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1. Introduction

Social obesity epidemic models are popular with researchers (see, for instance, [1–8]). In this paper the known nonlinear
social obesity epidemic model [8] is generalized on the systemwith distributed delay. It is supposed also that this nonlinear
system is exposed to additive stochastic perturbations of the type of the white noise that are directly proportional to the
deviation of the system state from the equilibrium point. Such type of stochastic perturbations was first proposed in [9,10]
and successfully used later in a many other works (see, for instance, [11–17]). The considered nonlinear system is linearized
in the neighborhood of the positive point of equilibrium and a sufficient condition for asymptotic mean square stability of
the zero solution of the constructed linear system is obtained. Since the order of nonlinearity is higher than 1 this condition
is also a sufficient one [15,16] for stability in probability of the initial nonlinear system by stochastic perturbations.

This type of stability investigationwas successfully used for investigation of different nonlinearmathematicalmodels (SIR
epidemic and some other medical models [9,13,14,18], predator–prey model [10,15–17], Nicholson blowfly model [15,16],
inverted pendulum [15,16]) and can be an interesting tool, in particular, to policy makers.

1.1. Description of the considered model

To build the mathematical obesity model [8] the 24- to 65-year-old population is divided into three subpopulations
based on their body mass index (BMI = Weight/Height2). The classes or subpopulations are: individuals at a normal
weight (BMI < 25 kg/m2) N(t), people who are overweight (25 kg/m2

≤ BMI < 30 kg/m2) S(t) and obese individuals
(BMI ≥ 30 kg/m2) O(t).

The transitions between the different subpopulations are determined as follows: once an adult starts an unhealthy
lifestyle he/she becomes addicted to the unhealthy lifestyle and starts a progression to being overweight S(t) because of
this lifestyle. If this adult continues with his/her unhealthy lifestyle he/she can become an obese individual O(t). In both
these classes individuals can stop his/her unhealthy lifestyle and then move to classes N(t) and S(t), respectively.
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The transitions between the subpopulations N(t), S(t) and O(t) are governed by terms proportional to the sizes of these
subpopulations. Conversely, the transitions from normal to overweight occurs through the transmission of an unhealthy
lifestyle from the overweight and obese subpopulations to the normal-weight subpopulation, depending on the meetings
among them. It is assumed that when an individual at a normal weight is infected by the transmission of an unhealthy
lifestyle from the overweight and obese subpopulations, there is a time s during which the infection develops and it is
only after that time that the infected individual (an individual at a normal weight with an unhealthy lifestyle) becomes an
infectious individual (an overweight individual). This transit is modeled using the term

βN(t)


∞

0
(S(t − s) + O(t − s))dK(s),

where K(s) is a nondecreasing function such that
∞

0
dK(s) = 1, (1.1)

the integral being understood in the Stieltjes sense. The subpopulations’ sizes and their behaviors with time determine the
dynamic evolution of adulthood excess weight.

Thus, under the above assumptions, the following non-linear system of integro-differential equations is obtained:

Ṅ(t) = µN0 − µN(t) − βN(t)


∞

0
(S(t − s) + O(t − s))dK(s) + ρS(t),

Ṡ(t) = µS0 + βN(t)


∞

0
(S(t − s) + O(t − s))dK(s) − (µ + γ + ρ)S(t) + εO(t),

Ȯ(t) = µO0 + γ S(t) − (µ + ε)O(t). (1.2)

Remark 1.1. Note that the solution of the differential equation ẋ(t) = a(t)−b(t)x(t), with x(0) ≥ 0, a(t) ≥ 0 and b(t) ≥ 0,
has the representation

x(t) =


x(0) +

 t

0
a(τ )e

 τ
0 b(s)dsdτ


e−

 t
0 b(s)ds

and therefore x(t) ≥ 0. Since each equation of (1.2) has the form of this equation then the system has non-negative solution.
The time-invariant parameters of this system of equations are:

• ε, the rate at which an obese adult with a healthy lifestyle becomes an overweight individual;
• µ, average stay time in the system of 24- to 65-year-old adults. Note that this parameter is not a birth rate and/or a death

rate. In this case it is assumed as a recruitment and exit rate and its value is the same for entering and leaving the system
and inversely proportional to the mean time spent by an adult in the system;

• ρ, the rate at which an overweight individual moves to the normal-weight subpopulation;
• β , transmission rate because of social pressure to adopt an unhealthy lifestyle (TV, friends, family, job and so on).
• γ , the rate at which an overweight 24- to 65-year-old adult becomes an obese individual because of unhealthy lifestyle;
• N0, proportion of normal weight coming from the 23-year-old age group;
• S0, proportion of overweight coming from the 23-year-old age group;
• O0, proportion of obese coming from the 23-year-old age group.

