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Optimal Control of Certain Hyperbolic
And Integral Stochastic Equations
L. E. SHAIKHET ' UDC 518.21

Using Gateaux differentiation of the quality functional we obtain necessary conditions for optimality of a
control for stochastic differential equations of hyperbelic type containing twe-parameter white neise and
for stochastic integral equations. Bibliography: 15 titles.
Consider the optimal control problem {£,, J{u), U} with motion trajectory £,, quality functional J{u), and
set of admissible controls U. Let Ji(ug,v) be the Gateaux differential of the functional J{u) at the point

u = ug, Le.,

Ti(aoyv) = lim ~[J(e) = J(wo)l, 1)

U, =ug+sv, yel vel. (2)

If up is an optimal control of the problem {£,, J(u),U}, ie., J{ug) = :rE:B J(u), then the Gateaux
differential (if it exists) must be nonnegative. Thus the inequality

Ji{up,v) 20, wel, : (3)

is a necessary condition for optimality of the contral ug. If the Gateaux differential is linear in v, the
representation J§(uqe,v) = {J'(ug),v) holds [6], where J'(ug) is the Gateaux derivative of the functional
J(up) at the point u = ug. If in addition U/ is a convex set and up an interior point of U/, then condition
(3) is equivalent (2] to the condition
JJ[H{;II = {. |:4J

If the function J{u) is convex on U, then condition (4) is sufficient for optimality of the control ug [2].

In some cases condition (3) (or (4)) enables us to obtain a synthesis of the optimal control in explicit
form.

In the deterministic case this approach has been used in solving optimal control problems for processes
described by ordinary and partial differential equations (cf., for example, [1, 2]).

In the author’s papers [9-13] and the paper of Warfleld [15] the limit (1) was computed for various
(differential, integral, partial differential) stochastic systems with a noise-free control. In the construction
of of the control u, in these papers the McShane variation was used instead of relation (2). For systems

with a noisy control this limit does not exist.

The existence of a limit of the form (1), (2) for systems with a neisy control was proved by Varsan
[14] for ovdinary stochastic differential equations,  However, since optimal control theory for stochastic
ordinary differential equations (cof., for example, [4, 8]) is more developed than optimal control theory
for stochastic integral equations and stochastic partial differential equations, the study of the latter 15 of

particular interest.
The purpose of the present. article is to calculate the limit (1), (2) for systems with a noisy control

deseribed by stochastic differential equations of hyperbolic type and stochastic integral equations.

Differential equations of hyperbolic type. Consider the aﬁtiniiaj control problem for the stochastic
differential equation

3;;7’ RN b{z.ﬂz}.u{z}}a;;jgj (5)

£(z,0) =wlx), £0,9)=¢(y), »(0)=w(0),
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with quality functional
J(u) = M[F({{Z}H-]f G(z,&(2),u(z))dz]. ‘
D

Here a(z,p,u) is an n-dimensional vector, &z, p,u) is an n x m matrix, F(p) and G(z,p, u) are nonnegut:--

2
functions, z = (z,y) € D = [0, X] x [0,Y], Z = (X\Y),p€ R", u € R, ﬂa:é‘;}

two-parameter white noise. Equations of the form (5) have been studied, for example, in [3, 9].
Let {€2,0, P} be a probability space, {F.} a flow of g-algebras, F; € o, z = (z,y) Sr = (5,8} if z -
y < t, o, is the minimal g-algebra containing all the o-algebras Fy, ,y and Fy, ) for r > z, U the se1 .
admissible controls, i.e., F;-measurable functions u(z) for which |ul|® = suglf".".'llf'u(z:]]2 < co. The letter (
TE

15 m-dimensiol..

is used to denote arbitrary positive constants, and V, (resp. V,,) denotes differentiation on p (resp. u).
It iz assumed that the hunctions ¢(z) and ¥(y) are gp-measurable and

s I"n-'[lt,ﬂl:.:l:}!2 + sup M(y)]* < oo, Iy
0<r< X 0<y<Y
and that the functions a{z,p, u), bz, p,u), F(p), and G(z, p,u) are differentiable on p and u and such tha:
la(z, p,u)[* + |5(z, p,u)|* + F(p) + G(z,p,u) + [V F(p)[*

+|V,G(z, pu)|* + |V G(z,pu)l* < C(1+ [p|* + [ul?), (8
[Vpa(z,p,u)l + [Vb{z, p, u)l + [Vualz, o) + [Vub(z,p,u)| < C, (9

