = 0.024, A = 0.008.

Via Lemma 2.4, we obtain two sufficient conditions for asymptotic mean square sta-
bility of the trivial solution of (5.2):

P

2
—+‘1—lng'|1—cA|+ch<1+‘l—lng )<1, (5.3)
c c 2 c

£+16Aln25< (l—chlng‘l—lng
c 2 c c c

)ln%. (5.4)

Regions for asymptotic mean square stability of the trivial solution of (5.2) (and at
the same time regions for stability in probability of the trivial solution of (5.1)), obtained
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FIGURE 5.4. Region of sufficient stability condition for (5.2): p = 12, h = 0.024, A = 0.012.
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FIGURE 5.5. Regions of sufficient stability condition and necessary and sufficient stability condition
for (5.2): p=12,h=0.024, A = 0.012.

by conditions (5.3), (5.4), are shown in the space of the parameters (a,c) for p = 12,
h =0.024, and A = 0.004 (Figure 5.1), A = 0.006 (Figure 5.2), A = 0.008 (Figure 5.3),
A =0.012 (Figure 5.4). The main part (with number 1) of the stability region is ob-
tained via condition (5.3), the additional part (with number 2) is obtained via condition
(5.4).

Let us show how much sufficient conditions (5.3), (5.4) are close to the necessary and
sufficient condition. Consider the case p = 12, h = 0.024, A = 0.012. Since here k = h/A =
2, we can use necessary and sufficient condition (2.13). For (5.2) it can be represented in
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FIGURE 5.6. Regions of sufficient stability condition and necessary and sufficient stability condition
for (5.2): p =0, h = 0.024, A = 0.012.

the form

2
p N lCAI:l-f- (1 —ln§> ] (1 -cA)*(1—1In(a/c)) (1 - cAln(a/c)) <1 (5.5)

c 1 —cA(1 —1In(a/c)) (1 - cAln(a/c))

In Figure 5.5, the stability region, obtained via sufficient conditions (5.3), (5.4) (num-
ber 1), is shown inside the stability region, obtained via necessary and sufficient condition
(5.5) (number 2).

Remark 5.1. Conditions (5.3), (5.4), (5.5) for arbitrary values of the parameters of (3.4)
allow to choose the admissible step of discretization A by numerical simulation of the
stable solution of this equation. For example, from Figures 5.1, 5.2, we can see that for
simulation of (3.4) solution with a = 900, ¢ = 200, we can use A = 0.004 or A = 0.006; but
taking in account Figures 5.3, 5.4, we cannot be sure that it is possible to use A = 0.008 or
A =0.012.

Remark 5.2. Note that stability conditions (5.3), (5.4) have the following property: if
the point (a,¢) belongs to the stability region with some p, h, and A, then for arbitrary
positive a, the point (ap,co) = (a,ac) belongs to the stability region with py = ap, hy =
ath,and Ap = a 1A,

Remark 5.3. In [4, 10], the discrete analogue of (1.1) was considered in the form (in our
notations)

Xiv1 = (1 — cA)x; + aAxi_ge Pk, (5.6)
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FIGURE 6.1. Regions of sufficient stability condition and necessary and sufficient stability condition
for (5.2): p = 0, h = 0.024, A = 0.012.

By the assumption 0 < cA < 1, the sufficient condition for asymptotic stability of the pos-
itive equilibrium (3.1) was obtained in [4]

[(1—cA)y~+D) 1](% - 1) <1 (5.7)
and improved in [10]
[(1—cA)~ kD) l]ln% <1 (5.8)

Conditions (5.3), (5.4), and (5.5) give much better results. In Figure 5.6, one can see
stability regions for & = 0.024 and A = 0.012 given by condition (5.7) (number 1), given
by condition (5.8) (numbers 1 and 2), given by conditions (5.3), (5.4) (numbers 1, 2, and
3), and given by condition (5.5) (numbers 1, 2, 3, and 4).

6. Numerical analysis in the deterministic case

Consider (3.4) at first in the deterministic case (p = 0) with delay & = 0.024. We will
simulate solutions of this equation via its discrete analogue (5.2) with A = 0.012. Cor-
responding stability region is shown in Figure 6.1. Note that for p = 0 stability region
slightly differs from the similar region for p = 12 (Figure 5.5). The initial function is
z(s) = apcos(s), s € [—h,0], where ay has different values in different points.