Here the parameters ε, µ, ρ, β , γ are nonnegative numbers and N0, S0 O0 are nonnegative numbers that satisfy the
condition

N0 + S0 + O0 = 1. (1.3)

Taking into account these conditions and summing the equations of the system (1.2) and putting Q (t) = N(t) + S(t) +

O(t),Q0 = N0 + S0 + O0, we obtain the equation Q̇ (t) = −µ(Q (t) − Q0) with the initial condition Q (0) = Q0. It is easy to
see that this equation has the unique solution Q (t) = Q0. So, from the assumption (1.3), i.e., Q0 = 1, it follows that Q (t) = 1
and the system (1.2) can be simplified to the system of two equations:

Ṅ(t) = µN0 − µN(t) − βN(t)


∞

0
(1 − N(t − s))dK(s) + ρS(t),

Ṡ(t) = µS0 + βN(t)


∞

0
(1 − N(t − s))dK(s) − (µ + γ + ρ)S(t) + ε(1 − N(t) − S(t)). (1.4)
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1.2. Existence of the equilibrium point

The equilibrium point (N∗, S∗) of the system (1.4) is defined by the conditions Ṅ(t) = 0, Ṡ(t) = 0,N(t) = N∗, S(t) = S∗

and via (1.4), (1.1) is a solution of the system of the algebraic equations:

µN0 − µN∗
− βN∗(1 − N∗) + ρS∗

= 0,

µS0 + βN∗(1 − N∗) − (µ + γ + ρ)S∗
+ ε(1 − S∗

− N∗) = 0. (1.5)

From Eqs. (1.5) it follows that

S∗
= ρ−1

[µ(N∗
− N0) + βN∗(1 − N∗)],

S∗
= kρ−1

[µS0 + βN∗(1 − N∗) + ε(1 − N∗)], (1.6)

where

k = ρ(µ + γ + ρ + ε)−1 < 1. (1.7)

Via (1.6), (1.7) we obtain that N∗ is a root of the quadratic equation

β(1 − k)(N∗)2 − (µ + kε + β(1 − k))N∗
+ µ(N0 + kS0) + kε = 0. (1.8)

Lemma 1.1. Assume that N0 + kS0 < 1. If β > 0 then Eq. (1.8) has two real roots: N∗

1 ∈ (0, 1) and N∗

2 > 1. If β = 0 and
µkε > 0 then Eq. (1.8) has one root, N∗

∈ (N0 + kS0, 1).

Proof. Via N0 + kS0 < 1 and β > 0 we have

D =


(µ + kε + β(1 − k))2 − 4β(1 − k)(µ(N0 + kS0) + kε)

>


(µ + kε + β(1 − k))2 − 4β(1 − k)(µ + kε) = |µ + kε − β(1 − k)|, (1.9)

i.e., D > |µ + kε − β(1 − k)| ≥ 0 and therefore the quadratic equation (1.8) has two real roots:

N∗

1 =
µ + kε + β(1 − k) − D

2β(1 − k)
, N∗

2 =
µ + kε + β(1 − k) + D

2β(1 − k)
. (1.10)

If µ + kε < β(1 − k) then

N∗

1 <
µ + kε

β(1 − k)
< 1, N∗

2 > 1.

If µ + kε ≥ β(1 − k) then

N∗

1 < 1, N∗

2 >
µ + kε

β(1 − k)
≥ 1.

If β = 0 then from (1.8) it follows that

1 > N∗
=

µ(N0 + kS0) + kε
µ + kε

> N0 + kS0.

The proof is completed.

Lemma 1.2. Assume that N0 = 1. If µ + kε < β(1 − k) then Eq. (1.8) has two roots on the interval (0, 1]: N∗

1 ∈ (0, 1) and
N∗

2 = 1. If µ + kε ≥ β(1 − k) then Eq. (1.8) has one root only on the interval (0, 1]: N∗

1 = 1.

Proof. Via N0 = 1 and (1.3) we have S0 = 0. Then similar to (1.9) D = |µ + kε − β(1 − k)|. If µ + kε < β(1 − k) then
D = β(1 − k) − (µ + kε) and via (1.10) we obtain

N∗

1 =
µ + kε

β(1 − k)
< 1, N∗

2 = 1.