[Vpalz,pr,u1) — Vpalz, pa,u2)* + [Vpb(z, p1,w1) — Vyb(z, pa, ua)? '

+ |Vua(z,pr,u1) = ?“a{z.pg,u:}l? + [Vub(z,p1,u1) — vuh{z1piau2”2

+ |V Glz,pryur) — VpGlz, pr.wa)l* + [VuG(2,p1,u1) — VG2, pr, 12

+ |V F(p) = Vo F(p2)* £ Cllpy — paf* + [y —wa*]. (10
Let £3(z) be an F.-measurable solution of Eq. (5) with the control ug and £,(z) the solution with th:-

control u,.

THEOREM 1. Let ug € U, v € U'. Then the limit (1), (2) for the control problem (5), (6) exists and is equul
to :

Jo(uo,v) = Mlgg(Z2)V, F(£0(2)) + ff(QEEZWFGIIszuEH},uu(z}} +v*(2)VuG(z, bo(z), uo(2))) dz).
o

(11)
Here go(z) is a solution of the equation
. :
% = Vyalz,€o(2) uol=))0(2) + Vualz, §olz ), 10(2))u(=)
3 lz'H.l'
+ 19,82, 6o(2) val2)ao(2) + Publi (2 ual el g (12)

with initial condition go(z,0) = ¢o(0,y) = 0.
1
To prove Theorem 1 we need to study the behavior of the process ¢.(z} = E{{E[z} — £olz)).

LEMMA. Let ug € U, v € U. Then ||g.|| < oo uniformly on ¢ and “"E. lge — qull = 0.

PRroOF: It follows from (5) that
() = 7 [ [latr€utryuer) = atrolrdsatrl e+ 7 f [, €t = b o), ol o)
0 1]
(13
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Applying the Newton-Lethne: formula on the interval 0 < ¢ < 1 to the funetions
alt)=wr.§(rhuglr)), B(r)=br.&(rhui(r)),

where

£0(r) = Eolr) + 7(E(T) = &ulr))s
np(r) = ug(r) + 7{ulr) — up(r)),

we represent (13) in the form

2e(2) = f/[ﬂ' (r)gel(r) + AG(r)( r‘}}ﬂ’r+/ ABp(r)ge(r) + Bu(rv(r)] widr),

A;{r} = '/; Vpa(r, £ {r), ul(v))dr,
1
L) = [ Vaalr €2, i) ar,
ul
Bi(r) = [ Vpblr €10, ul(r))ar,
Bi) = [ Ve i) dr
It follows from (14), (9), and the inequality ||v]| < oo that

Mlge(2)* < C(l +f Mg (r)|? dr),
’ o

Consequently ([9], Lemma 1), we have [lq.|| < C.
It follows fmm (12) and (14) that for I, = g. — ga

le(z) = Ae(z) ffA{a}f r]ldr-i—//ﬁ" Me(r)w(dr),

he(2) = j f [(AS(r) = A2(r))a0(r) + (AS(r) — AL())o(r)] dr
n

4 f [(BE(r) = BS())ao(r) + (BE(r) — BS(r))u(r)] w(dr).
o

From (15) and (9) we obtain
M) < Okl + [ | MiL P o]
1]

rom which ([9], Lemma 1) we have ||I,] < C|lh.||.
It remains to show that lim el = 0. Since

Ihl? < € f [MI5(2) - A3 Naala + MIBHS) = BY Do)

(14)

(15)

(16)

+ M(AL(=) = A (20 () + M|(BZ(z) — B z})v(z)]*] dz,
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it suffices to prove that one of the terms on the right-hand side of (16) tends to zero. The proof is similu:
for the other terms.

Let yn{z) be the indicator function of the set {w : |g(z)] > N}. Representing gg(z) in the for..
qo(2) = qo(z)xw(z) + qo(2)(1 — xn(z)) and using the inequalities |45(z) — A}(2)] £ C and |4 — A[|| £ C
respectively according as |q(z)] > N or |go(2)] < N (these mt:quﬂ.htles follow from (9) and {ll]] and thie
inequalities ||ge|| < oo and ||v]| < o), we obtain

[ [ Mica32) - A3@Daola) s < Claaxnll + N2 (a7
i

Since |lqo]l < oo, it follows that for any é > 0 there exists N such that ||qoxn|® < &/2C. Fixing this
N, we choose £ so that N?e? < £/2C. Thus for any § > 0 there exists £ such that the right-hand side of
inequality (17) becomes less than §. The lemma is now proved.

