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STEADY-STATE SOLUTIONS OF NONLINEAR
MODEL OF INVERTED PENDULUM

Nonlinear mathematical model of inverted pendulum with stochastic perturbations
and nonclassical method of stabilization is considered. Nonzero steady-state solutions
of this system are studied. Conditions by which equilibrium points are stable, unsta-
ble or one-sided stable are obtained. Theoretical results are illustrated by numerical
examples.

1. INTRODUCTION

The problem of stabilization of the inverted pendulum is very popular among the
researches (see, for instance [1-6]). The linear mathematical model of the controlled
inverted pendulum is described by linear differential equation of second order

(1.1) &(t) — az(t) = u(t), a >0, t>0.
The classical way of stabilization of the system (1.1) uses the control u(t) in the form
u(t) = —bhz(t) — bai(t), bh>a, b > 0.

In contrast to the classical way another way of stabilization was proposed in [7-9]. It
was supposed that only the trajectory of the pendulum is observed, control u(t) depends
on whole trajectory z(s), s < t, and has the form

(1.2) () / (Y= 1)
0
The initial condition for the system (1.3), (1.2) has the form
(1.3) z(s) = p(s),  @(s) =¢(s), s<0,

where (s) is a given continuously differentiable function.

Definition 1.1. The zero solution of the system (1.1)-(1.3) is called stable if for any € > 0
there exists § > 0 such that max{|z(t)], |£(t)|} < € for all ¢ > 0 if || = sup,<o(|¢(s)| +
|@(s)]) < 8. If, besides, limi—.oo 2(t) = 0 and lim—. @(t) = 0 for every initial function
¢, then the zero solution of the system (1.1)-(1.3) is called asymptotically stable in the
whole.

Put
ks :/ T dK(r); 1=0;%, % zf 7 |dK (7)),
(1.4) 9 3
a; = —a — ko, P12a1+1'
k1
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Theorem 1.1. Let

4
(1.5) ko < —a, ki >0, ko < ———.
1+ +/1+p37
Then the zero solution of the system (1.1)-(1.8) is asymptotically stable in the whole.

This theorem is proved in [9] using a special method of Lyapunov functionals con-
struction [10-14].
Remark 1.1. In [9] it is shown that first and second conditions (1.5) are necessary for
asymptotic stability of the zero solution of the system (1.1)-(1.3).

Consider the nonlinear model of inverted pendulum

(1.6) #(t) — asinz(t) = u(t), a>0, t>0,

with control (1.2) and initial condition (1.3).

In [9] it is shown that the zero solution of the system (1.6), (1.2), (1.3) is asymptotically
stable and some estimate of the region of attraction for the zero solution of this system
is constructed.

It is considered also the linear

(1.7) #(t) — (a +ot(t))z(t) =ut), a>0  t>0,
and the nonlinear models of inverted pendulum
(1.8) #(t) — (a + o€(t))sinz(t) =ut), a>0, =0,

with control (1.2) and initial condition (1.3) by stochastic perturbations £(t) of white
noise type.

Definition 1.2. The zero solution of the system (1.7), (1.2), (1.3) is called mean square
stable if for any € > 0 there exists a § > 0 such that E|z(t)]* + E|¢(t)|* < € for any
t > 0 provided that sup,{El@(s)*> + Elp(s)[?} < 4. If, besides, lim; oo {E|z(t)[* +
E|%(t)|?} = 0 for every initial function ¢, then the zero solution of the system (1.3), (1.2)
is called asymptotically mean square stable.

Definition 1.3. The zero solution of the system (1.8), (1.2), (1.3) is called stable in prob-
ability if for any €; > 0 and ez > 0 there exists § > 0 such that the solution (z1(t), z2(t)) =
(z1(t, ), z2(t, @) of equation (4.7), (2.4) satisfies the condition P{|z1(t, ¢)|+|z2(t, )| >
€1} < €o for any initial function ¢(s) such that P{sup,<q(|e(s)| + [¢(s)]) < 6} = 1.