If µ + kε > β(1 − k) then D = µ + kε − β(1 − k) and via (1.10) we have

N∗

1 = 1, N∗

2 =
µ + kε

β(1 − k)
> 1.

If µ + kε = β(1 − k) then D = 0 and N∗

1 = N∗

2 = 1.
The proof is completed.
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Example 1.1. Following [8] put

µ = 0.000469, γ = 0.0003, ε = 0.000004, ρ = 0.000035,
β = 0.00085, N0 = 0.704, S0 = 0.25, O0 = 0.046.

Then via (1.10), (1.6), (1.3) we obtain

N∗
= 0.3311, S∗

= 0.3814, O∗
= 0.2875.

Putting β = 0 with the same values of the other parameters, in accordance with Lemma 1.2 we obtain

N∗
= 0.7149 > N0 + kS0 = 0.7148, S∗

= 0.1465, O∗
= 0.1386.

Put now N0 = 1, S0 = O0 = 0. In accordance with Lemma 1.2 if β = 0.00085, i.e., if β > 0, then β > (µ + kε)(1 − k)−1
=

0.00049 and N∗
= 0.5770, S∗

= 0.2588,O∗
= 0.1642. If β = 0 then N∗

= 1, S∗
= O∗

= 0.
Note that here and below all information used to define the parameters of themodel is based on a sample of the Valencian

population.

2. Stochastic perturbations, centralization and linearization

Let us suppose that the system (1.4) is exposed to stochastic perturbations which can be considered as metering
errors. We will suppose that these stochastic perturbations are of the type of white noise (ẇ1(t), ẇ2(t)) and are directly
proportional to the deviation of the system (1.4) state (N(t), S(t)) from the equilibrium point (N∗, S∗), i.e.,

Ṅ(t) = µN0 − µN(t) − βN(t)


∞

0
(1 − N(t − s))dK(s) + ρS(t) + σ1(N(t) − N∗)ẇ1(t) (2.1)

Ṡ(t) = µS0 + βN(t)


∞

0
(1 − N(t − s))dK(s) − (µ + γ + ρ)S(t) + ε(1 − N(t) − S(t)) + σ2(S(t) − S∗)ẇ2(t).

Here w1(t), w2(t) are the mutually independent standard Wiener processes, and the stochastic differential equations
of the system (2.1) are understood in the Ito sense [16]. Note that the equilibrium point (N∗, S∗) of the system (1.4) is the
solution of the system (2.1) too.

To centralize the system (2.1) in the equilibrium point put now x1 = N −N∗, x2 = S − S∗. Then via (2.1), (1.7) we obtain

ẋ1(t) = a11x1(t) + a12x2(t) + βN∗I(x1t) + βx1(t)I(x1t) + σ1x1(t)ẇ1(t),

ẋ2(t) = a21x1(t) + a22x2(t) − βN∗I(x1t) − βx1(t)I(x1t) + σ2x2(t)ẇ2(t), (2.2)

where

a11 = −µ − β(1 − N∗), a12 = ρ, (2.3)
a21 = −ε + β(1 − N∗), a22 = −k−1ρ,

I(x1t) =


∞

0
x1(t − s)dK(s).

Example 2.1. Using the values of the parameters from Example 1.1 we obtain

a11 = −0.0010376, a12 = 0.000035,
a21 = 0.0005646, a22 = −0.000808.

It is clear that stability of the equilibrium point of the system (2.1) is equivalent to stability of the zero solution of the
system (2.2). Neglecting the nonlinear terms in (2.2) we obtain the linear part of the system (2.2):

ẏ1(t) = a11y1(t) + a12y2(t) + βN∗I(y1t) + σ1y1(t)ẇ1(t), (2.4)
ẏ2(t) = a21y1(t) + a22y2(t) − βN∗I(y1t) + σ2y2(t)ẇ2(t).

3. Stability of the equilibrium point

Note that the nonlinear system (2.2) has the order of nonlinearity higher than 1. Thus, as follows from [15,16], sufficient
conditions for asymptotic mean square stability of the zero solution of the linear part (2.4) at the same time are sufficient
conditions for stability in probability of the zero solution of the nonlinear system (2.2) and therefore are sufficient conditions
for stability in probability of the solution (N∗, S∗) of the system (2.1).