PROOF OF THEOREM 1: By analogy with (14) it follows from (6) that
|

Te(weyv) = () = ) = Mg DFH2) + [ [2163 ) + v (2)G8EN ). (18)
D

1
F) = [ O R
|
G;{:}:ju. VaG(z, &l (2),ul(z))dr
1
G:[z;l:-/n Vo2, 6l {(z) ul{z)) dr.

Using (8) and (10) together with the inequalities ||v|| < oo and ||g|| < oo, it is easy to obtain the
inequality
[ Je(uo, v) = Jy(uo,v)| < Cle + il

from (18) and (11). The theorem is now proved.

REMARK 1. It follows from (11) and (12) that Jy(up,v) is linear in v. Consequently the representation
Ji{ug,v) = {Ji{ug), v}, holds, where J'{up) is the Gateaux derivative of the functional (6} at the poiw
u = up. If the functional {6) is convex (for example, quadratic), then the condition J'(ug) = 0 is necessary
and sufficient for the control uy to be optimal [E]

ExAMPLE 1. For the control problem

2 2"_?
a = ala) + (BL2) + (2ol

u]=M[£ (Z)+ A u*(2)dz], A >0,
I

the Gateaux differential has the form

T(uo,v) = 2M[Ea( Z)g0(2) + A ff (2 )v(2) dz],
' o

00(2) = f [ty ian)
0
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om. Ité’s formula [5]. tahiig areonn of the equality Mge(z) = 0, we obtain
N Zi e M _Uum e )uabs Nrla)ilay s,
b

msequently
Joln..vyp=2M f/[[ﬂ{z} + v z)uo(2))y(2) + Aug(2)]v(z)dz =0,
i}

ience up(z) = —3(z)diz )/ (A + ¥¥(2)).

Integral equations. Consider the optimal control problem for the stochastic integral equation (¢ €

)
E(t) = n(t) +f alt,s,£(s),u(s))ds +f b[t,s,f{s}?u{a}'} dw( 5) {19)
0 0
th quality functional .
I = MIFET) + [ Gls,€(s) u(s)) . (20)

The stochastic process n(t) with values in B" and the m-dimensional Wiener process w(t) are inde-
adent and Fi-measurable, {F,} is a flow of o-algebras on the probability space {2, o, P} and U is the set
admissible controls, i.e., F;-measurable functions 1(t) with values in R for which

lul* = sup Mu(t)® < co.
0<t<T
We shall assume that the functions n(t) a(t,s, z,u), b(t,s,z,u), F(z), and G({,z,u) have suitable

ensions and satisfy conditions analogous to (7)-(10). We then have the following result.

EOREM 2. Suppose up € U and v € U. Then the limit (1) and (2) for the control problem (19), (20)
sts and equals

T
Jo(uo,v) = Mg (T)V:F(£o(T)) + fu (qa(t)VG(t, Eolt)uolt)) + v (2)VuGlL, ol 1), ua(1))) dt].
Here go(t) is 2 solution of the equa;!:'an
t ;
qﬂ'{t} = -x; (vza“1 3, Eﬂ(5}1 “ﬂfﬁj}gﬂis} =+ IUm"ﬂ:!: 3,{:}(&}, uﬂ('g)}v{‘g”‘i’

+_£ (Veb{t, s, Eo(s), uols))qu(s) + Vub(t, s, Eo(5), wa(s))vls)) dw(s).

The proof is analogous to the proof of Theorem 1.

MARK 2. Theorem 2 can easily be generalized to equations with Poisson perturbations, and also to
gro-functional equations of neutral tvpe [11, 13].

WMPLE 2. For the control problem
|
E(t) =yt + f (A a0+ (8, 8 )uls)) dwols),
[H]
- Ifl ¥
Ji) = leJrT} ¥ .xf r.*(.»-m.s], A0,

Al



we have

T
Ty(i0,) = 2M[6o(Thao(T) + A | wafs)o(e)es].

T
qn{T]zj'; (T, shu(s) dw(s).

Computing the expression MEy(T)go(T) directly, we obtain

Hence ug(s) = =B(T, sy T, s) /(A + (T, s)).

[

b2

-}

10.

11.

12,

13.

14.

4a2

T
Jo(wo,v) = EM[ [(B(T, 5) + ¥(T, s)uo( s)Y(T, ) + Ao (s)]u(s) ds.
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