In [9] it is shown that if the conditions (1.5) hold and

(1.9) a?<2pi;(1m%3(1+ 1+2}))

then the zero solution of the system (1.7), (1.2), (1.3) is asymptotically mean square
stable and the zero solution of the system (1.8), (1.2), (1.3) is stable in probability.

2. NONZERO STEADY-STATE SOLUTIONS

Here we will study nonzero steady-state solutions of the nonlinear system (1.6), (1.2),
(1.3).

Substituting (1.2) into (1.6) and putting z;(t) = =(t), z2(f) = @(t) we represent the
system (1.6), (1.2) in the form

i (t) =Py (t:],

(&:1) ta(t) =asinz; (t) + j:c dK (7)z1(t — 7).
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To get steady-state solutions of the system (2.1) let us suppose that (&) = @a(t) = 0.
Therefore z2(t) = 0 and & = =, (t) is a root of the equation

(2.2) asin® + kg2 = 0.
Suppose that & # 0 and rewrite (2.2) in the form
(2.3) S(&) =0,
where
sinz kg
(2.4) S(z) = = + =

The function S(z) we will call "characteristic function of the system (2.1)".

Remark 2.1. The statements "% is a steady-state solution of the system (2.1)" and "% is
a root of the equation (2.3)” are equivalent.

Remark 2.2. For all z #£ 0

sinx
- g

T
where 0.217233 < a < 0.217234. Therefore if

<1,

—as—@ <=
a
or
(2.5) O0<a+ky<(l1+a)

then there exists at least one nonzero root of the equation (2.3).

Remark 2.5. Since the function ¢(z) is an even function then if £ is a root of the equation
(2.3) then —& is a root of the equation (2.3) too.

Remark 2.4. The codition (2.5) contradicts to necessary condition a; = —a — kg > 0 of
asymptotic stability of the corresponding linear system. Therefore by condition (2.5) the
zero solution of the corresponding linear system is not stable.

3. STABLE, UNSTABLE AND ONE-SIDED STABLE POINTS OF EQUILIBRIUM

Here we will investigate a stability of the steady-state solutions of the system (2.1).
Let & be a root of the equation (2.3). Put

(31) ) = T -+ Y1, To = Yo.
Subsituting (3.1) into (2.1) and using (2.2), we obtain
1 (t) =ya(t),

32 S5 ) Sl 1 () S i) fo R

After elementary trigonometric transformation we have
71(t) =y2(2),

(3:3) ¥2(t) =2a cos (:i‘: + -y—lziﬂ) sin (?_:'_1_(_‘_51) + /000 dK(7)yi(t = 7).

2
It is easy to see that linear approximation of the system (3.3) has the form
Ui (t) =a(t),

(&) ya(t) =a cos Ty () + _/:G dK(7)y(t — 7).
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The conditions (1.5) for the system (3.4) have the form

4
(3.5) ko < —acosZ, k1 >0, ko < ——,
14+ 4/14+ P3
where
~ as + 1
as = —acosT — ko, P2 = ;
ky
Theorem 3.1. Let & > 0 is a point of stable equilibrium of the system (2.1). Then
(3.6) S(#) <0,

i.e. & is a point of decrease of the characteristic function S(z).
Let & > 0 is a point of increase of the characteristic function S(z), i.e.

(3.7) S(z) > 0.
Then & s a point of unstable equilibrium of the system (2.1).

Proof. Using derivative of the function (2.4)

S(z) = -;-:(cos:z - Sinx)

and the equation (2.3) we have

sin:?:) acosi + kg
7 Za :

8(&) = %(cosi‘ -

From the first inequality of the conditions (3.5) follows (3.6).
Let (3.7) hold. Then the first inequality of the conditions (3.5) don’t hold and #
cannot (see Remark 1.1) be a point of stable equilibrium. Theorem is proved.

Remark 3.1. Let & is a point of extremum of the characteristic function S(z), i.e.
(3.8) S(#) = 0.