To get sufficient conditions for asymptotic mean square stability of the zero solution of the system (2.4) rewrite this
system in the form

ẏ(t) = Ay(t) + B(yt) + σ(y(t))ẇ(t), (3.1)
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where

y(t) = (y1(t), y2(t))′,
w(t) = (w1(t), w2(t))′,

B(yt) = (βN∗I(y1t) − βN∗I(y1t))′, (3.2)

A =


a11 a12
a21 a22


, σ (y(t)) =


σ1y1(t) 0

0 σ2y2(t)


,

and aij, i, j = 1, 2, are defined by (2.3).

Definition 3.1. The zero solution of Eq. (3.1) with the initial condition defined by y(s) = φ(s), s ≤ 0, is called:

– mean square stable if for each ε > 0 there exists a δ > 0 such that E|y(t, φ)|2 < ε, t ≥ 0, provided that
sups≤0 E|φ(s)|2 < δ;

– asymptotically mean square stable if it is mean square stable and for each initial function φ the solution y(t) of Eq. (3.1)
satisfies the condition limt→∞ E|y(t)|2 = 0;

– stable in probability if for any ε1 > 0 and ε2 > 0 there exists δ > 0 such that the solution y(t, φ) of (3.1) satisfies the
condition P{supt≥0 |y(t, φ)| > ε1/F0} < ε2 for any initial function φ such that P{sups≤0 |φ(s)| < δ} = 1.

Following the procedure of Lyapunov functional construction [15,16] for stability investigation of Eq. (3.1) consider the
auxiliary equation without memory

ż(t) = Az(t) + σ(z(t))ẇ(t). (3.3)

Remark 3.1. Via the Routh–Hurwitz criterion [19] the zero solution of the differential equation ż(t) = Az(t), where A is a
2 × 2-matrix, is asymptotically stable if and only if

Tr(A) = a11 + a22 < 0, det(A) = a11a22 − a12a21 > 0. (3.4)

For the matrix Awith the elements (2.3) these conditions hold:

Tr(A) = −[µ + ρk−1
+ β(1 − N∗)] < 0,

det(A) = ρk−1
[µ + kε + β(1 − k)(1 − N∗)] > 0.

Example 3.1. Using the values of the parameters from Example 1.1 we have

Tr(A) = −0.0018456, det(A) = 0.0000008.

Put

δi =
1
2
σ 2
i , âii = aii + δi, i = 1, 2. (3.5)

Lemma 3.1. If

a21 ≤ 0 (3.6)

and

â11 < 0, â22 < 0, (3.7)

then the zero solution of Eq. (3.3) is asymptotically mean square stable.

Proof. Let the matrix P be a positive definite solution of the matrix equation

A′P + PA + Pσ = −C, (3.8)

where

P =


p11 p12
p21 p22


, Pσ =


p11σ 2

1 0
0 p22σ 2

2


, C =


c 0
0 1


, (3.9)

c > 0, the matrix A is defined in (3.2), (2.3).
Let L be the generator [16] of Eq. (3.3) and v(z) = z ′Pz. Then via (3.8)

Lv = z ′(A′P + PA + Pσ )z = −z ′Cz.

This means [16] that if the matrix P is a positive definite matrix then the zero solution of Eq. (3.3) is asymptotically mean
square stable. So, it is enough to show that the solution P of the matrix equation (3.8), (3.9) really is a positive definite one.
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Note that the matrix equation (3.8), (3.9) can be represented as the system of the equations

2(p11a11 + p12a21 + p11δ1) = −c,
2(p12a12 + p22a22 + p22δ2) = −1,
p11a12 + p12Tr(A) + p22a21 = 0, (3.10)

with the solution

p11 = −
c + 2a21p12

2â11
, (3.11)

p22 = −
1 + 2a12p12

2â22
,

p12 =
a21â11 + ca12â22

2Z
,

Z = Tr(A)â11â22 − a12a21(â11 + â22).

Put now

Ai = det(A) + a2ii, i = 1, 2. (3.12)

Via (3.4), (3.5), (3.11), (3.12)

Z + a12a21â22 = Tr(A)â11â22 − a12a21(â11 + â22) + a12a21â22
= (Tr(A)â22 − a12a21)â11 = (A2 − |Tr(A)|δ2)â11 (3.13)

and similarly

Z + a12a21â11 = (A1 − |Tr(A)|δ1)â22. (3.14)

From (3.11), (3.13) we obtain

p11 = −
cZ + a21(ca12â22 + a21â11)

2Zâ11

= −
c(Z + a12a21â22) + a221â11

2Zâ11

= −
c(A2 − |Tr(A)|δ2) + a221

2Z
. (3.15)

Similarly from (3.11), (3.14) it follows that

p22 = −
A1 − |Tr(A)|δ1 + ca212

2Z
. (3.16)

