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Abstract. Many processes in automatic regulation, physics, mechanics, biology, economy, ecology
etc. can be modelled by hereditary equations (see, e.g. [1-6]). One of the main problems for the theory
of stochastic hereditary equations and their applications is connected with stability. Many stability
results were obtained by the construction of appropriate Lyapunov functionals. In [7-15] the proce-
dure is proposed, allowing, in some sense, to formalize the algorithm of the corresponding Lyapunov
functionals construction for stochastic functional differential and stochastic difference equations. In
this paper stability conditions are obtained by using this procedure for the mathematical model of
the predator-prey system with aftereffect and stochastic perturbations. Similar problem for epidemic
model with time delays influenced by stochastic perturbations was solved in [16].
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1 Problem statement

One of the predator-prey mathematical model can be described by the equations
£1(t) = 21 (1) (a - [T h@mt-sds - [ sl - s)ds> ,

Fa(t) = —baa(t) + /OOO g1(s)z1(t — s)ds /Ooo ga(s)za(t — s)ds. (1)

Here x1(t) and x5(t) are densities of predator and prey populations, respectively. It is assumed that
a,b are positive constants, fi(s),gi(s), ¢ = 1,2, are nonnegative functions, such that

ai= [T his)ds <oo,  Bi= [T g(eds < .

oo o
pi = / sfi(s)ds < oo, ¢ = / sgi(s)ds < oo.
0 0
It is easily to see that the positive point (7, x3%) of the system (1) equilibrium is given by

b . a—oqx]  affy —bay
;L'Q = =

T BBy Qg a2(31 85

7
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provided that (everywhere below this condition it is assumed hold)
a8y > bay.
Note that some particular cases of the model (1) were often considered before. For example, let
fi(s) = aid(s), gi(s)=bid(s—h), i=1,2, h>0,

where 6(s) is the Dirac function. Then the system (1) has the form [3]

Z1(t) = x1(t)(a — a1 @1 (t) — agwa(t)),

Zo(t) = —bxa(t) + bibax1(t — h)xa(t — h).

If here h = 0 we get the classical Lotka-Volterra model

Z1(t) = 21(t)(a — a1 (t) — agaa(t)),

fg(t) = X9 (t)(—b + b1boxy (t))

Let us assume that the system (1) is exposed by stochastic perturbations which are of white noise type
and are directly proportional to distances 1 (t), z2(t) from values of =7, 3, influence on the 2 (t), 22(t)
respectively. By this way, the system (1) will be reduced to the form

51(8) = 21 (1) (a _ /0 Y ()t — s)ds — /0 o (s)walt — s)ds) +or(wa(t) — 2 (1),

Zo(t) = —bxa(t) +/0 g1(s)z1(t — s)ds/o g2(s)xa(t — s)ds + oa(xa(t) — x5)wa(t). (2)
Here 01,09 are constants, wi (), wa(t) are independent from each other Wiener processes [17].

Let us centre the system (2) on the positive equilibrium by the change of variables y; = x; — 27,
Y2 = T2 — 5. By this way, we obtain

i) =)+ 1) ([ Al = 9ds+ [ sl - )ds ) + (e 0),

a(t) = ~ba®)+ 5 [ n(shun(t = )ds + 7 [ ga(syalt - 5)ds+ 3)

o o
[ ot = s)ds [ ga(sualt - 5)ds + oapnltyia(t)
It is easily to see that the stability of the system (2) equilibrium is equivalent to the stability of the
zero solution of the system (3).

Below we will obtain the sufficient conditions for stability in probability of the zero solution of the
system (3). Along with the system (3) we will consider the linear part of the system (3), i.e.

A () = —a ( | st = 9ds+ [ p)z( - s>ds) + oz (B (1),

S(t) = —bza(t) + 2% /0 T gu(s) 21 (t — s)ds + /0 " ga(s)za(t — 8)ds + oaz(tin(t).  (4)
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2 Definitions, auxiliary statements
Consider the stochastic differential equation of neutral type [1]
d(z(t) — G(t,zt)) = a(t, ze)dt + b(t, x¢)dw(t), xo=¢ € H. (5)

Let {Q2,0,P} be the probability space, { fi,t > 0} be the family of o-algebras, f; € o, H be the space
of fo-adapted functions p(s) € R™, s < 0, ||¢llo = sups<ole(s)], ||l¢l|? = sups<oE|¢(s)|?, E be the
mathematical expectation, z; = x(t+s), s < 0, w(t) be the m-dimensional f;-adapted Wiener process,
the n-dimensional vector a(t, ¢) and the n xm-dimensional matrix b(¢, ) are defined for t > 0, p € H,

a(t,0) =0, b(t,0) =0,

Gl < [T le-s)lar (), [T <1 ©

The generating operator L [3] of the equation (5) is defined by the formula

. 1
LV(t, SO) = lzmAHOK (Et,wv(t + AaytJrA) - V(ta SO)) .