In Figure 6.1, one can see the points A(520,100), B(529.45,100), C(540,100), D(544.5,
46), E(544.5,40), F(544.5,34), K(279.9,150), L(87.5,85), M(40,40). Trajectories of (5.2)
solutions in these points are shown accordingly in Figure 6.2 (A, ay = 5), Figure 6.3 (B,
ap = 5), Figure 6.4 (C, ap = 0.1), Figure 6.5 (D, ay = 0.4), Figure 6.6 (E, ayp = 4), Figure 6.7
(F, ap = 5), Figure 6.8 (K, ag = 6), Figure 6.9 (L, ap = 5), and Figure 6.10 (M, ay = 3).
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FIGURE 6.2. Stable solution of (5.2) in the point A(520,100), ag = 5.

FiGure 6.3. Bounded solution of (5.2) in the point B(529.45,100), ag = 5.
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FIGURE 6.4. Unstable solution of (5.2) in the point C(540,100), ao = 0.1.
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FIGURE 6.5. Unstable solution of (5.2) in the point D(544.5,46), ay = 0.4.
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F1GURE 6.6. Bounded solution of (5.2) in the point E(544.5,40), ay = 4.

: 'lll‘l'\] AR

FIGURE 6.7. Stable solution of (5.2) in the point F(544.5,34), ay = 5.
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FiGure 6.8. Bounded solution of (5.2) in the point K(279.9,150), ao = 6.
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FIGURE 6.9. Bounded solution of (5.2) in the point L(87.5,85), ay = 5.

The points A and F belong to stability region, the solutions of (5.2) in these points
are stable. The points C and D do not belong to stability region, the solutions of (5.2) in
these points are unstable. The points B, E, K, L, and M are placed on the bound of the
stability region, the solutions of (5.2) in these points do not converge to zero but converge
to bounded functions, in particular, to a constant as in the point M. Note however that
in the point M (i.e., in the case b > 0, a = ¢ > 0) initial (1.1) has only zero equilibrium.

Comparing the solutions of (5.2) in the points A, B, C and in the points D, E, F,
one can see also that a bit removal outside of stability region gives an unstable solu-
tion and a bit removal inside of stability region gives a stable solution. Similar result
one can obtain comparing the solution of (5.2) in the point L(87.5,85) (Figure 6.9) with
the solutions in the points L;(88,85) (Figure 6.11) and L,(87,85) (Figure 6.12). This
fact can be used to construct the exact bound of stability region in the case when we
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FIGURE 6.10. Bounded solution of (5.2) in the point M(40,40), ay = 3.

N
[
1
1
1
I,

5 10 15 20 25

|
S I S N =l

e e e e

FIGURE 6.11. Stable solution of (5.2) in the point L,(88,85), ay = 5.

have sufficient stability condition only. For example, in the case p =0, h = 0.024, A =
0.008, the points P(50,50), Q(288.65,170), R(680,250.079), S(810,170), T(923.63,125),
U(652.6,50), V(1000,24.16) (Figure 6.13) belong to the bound of the stability region
since in all these points the solutions of (5.2) do not converge to zero but are bounded
functions (Figure 6.14 (P, ag = 3), Figure 6.15 (Q, ag = 5), Figure 6.16 (R, ay = 5), Figure
6.17 (S, ap = 5), Figure 6.18 (T, ay = 5), Figure 6.19 (U, ao = 4), and Figure 6.20 (V,
ap = 4)). Note that in the point P similar to the point M initial (1.1) has only zero equi-
librium.

To illustrate Remark 5.2, consider the point A¢(5.2,1) which corresponds to the point
A(520,100) with & = 0.01. The solution of (5.2) in the point Ay is stable with h = 2.4, A =
1.2 (Figure 6.21, ap = 5). Note that in spite of the fact that (5.2) has the same coefficients
in both these cases, the graphic of the solution in the point A differs from the graphic of
the solution in the point A (Figure 6.2, ag = 5) since the initial functions in both cases are
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FIGURE 6.12. Unstable solution of (5.2) in the point L,(87,85), ay = 5.
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FIGURE 6.13. Region of sufficient stability condition for (5.2): p = 0, h = 0.024, A = 0.008.

o |

different: in the point A, it is z_, = 5¢0s(0.024), z_; = 5¢0s(0.012), zy = 5; in the point
Ao, itisz_, =5c0s(2.4), z_1 = 5co0s(1.2), zp = 5.