Let us show that p11 > 0, p22 > 0 for arbitrary c > 0. In fact, note that via (3.12), (3.4),

A1A2 = (det(A) + a211)(det(A) + a222)

= (det(A) + a211 + a222) det(A) + a211a
2
22

= (|Tr(A)|2 − (a11a22 + a12a21)) det(A) + a211a
2
22

= |Tr(A)|2 det(A) + a212a
2
21 ≥ |Tr(A)|2 det(A)

or

|Tr(A)| det(A)

A1
≤

A2

|Tr(A)|
,

|Tr(A)| det(A)

A2
≤

A1

|Tr(A)|
. (3.17)

Besides via (3.4), (3.6), (3.7), (3.12) we have

|Tr(A)| det(A) − |a11|A2 = −a12a21|a22| ≥ 0,
|Tr(A)| det(A) − |a22|A1 = −a12a21|a11| ≥ 0.

So,

|a11| ≤
|Tr(A)| det(A)

A2
, |a22| ≤

|Tr(A)| det(A)

A1
. (3.18)
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As a result, from (3.7), (3.17), (3.18) we obtain

δ1 <
A1

|Tr(A)|
, δ2 <

A2

|Tr(A)|
. (3.19)

Note also that via (3.11), (3.4), (3.6), (3.7) we have Z < 0. From this and (3.15), (3.16), (3.19) it follows that p11 > 0, p22 >
0 for an arbitrary c > 0.

Let us show that p11p22 > p212. In fact, from

(c + 2a21p12)(1 + 2a12p12)
4â11â22

> p212

it follows that 4Bp212 − 2(a21 + ca12)p12 < c by B = â11â22 − a12a21 > 0. Substituting into this inequality p12 from (3.11)
we have

B(a21â11 + ca12â22)2 − (a21 + ca12)(a21â11 + ca12â22)Z < cZ2

or

c2a212â22(Z − Bâ22) + câ11â22(ZTr(A) − 2a12a21B) + a221â11(Z − Bâ11) > 0.

From (3.11), (3.6), (3.7) it follows that

â11(Z − Bâ11) = â11(Tr(A)â11â22 − a12a21(â11 + â22) − (â11â22 − a12a21)â11)
= â11(Tr(A)â11â22 − a12a21â22 − â211â22) = â11â22(Tr(A)â11 − a12a21 − â211)
= â11â22((Tr(A) − â11)â11 − a12a21) = â11â22((a22 − δ1)â11 − a12a21) > 0.

Similarly

â22(Z − Bâ22) = â11â22((a11 − δ2)â22 − a12a21) > 0,
ZTr(A) − 2a12a21B > 0.

So, for an arbitrary c > 0 the matrix P with the entries (3.11) is a positive definite one. The proof is completed.

Lemma 3.2. If

a21 > 0 (3.20)

and

max(δ1, δ2) <
det(A)

|Tr(A)|
(3.21)

then the zero solution of Eq. (3.3) is asymptotically mean square stable.

Proof. Similarly to Lemma 3.1 it is enough to show that the solution P of thematrix equation (3.8), (3.9) is a positive definite
matrix.

Note that via the condition (3.20) we have

Ai = a11a22 − a12a21 + a2ii ≤ aiiTr(A), i = 1, 2.

From this and (3.4), (3.12), (3.21) it follows that

δi <
det(A)

|Tr(A)|
≤

Ai

|Tr(A)|
≤ |aii|, i = 1, 2. (3.22)

Via (3.11), (3.5), (3.4), (3.12), (3.21) we have

Z = Tr(A)(a11 + δ1)(a22 + δ2) − a12a21(Tr(A) + δ1 + δ2)

= Tr(A) det(A) + Tr(A)δ1a22 + Tr(A)δ2a11 + Tr(A)δ1δ2 − a12a21(δ1 + δ2)

= −|Tr(A)| det(A) + A2δ1 + A1δ2 − |Tr(A)|δ1δ2

< −|Tr(A)| det(A) + (A1 + A2)
det(A)

|Tr(A)|

= −(|Tr(A)|2 − A1 − A2)
det(A)

|Tr(A)|
= −

2a12a21 det(A)

|Tr(A)|
< 0. (3.23)

From (3.15), (3.16), (3.22), (3.23) we obtain that p11 > 0, p22 > 0 for an arbitrary c > 0.
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Let us show that p11p22 > p212. In fact, via (3.11), (3.15), (3.16) this inequality takes the form