Here a scalar functional V' (¢,¢) is defined for t > 0, ¢ € H and y(s) is the solution of the equation
(5) for s >t with initial function y; = ¢ € H, E;, is the conditional expectation.

Let us consider an arbitrary functional V (¢, ), for t > 0, ¢ € H, reduce it to the form V (¢, ) =
V(t,¢(0),¢(s)), s <0 and define the function

Vo(t,x) =V(t,p) =V(t,x) = V(t,x,2(t +s)),

s <0, Y = a4, x = ¢(0) = z(t).

Let D be a class of functionals V (¢, ¢) for which the function V,,(t,2) has two continuous derivatives
with respect to x and one bounded derivative with respect to t for almost all ¢ > 0. For functionals
from D the generating operator L of the equation (5) is defined and can be calculated in a final form

3].

Definition 1. The zero solution of the equation (5) is called mean square stable if for any € > 0
there exists a § > 0 such that E|z(¢)|> < € for any ¢ > 0 provided that ||p||3 < é.

Definition 2. The zero solution of the equation (5) is called asymptotically mean square stable if it
is mean square stable and lim;_~ E|x(t)|? = 0.

Definition 3. The zero solution of the equation (5) is called stable in probability if for any €; > 0
and ez > 0 there exists such § > 0 that the solution x(t) = z(t,¢) of the equation (5) satisfies
the condition

P{lz(t,p)| > e1} < e

for any initial function ¢ € H such that P{||¢|¢ < 6} = 1. Here P{-} is the probability of the
event enclosed in braces.

Theorem 1 Let the condition (6) hold and there exists the functional

V(t,p) = W(t, @) + |0(0) = G(t, )|

such that V(t,p) € D,
0 <EW(t,2¢) < c1]lzelf3,

ELV (t,7;) < —coElz(t)[?,

¢i >0,i=1,2. Then the zero solution of the equation (5) is asymptotically mean square stable.
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Theorem 2 Let there exists the functional V(t,) € D such that
e <V (t,ze) < eallaell3,

LV(t, :Bt) S O,

¢ >0, for any function ¢ € H such that P{||¢|lo < 6} = 1, where § > 0 is sufficiently small. Then
the zero solution of the equation (5) is stable in probability.

The proofs of these theorems can be found in [1,2].

By this way, the construction of stability conditions is reduced to construction of Lyapunov func-
tionals. Below we will use the general method of Lyapunov functionals construction [7-15] allowing to
obtain stability conditions immediately in terms of parameters of a system under consideration.

3 Procedure of Lyapunov functionals construction
The proposed procedure of Lyapunov functionals construction consists of four steps.

1. Let us transform the equation (5) to the form
dz(t,ze) = (b1(t, x(t)) + c1(t, x¢))dt + (ba(t, x(t)) + ca(t, x¢))dw(t), (7)

where z(t,0) = b;(t,0) = ¢;(t,0) = 0, ¢ = 1,2, the functionals b;, depend on ¢ and x(t) only and
do not depend on the previous values x(t + s), s < 0, of the solution.

2. Consider the equation without memory (ordinary stochastic differential equation)

dy(t) = b1(t,y(t))dt + ba(t, y(t))dE(t).- (8)

Let us assume that the zero solution of the equation (8) is uniformly asymptotically mean square
stable and there exists the Lyapunov function v(t,y), for which the condition Lov(t,y) < —cly|?,
¢ > 0, hold. Here Ly is the generating operator of the equation (8).

3. We'll construct the Lyapunov functional V(t,x;) in the form V = Vj + V5. Let us replace
the argument y of the function v(¢,y) on the functional z(¢,2;) from the left-hand part of the
equation (7). As a result we obtain the main component Vi (t,x:) = v(t, z(t, x¢)) of the functional
V(t, .’Et).

4. Usually the functional V7 almost satisfies the requirements of stability theorems for the equation
(7). In order that these conditions would be completely satisfied the auxiliary component V3
can be easily chosen by standard way.