Consider now the behavior of the solution of nonlinear (3.3) in the case p = 0. We will
simulate solutions of this equation via its discrete analogue (5.1) with A = 0.012. If in the
point (a,¢) the trivial solution of (5.2) is asymptotically stable (it means that for arbitrary
initial function the solution of (5.2) goes to zero), then the trivial solution of (5.1) is
stable in the first approximation (it means that for each enough small initial function the
solution of (5.1) goes to zero). On the other hand, if the trivial solution of (5.2) is not
asymptotically stable, then for arbitrary indefinitely small initial function the solution of
(5.1) does not go to zero.

These facts are illustrated by the following examples. In the point A(520,100), the
trivial solution of (5.2) is asymptotically stable (Figure 6.2, ag = 5) so, in this point the
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Bounded solution of (5.2) in the point Q(288.65,170), ag = 5.
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FIGURE 6.17. Bounded solution of (5.2) in the point $(810,170), ao = 5.

FIGURE 6.18. Bounded solution of (5.2) in the point T(923.63,125), ay = 5.
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F1GURE 6.19. Bounded solution of (5.2) in the point U(652.6,50), ag = 4.
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FIGURE 6.20. Bounded solution of (5.2) in the point V(1000,24.16), ay = 4.
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FIGURE 6.21. Stable solution of (5.2) in the point Ay(5.2,1), p=0,h=2.4,A=1.2,a9=5.
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FIGURE 6.22. Stable solution of (5.1) in the point A(520,100), ao = 0.437.
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FIGURE 6.23. Unstable solution of (5.1) in the point A(520,100), ao = 0.438.
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FIGURE 6.24. Unstable solution of (5.1) in the point C(540,100), ao = 0.001.

solution of (5.1) (b = 4) goes to zero for enough small initial function (Figure 6.22, ay =
0.437) and enough quickly goes to infinity for a little larger initial function (Figure 6.23,
ap = 0.438). In the point C(540, 100), the trivial solution of (5.2) is not asymptotically sta-
ble (Figure 6.4, ap = 0.1) and the solution of (5.1) (b = 1) goes to infinity for indefinitely
small initial function (Figure 6.24, ao = 0.001).

7. Numerical analysis in the stochastic case

Consider at last a behavior of the solution of (3.4) in the stochastic case with p = 12,
delay h = 0.024, and the initial function z(s) = agcos(s), s € [—h,0]. A solution of this
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FiGURre 7.1. Regions of sufficient stability condition and necessary and sufficient stability condition
for (5.2): p = 12, h = 0.024, A = 0.012.
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FIGURE 7.2. Trajectories of Wiener process.

equation is simulated here via its discrete analogue (5.2) with A = 0.012. Corresponding
stability region is shown in Figure 7.1 that is the increasing copy of Figure 5.5 with the
additional points X (160,100), Y (465,100) that belong to stability region of (5.2) and the
points W(120,100), Z(510,100) that do not belong to stability region of (5.2).

For numerical simulation of the solution of (5.2) some special algorithm of numerical
simulation of Wiener process trajectories [34] is used. In Figure 7.2 50 trajectories of
Wiener process obtained via this algorithm are shown.

In Figure 7.3, ten trajectories of the solution of (5.2) are shown in the point W with
ap = 0.1. The point W belongs to stability region of stochastic differential (3.4) but does
not belong to stability region of its difference analogue (5.2). One can see that each tra-
jectory of the solution of (5.2) in the point W oscillates and go to infinity. A similar
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FIGURE 7.3. Unstable solution of (5.2) in the point W (120, 100), ao = 0.1.
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FiGure 7.4. Unstable solution of (5.2) in the point Z(510,100), ao = 0.1.
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FIGURE 7.5. Stable solution of (5.2) in the point X (160,100), ao = 8.5.
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FIGURE 7.6. Stable solution of (5.2) in the point Y (465,100), ao = 6.5.

picture one can see in Figure 7.4 where one hundred trajectories of the solution of (5.2)
are shown in the point Z with ao = 0.1.

In Figure 7.5, one hundred trajectories of the solution of (5.2) are shown in the point
X with ag = 8.5. The point X belongs to stability region of (5.2) and all trajectories go to
zero. One hundred trajectories of the stable solution of (5.2) are shown also in Figure 7.6
in the point Y with gy = 6.5.

8. Conclusion

In the paper, it is shown that investigating of stability of some differential equation to-
gether with its difference analogue via general method of Lyapunov functionals construc-
tion, one can obtain a size of the step of discretization for which a difference analogue
preserves the stability properties of the original differential equation. All theoretical re-
sults are verified by numerical simulation. Besides, it is shown that numerical simulation
of the solution of difference analogue allows to define more exactly a bound of stability
region obtained by sufficient stability condition.
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