(c(A2 − |Tr(A)|δ2) + a221)(A1 − |Tr(A)|δ1 + ca212) > (ca12â22 + a21â11)2

which is equivalent to the condition

c2a212(det(A) − |Tr(A)|δ2 + a222 − â222) + a221(det(A) − |Tr(A)|δ1 + a211 − â211)

+ c[(A1 − |Tr(A)|δ1)(det(A) − |Tr(A)|δ2) + a222(det(A)

− |Tr(A)|δ1) + (det(A))2 + 2a12a21(a11a22 − â11â22)] > 0. (3.24)

Via (3.20)–(3.22) and |aii| ≥ |âii|, i = 1, 2, the condition (3.24) holds for an arbitrary c > 0. So, for an arbitrary c > 0 the
solution P of the matrix equation (3.8), (3.9) is a positive definite matrix. The proof is completed.

Remark 3.2. If the condition (3.6) holds, i.e. a21 ≤ 0, then β ∈

0, (µ + ε)(1 − k)−1


. If β > (µ + ε)(1 − k)−1

then the condition (3.20) holds, i.e. a21 > 0. For example, by the values of the parameters from Example 1.1 we have
β = 0.00085 > (µ + ε)(1 − k)−1

= 0.0004945 and a21 = 0.0005646 > 0.

Theorem 3.1. If the conditions (3.6), (3.7) or (3.20), (3.21) hold and for some c > 0 the entries (3.11) of the matrix P satisfy the
condition

(βN∗
|p12 − p22|)2 + 2βN∗

|p11 − p12| < c (3.25)

then the solution (N∗, S∗) of the system (2.1) is stable in probability.

Proof. Note that the order of nonlinearity of the system (2.1) is higher than one. Therefore [15,16] to get for this system
conditions of stability in probability it is enough to get conditions for asymptotic mean square stability of the zero solution
of the linear part (2.4) of this system. Following the procedure of Lyapunov functional construction [15,16] wewill construct
a Lyapunov functional for the system (2.4) in the form V = V1 +V2, where V1 = y′Py, y = (y1, y2)′, P is the positive definite
solution of the system (3.10) with the entries (3.11) and V2 will be chosen below.

Let L be the generator [8] of the system (2.4). Then via (2.4), (3.10),

LV1 = 2(p11y1(t) + p12y2(t))(a11y1(t) + a12y2(t) + βN∗I(y1t)) + p11σ 2
1 y

2
1(t)

+ 2(p12y1(t) + p22y2(t))(a21y1(t) + a22y2(t) − βN∗I(y1t)) + p22σ 2
2 y

2
2(t)

= −cy21(t) − y22(t) + 2βN∗
[(p11 − p12)y1(t) + (p12 − p22)y2(t)]I(y1t).

Via (1.1), (2.3) we have

2y1(t)I(y1t) ≤ y21(t) + I(y21t),

2y2(t)I(y1t) ≤ νy22(t) + ν−1I(y21t)

for some ν > 0 and using these inequalities, we obtain

LV1 ≤ −cy21(t) − y22(t) + βN∗
|p11 − p12|(y21(t) + I(y21t)) + βN∗

|p12 − p22|(νy22(t) + ν−1I(y21t))

= (βN∗
|p11 − p12| − c)y21(t) + (βN∗

|p12 − p22|ν − 1)y22(t) + qI(y21t), (3.26)

where

q = βN∗(|p11 − p12| + |p12 − p22|ν−1). (3.27)

Putting

V2 = q


∞

0

 t

t−s
y21(θ)dθdK(s),

via (1.1), (2.3) we get LV2 = q(y21(t) − I(y21t)). Therefore, via (3.26), (3.27) for the functional V = V1 + V2 we have

LV ≤ (2βN∗
|p11 − p12| + βN∗

|p12 − p22|ν−1
− c)y21(t) + (βN∗

|p12 − p22|ν − 1)y22(t).

Thus, if

2βN∗
|p11 − p12| + βN∗

|p12 − p22|ν−1 < c, βN∗
|p12 − p22|ν < 1, (3.28)

then via [16] the zero solution of the system (2.4) is asymptotically mean square stable.
From (3.28) it follows that

βN∗
|p12 − p22|

c − 2βN∗|p11 − p12|
< ν <

1
βN∗|p12 − p22|

. (3.29)
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Thus, if for some c > 0 the condition (3.25) holds then there exists ν > 0 such that the conditions (3.29) (or (3.28)) hold
too and therefore the zero solution of the system (2.4) is asymptotically mean square stable. From this it follows that the
zero solution of the system (2.2) and therefore the equilibrium point (N∗, S∗) of the system (2.1) is stable in probability. The
proof is completed.