Note that the representation (7) is not unique. This fact allows using different representations
(7) to construct different Lyapunov functionals and as a result to get different sufficient stability
conditions.

4 Asymptotic mean square stability

In this section we will construct the Lyapunov functional for getting sufficient conditions of asymptotic
mean square stability of the linear system (4) zero solution.
Following the step 1 of the procedure let us represent the system (4) in the form:

a4 (0 =i [ 1) /_ 1(0)adis) =
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= —a 2}z (t) — 2 fo " fa(8)en(t — e)ds + orz (Bbn(d),
3 (20 +31 [“ao) [ n0a00) = ©)

oo
= —(b— Box])z2(t) + :55/0 g1(8)z1(t — s)ds + ooz (t)un(t).
The auxiliary system (step 2) in this case has the form
Uy (t) = —al:c‘{ul (t) + o1y (t)'lbl (t),

uy(t) = —(b — Byzi)ua(t) + caun(t)in(t). (10)
Lemma 1. Let
0} <20z}, 0% <2(b— Byz}). (11)

Then the zero solution of the system (10) is asymptotically mean square stable.

Proof. Let us show that the function
v = u% & ug

is a Lyapunov function for the system (10). Let Ly be the generating operator of the system (10).
Then
Lov = 2uy (—oqzTus (1)) + 2un(— (b — Boz})ua(t)) + ol + o3ul =

= —(2017] - 0})ui(t) — (2(b - Baz) — 03)ui(t).
Let
¢ = min[20,7} — 01,2(b — Byx}) — 03]
Then
Lov < —c(u(t) +uj(t)) = —clu(®)[?,

where u = (u1, u2). From Theorem 1 it follows that the system (10) zero solution is asymptotic mean
square stable. Lemma is proved.

Following the step 3 of procedure we will construct a Lyapunov functional for the system (4) in
the form V) + V5, where

Vi = (21(t) — /0 ~ fi(s) t; z1(9)d9d3)2+

t

+ (ZQ(t)+.7;'f fo * gal®) t 22(9)d9ds)2. (12)

Let L be the generating operator of the system (4). Calculating LV; for the system (4) using the
representation (9), we obtain

—8

t

h=2(a0) -3t [ £

-8

» (9)dods) (—almi‘zl(t) _ gt L " Bl s)ds) 4

+2 (20 +2i [ (o) [ 2a@)atis) (~ = Buata(t)+ 23 [ on()eale — o) +

+0‘%z¥ + ngg —

= —(2012] — 0})2{(t) — (2(b — Baa}) — 03)23(t)—

o fo " fa(8)n(t)2a(t — s)ds + 25 fo ol il S
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+2a1 ()2 /0 ~ hus) /t ts ()21 (0)dOds—
_9(b — Bya)al /0 ~ ga(s) / L ()2 (0)d0ds+
2(?) / fils / o7 /t 0)2s(t — 7)dOdrds +

+2x1x2/0 ga(s )/0 g1(7) /tts 29(0)z1(t — T)dOdTds.

Let v, > 0,7=1,2,3,4. Then

2|21 (t — 8)z2(t)] <
2|21 (0)z2(t — 7)| <
2|21 (t — 7)22(0)] <

Using these inequalities and taking into account

2%

2l

V32
Yaz1
(

11) we obtain
LV; < ~(Qonaf — 0})22(1) — (206 — Byai) — o) za(0)+
tai [T A )naA® 47 - s)ds + 03 [ i(s) 00230 — 5) + 77 (0 ds+
0 0
+a (})? /Ooo f1(s) /tts(z%(t) + 22(0))dOds+
0= et [ (o) [ (Bl0) + 30))dbds
@i [T A [ pe / (1522(0) + 73 23 (¢ — 7)) dBdrds+

t
+x1x2/0 ga(s )/0 (T )/t_ (vaz1(t — T) + v 22(0))dOdTds =
— (20127 — (7% —a1pr (.73){)2 — ’ylagxi‘)z%(t)_

~(2(0— Baat) — 0 — (b = Pyrllauat — 93" Bra3) B (0)+
o8] t
Hon +300)(@i)? [ () [ s O)dbdse
07! +93 madat [R50 - s)ds+

o
0 +7aa)rs [ (s)de - s)ds+

00 t
b= Baai 97 Bra)ed [ aa(s) [ 20)abs.