Then £ is a point of one-sided stable of equilibrium of the system (2.1). It means that if
system stays in the point  from any enough small neighborhood of £ and $(z) < 0 then
system go to &. But if system stays in the point = from any enough small neighborhood
of # and S(z) > 0 then system go away from 2.

Remark 3.2. Consider the system (1.6) by stochastic perturbations of white noise type
which are proportional to the deviation sin z(¢) —sin &, where Z is a steady-state solution
of the system (1.6). In this case the system (1.6) can be written as

(3.9) #(t) — asinz(t) = c€(t)(sinz(t) — sind) + u(t)
and corresponding system (3.4) has the form

Y1(t) =ya(t),

in(t) ~(a+ of(e) cosun(®) + [~ dK(Tyn(e 7).

If the conditions (3.5) and
2a k
2 N 2 / 2
b Y S (B PR ))
<p20052§:(1 4 ( TP

hold then the steady-state solution & of the system (3.9), (1.2) is stable in probability.
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4, NUMERICAL ILLUSTRATING EXAMPLES

Let in control (1.2) dK (1) = (b16(T — h1) + b26(7 — hg))dr, hy, he = 0, §(7) - Diraca
function. In this case the system (1.6), (1.2) has the form

(4.1) #(t) — asinz(t) = biz(t — hy) + baz(t — ha).
From (1.4) it follows that
(4.2) ko=by+bs,  ki=bihy+boha, ko= [ba]h] + [ba|h3.

4.1. Leta =1, by = 1, bp = —1.08, hy = 0.8, hg = 0.3. By that kg = —0.08,
ky = 0.476, ko = 0.7372. In this case the first condition from (1.5) don’t hold. Therefore
the zero solution of the equation (4.1) is unstable.

On the other hand the equation (2.3) has three positive roots &1, &3, &3, such that
2.906892 < #; < 2.906893, 6.864548 < o < 6.864549, 8.659471 < I3 < 8.659472.
Therefore (Remark 2.1) these points are the steady-state solutions of the system (4.1).

It is easy to check that

S(il) <0, S(ff?g) >0, S(:i‘3) L5

It means that the points #; and #3 are points of decrease of the function (2.4) and the
point & is a point of increase of this function. Therefore the points #; and #; are
points of stable equilibrium of the system (4.1) and the point &, is a point of unstable
equilibrium of the system (4.1).

Note that for the point of stable equilibrium 3 all conditions (3.5) hold but for the
point of stable equilibrium #; first and second conditions (3.5) hold only. For the point
of unstable equilibrium #, the first condition (3.5) don’t hold.

Let (p(s) = 6.864548, s < 0, i.e. initial function close to @z and less than @3. In this
case the solution of the system (4.1) go away from point of unstable equilibrium &, and
go to point of stable equilibrium ;. This situation is shown on the Fig.4.1.

Let ¢(s) = 6.864549, s < 0, i.e. initial function close to & and greater than &,. In
this case the solution of the system (4.1) go away from point of unstable equilibrium &
and go to point of stable equilibrium #3. This situation is shown on the Fig.4.2.

4.2. Leta =1, by = 1, by = —0.782766, hy = 0.8, hy = 0.3. By that kg = 0.217233,
ky = 0.565170, ko = 0.710449. In this case the system (4.1) has one positive steady-state
solution # = 4.493409 only. This point is a point of minimum of the function S(z) and
therefore the a point of one-sided stable equilibrium.
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Fic. 4.3

Let ¢(s) = 4, s <0, i.e. initial function close to & and less than . In this case the
solution of the system (4.1) go to the point . This situation is shown on the Fig.4.3.

Let ¢(s) = 4.5, s < 0, i.e. initial function close to # and greater than Z. In this
case the solution of the system (4.1) go away from the point £ and go to infinity. This
situation is shown on the Fig.4.4.

Remark 4.1. Since the function S(z) is an even function then for negative roots of the
equation (2.3) the pictures are symmetrical.
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