Example 3.2. Consider the system (1.4) with the values of the parameters ε, µ, ρ, β, γ and the equilibrium point (N∗, S∗)
given in Example 1.1. We consider the levels of noises σ1 = 0.028256, σ2 = 0.029031. From (3.5) it follows that
δ1 = 0.0003992, δ2 = 0.0004214 and the condition (3.20) holds: max(δ1, δ2) < det(A)|Tr(A)|−1

= 0.0004436.
Put c = 10. Then via (3.11) p11 = 8335.7, p12 = 569.4, p22 = 1344.7 and the condition (3.25) holds: (βN∗

|p12−p22|)2+
2βN∗

|p11 − p12| = 4.419 < 10. Thus, the solution of the system (1.4) is stable in probability.
Let us get now two corollaries from Theorem 3.1 which simplify a verification of the stability condition (3.25). Via (3.11)

we have

p12 − p11 = p12 +
c + 2a21p12

2â11
=


1 +

a21
â11


a21â11 + ca12â22

2Z
+

c
2â11

=
(a21 + â11)a12â22 + Z

2Zâ11
c +

(a21 + â11)a21
2Z

= B0c + B1, (3.30)

where

B0 =
(Tr(A) + a12)â22 − a12a21

2Z
, B1 =

(a21 + â11)a21
2Z

. (3.31)

And similarly

p12 − p22 = p12 +
1 + 2a12p12

2â22
=


1 +

a12
â22


a21â11 + ca12â22

2Z
+

1
2â22

=
(a12 + â22)a12c

2Z
+

(a12 + â22)a21â11 + Z
2Zâ22

= D0c + D1, (3.32)

where

D0 =
(a12 + â22)a12

2Z
, D1 =

(Tr(A) + a21)â11 − a12a21
2Z

. (3.33)

Remark 3.3. Put

f (c) = (βN∗D0)
2

c +

D1

D0

2

+ 2βN∗
|B0|

c +
B1

B0

− c. (3.34)

Taking into account (3.30)–(3.34) the condition (3.25) is equivalent to the condition f (c) < 0.
Put now

S =

βN∗D0

2 D1

D0
−

B1

B0

2

+
B1

B0
,

R+ = 2βN∗
|B0|


1 − 2βN∗

|B0|

2(βN∗D0)2
−

D1

D0
+

B1

B0


,

R− = −2βN∗
|B0|


1 + 2βN∗

|B0|

2(βN∗D0)2
−

D1

D0
+

B1

B0


,

Q =
1

4(βN∗D0)2
−

D1

D0
−

B2
0

D2
0
. (3.35)

Corollary 3.1. If the conditions (3.6), (3.7) or (3.20), (3.21) hold and S < 0 then the solution (N∗, S∗) of the system (2.1) is stable
in probability.

Proof. Via (3.35) from S < 0 it follows that B1B−1
0 < 0. Putting c0 = −B1B−1

0 > 0we obtain f (c0) = S < 0, i.e. the condition
(3.25) holds. The proof is completed.

Corollary 3.2. If the conditions (3.6), (3.7) or (3.20), (3.21) hold and 0 ≤ R+ < Q then the solution (N∗, S∗) of the system (2.1) is
stable in probability.
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Fig. 1. 25 trajectories of the processes N(t) (blue), S(t) (green), O(t) (red) with the values of the parameters µ = 0.000469, γ = 0.0003, ε =

0.000004, ρ = 0.000035, β = 0.00085, h = 0.1, δ1 = 0.0003992, δ2 = 0.0004214,N0 = 0.704, S0 = 0.25,O0 = 0.046 and the equilibrium point
N∗

= 0.3311, S∗
= 0.3814,O∗

= 0.2875. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

Proof. Let us suppose that c + B1B−1
0 ≥ 0. Then the minimum of the function f (c) is reached by

c0 =
1 − 2βN∗

|B0|

2(βN∗D0)2
−

D1

D0
≥ −

B1

B0
.

Substituting c0 into the function f (c) we obtain that the condition f (c0) < 0 is equivalent to the condition 0 ≤ R+ < Q . The
proof is completed.

Corollary 3.3. If the conditions (3.6), (3.7) or (3.20), (3.21) hold and 0 < R− < Q then the solution (N∗, S∗) of the system (2.1) is
stable in probability.
Proof. Let us suppose that c + B1B−1

0 < 0. Then the minimum of the function f (c) is reached by

c0 =
1 + 2βN∗

|B0|

2(βN∗D0)2
−

D1

D0
< −

B1

B0
.