Choosing the functional V5 in the form
oo t
Ve = (o +300)(a)? [ fis) [ (0=t +5)2H(0)ands+

00 t
+07 a5 pad)ed [ () [ O)dodst
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o] t
0+ ruqi)a; [ orls) [ 2H0)abds+
—s
1 > ! 2
b= Byt +77 et [ aa(s) [ 0=+ ):30)a0as,
—s
for the functional V = V] 4+ V5 we obtain
LV < ~[20127(1 = prai) — oF — (71 + vsp1i)aza} — (2 + 74q227) Br3)1 (1)~
—[200 = Boa))(1 = q227) — 08 — (9" + 5 praana] — (2" + 75 qer) Bk 25 (1)
Thus we proved the following
Theorem 3 Let 31 > 1 and there are positive constants 7y, Yo, Y3, V4 Such that

20023 (1 — p1a}) > 01 + (71 + y3p1a}) et + (Vo + Yaqe}) 3125,

2(b — Bya}) (1 — qua}) > 03 + (77" + 73 'miat)asat + (731 + 7 qea}) By (14)

Then the system (4) zero solution is asymptotically mean square stable.

For proof it is enough to show that
b— Baat = b(1 = B;") > 0.
Corollary 1. Let the parameters of the system (4) satisfy the conditions
By >1, A>0, AB>C(C? (15)

where
A =2027(1 — p1x]) — (J'%, B =2(b— Byx])(1 — qu]) — (r%,

C = (1+pix])agz] + (1 + qa]) B 25.
Then the system (4) zero solution is asymptotically mean square stable.

Proof. From (15) it follows that
A - C
C B
Therefore there exists a positive constant ~ such that

c”~ 7B

Thus the conditions (14) hold by v, = v =v3 =74 = 7.

5 Stability in probability

It is known [15] that if the initial nonlinear system has a nonlinearity order more than one, then the
conditions providing the asymptotic mean square stability of the linear part of the initial system, in
the same time provide the stability in probability of the initial system. Show it for the zero solution
of the nonlinear system (3).

Theorem 4 Let the Theorem 3 conditions hold. Then the zero solution of the system (3) is stable in
probability.
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Proof. Let us reduce the system (3) to the form

S =t [T06) [ n@aas) =
— —awain(t) =i [ Ll - s)ds-
—n(®) ([ Al = ds+ [ falohnlt —)ds) + o (0 (o),
(a1 [T [ o) - (16)

—S

= —(b= Buri)ua(t) +3 | " ()t — s)ds+

+ /OOO g1(8)y1(t — s)ds /Ooo 92(8)y2(t — s)ds + o2ya(t)wa(t).

Let L be the generating operator of the system (3). Consider the functional

V= <y1(t) _ /OOO f1(s) /t;y1(9)d9d5)2+

+ <yz(t)+x; /Ooogg(s)/tt yg(H)d9d3>2.

—S

Calculating LVj by virtue of the representation (16) we get

Vi =200 -3t [ 76) [ n(@asasi—anain(®) — a5 [ L)l - s

([ T At — s)ds + / " Fas)yalt — 5)ds)]+

o] t [e%e)

2lya(t) +ai [ gals) [ 1p(0)d0ds] (b= Boaiie(®) + a3 [ gr(o)n(t—)ds+

+/oo g1(s)y1(t — s)ds /oo 92(8)y2(t — 8)ds] + o3y? + o3ys =
0 0
= [=2012] + oTlyi (1) + [-2(b = Byx}) + oBlys () +
s [T | ts n(O1(0)dds — 207 [~ Lt - s)ds+

+2(ap)? |  h(s) / ~ () / i y1(0)ys(t — 7)d0drds—
23O At - 9ds+ [ L(salt - 5)ds)+

+2at [ (o) Ksyl(t)yl(a)deds( | A= ndr+ [~ gt - ryan)-

2= y1)at [ 02(6) [ p(Oua(@)avas 25 [ gi(shunle — yal)as+

+2x7 75 /Ooo g2(s) /Ooo g1(7) [ y1(t — 7)y2(0)dfdrds+

—S

#202(t) [ 01() [ ga(rhn(t = syt = r)drdst
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+2x7 /OOO g2(s) Zt y2(0)dOds /OOO g1(s)y1(t — s)ds /:O g2(T)y2(t — T)dT.