Substituting c0 into the function f (c) we obtain that the condition f (c0) < 0 is equivalent to the condition 0 < R− < Q .
The proof is completed.

Example 3.3. Consider the system (2.1) with the values of the parameters from Example 1.1 and δ1 = 0.0003992, δ2 =

0.0002661. Calculating S, R+,Q , we obtain: S = −0.0100916 < 0, R+ = 7499 < Q = 18161. Via both Corollaries 3.1 and
3.2 the solution (N∗, S∗) of the system (2.1) is stable in probability.

Example 3.4. Consider the system (2.1) with the values of the parameters from Example 1.1 and δ1 = 0.0003992, δ2 =

0.0004214. Calculating S, R+,Q , we obtain: S = 0.0051611 > 0, R+ = 7811 < Q = 18914. The condition of Corollary 3.1
does not hold but from Corollary 3.2 it follows that the solution (N∗, S∗) of the system (2.1) is stable in probability.

4. Numerical simulation

Let us suppose that in (1.3) dK(s) = δ(s − h)ds, where δ(s) is the Dirac delta-function, h ≥ 0 is a delay.
In Fig. 1 trajectories of the solution of (2.1), (1.2) are shown for the values of the parameters from Examples 1.1 and 3.1:

µ = 0.000469, γ = 0.0003, ε = 0.000004, ρ = 0.000035, β = 0.00085, the initial values N0 = 0.704, S0 = 0.25,O0 =

0.046, the levels of noises σ1 = 0.028256, σ2 = 0.029031 and the delay h = 0.1. One can see that all trajectories go to the
equilibrium point N∗

= 0.3311, S∗
= 0.3814,O∗

= 0.2875.
Putting β = 0 with the same values of the other parameters, in accordance with Example 1.1 one can see that all

trajectories go to another equilibrium point N∗
= 0.7149, S∗

= 0.1465,O∗
= 0.1386 (Fig. 2).

Change now the initial values on N0 = 1, S0 = O0 = 0, and put again β = 0.00085. In accordance with Example 1.1
corresponding trajectories of the solution go to the equilibrium point N∗

= 0.5770, S∗
= 0.2588,O∗

= 0.1642 (Fig. 3).
Numerical simulations of the processes N(t), S(t) and O(t) were obtained with the step of discretization ∆ = 0.01 via

the standard Euler–Maruyama scheme for stochastic differential equations.



Author's personal copy

124 F.J. Santonja, L. Shaikhet / Nonlinear Analysis: Real World Applications 17 (2014) 114–125

Fig. 2. 25 trajectories of the processes N(t) (blue), S(t) (green), O(t) (red) with the values of the parameters µ = 0.000469, γ = 0.0003, ε =

0.000004, ρ = 0.000035, β = 0, h = 0.1, δ1 = 0.0003992, δ2 = 0.0004214,N0 = 0.704, S0 = 0.25,O0 = 0.046 and the equilibrium point
N∗

= 0.7149, S∗
= 0.1465,O∗

= 0.1386. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

Fig. 3. 25 trajectories of the processes N(t) (blue), S(t) (green), O(t) (red) with the values of the parameters µ = 0.000469, γ = 0.0003, ε =

0.000004, ρ = 0.000035, β = 0.00085, h = 0.1, δ1 = 0.0003992, δ2 = 0.0004214,N0 = 1, S0 = 0,O0 = 0 and the equilibrium point
N∗

= 0.5770, S∗
= 0.2588,O∗

= 0.1642. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

5. Conclusions

In this work, a multidisciplinary approach based on delayed and stochastic differential equations is proposed to
understand the evolution of the obesity epidemic in the Region of Valencia, Spain. Taking into account the study proposed,
we note that around 70% of the Valencian population will be obese or overweight in the next years. The existence of a
equilibrium point stable in probability in N∗

= 0.3311045, S∗
= 0.3814023,O∗

= 0.2874932, allows us to confirm it. Note
that N, S and O correspond to normal weight, overweight and obese population, respectively.

This work is an example of how delayed and stochastic models can be useful tools to model human behavior. In this case,
we haveworked on a specific region in Spain but this approach can be applied to any region or country. Themain result of the
paper is the identification of the conditions for stability in probability of the equilibrium point by stochastic perturbations.
We consider that this approach can be an interesting framework for public health authorities and policy makers.
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