—S

Supposing that sups<; yi(s)| < 6, i = 1,2, and using the inequalities kind of (13) we obtain

LVi < [—2aq2} + 0} + 26(o1 + @)y (t) + [—2(b — Byx}) + o3ly3 (1) +

rased)? [T RG) [ R0+ @) dvds+

—S

w0} [ R0 + 93— 5)ds+
@ [T 16 [ R0 [ 0wi0) 780 - r)dsards+
+(ar+azat [ AG) [ 030+ ) dbds+
0Pt [ ) [ G0 +i3(@)dvas+
+5 [ 7 ()it = ) + 7 W 0)ds+
satas [T ) [T o) [ Gue—m) 4273 0) dbdrds+

81+ @) [T o1 [ 9a(r)@R( = 5) +30 — 7))irds =

= [“2127 + 0% + aap1 (2])® + Y1002t + 6(o + a2) (2 + pra})]yi () +

+[=2(0 — By}) + 03 + (b — Bya})apa} + 73 Br3lyd () +
00 t

Hl(or +7500) @) + 8(oa + az)af] [ () [ yE0)d0ds+

0 t

—S

07 + 95 mi)at [ Rl - s)ds

(02 +v4@227) 23 + 605(1 + gon7)] /0 g1(s)yi (t — s)ds+

o0 t
b= Boai 97 Bradai [ ans) [ =B(0)dods+

t—s

011+ i) [ guls)ut - s)ds
Choosing the functional V3 in the form

Vo= l(on + p00) (1) + 8las +a)at] [~ Ais) [ (0 t+ )2 0)dbdst

—S

o] t
+or! 4y piad)ed [T RG) [ s0)dedst

00 t
+Hn + ageri)ai + 00,1+ aad)) [ oa(e) [ uRO)dbds

t—s

o] t
b= Byt + a7 Brap)at [ ga(o) [ (O t+ 9)3O)dbds

—S
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t

(L + i) [ gas) [ uh(e)asas,

t—s

as a result for the functional Vi 4+ V5 we get
L(Vi + Vo) < —2aqx}(1 — p1x}) — 0 — (1 + 73p127)o2x} — (2 + Yaqa}) 3105 —

—26(a1 + ag) (1 + pra}) — 685(1 + goa})]ys (t)—
—12(b = Box}) (1 — qoa}) — 03 — (V7" + 73 'pra})onat—
—(v2 "+ 7 @) Bl — 681 8a(1 + qaat)]ys (). (17)

If the Theorem 3 conditions hold then for sufficiently small § > 0 we obtain L(V; + V3) < 0.

The functional V; 4+ V5 is a nonnegative functional but it is not a positive definite functional. This
is the reason that we cannot use now Theorem 2. For constructing a positive definite functional let
us consider the functional

Wi = yi(t) +y3(t).
Calculate LW; using the equation (3). As a result we get

LW = =21 (00 + 2D [ At = s)ds+ [ fa(slyalt - s)dsl+

P2 bya®) + 23 [ (st = s+ i [ gals)uat - )ds+
4 [Tl —9)ds [ gulohatt - s)as) + atyde) + i) <
< atyi(t) + (03 — 2b)y3(H)+
F2ROL Al = o)lds+ [ fals)lyelt - 5)ldsl+
il [T AEEHO + vt = 9)ds+ [T Rals) W) + 3t - s)ds)+

+ah /Ooogl(s)(y?(t_s)+y%(t))ds+x>; /Ooogg(s)(yg(t)+yg(t_5))d5_|_

Hoa®] [ 91() [ 9a(r) R~ ) + yi(e —))drds

Supposing that sup,<; |yi(s)| < 6, i = 1,2, we obtain
LWy < [(28 + @7)(a1 + az) + 05]yi (1) + [-20 + 5125 + Boa] + o3Jy3 (1) +
ot /0 * R(s)y2(t — s)ds + o /0 o)yt — s)ds+
(2} + 68,) /0 G182t — 8)ds + (a7 + 68;) /0 " o)yt — s)ds.

Choosing the functional W5 in the form

o} t 00 t
Wo=ai [ " As) [ dO)ads+ai [Tl [ 0)asds+

00 t o] t
g +08) [ ai(s) [ yRO)ds + (@i +08) [ ouls) [ s0)avas,
for the functional Wy + Ws we get

LWy +W1) < [(26 + 27) (a1 + a2) + 0F + ara} + (25 + 68)61)yi () +
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+[—2b 4 3175 + Boxt + 03 + gz} + (27 + 88;)Ba)ys (t). (18)

At last let us consider the functional V' =V 4+ Vi 4 ¢; (W7 + Wa). From (17) and (18) it follows
that for sufficiently small ¢; the functional V' satisfies the Theorem 2 conditions. Therefore the system
(3) zero solution is stable in probability. Theorem is proved.
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