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STABILITY IN PROBABILITY OF NONLINEAR STOCHASTIC
SYSTEMS WITH DELAY

E. Shaikhet

We consider the nonlinear stochastic differential equation [1]

= Az(t +Zth—h)+Zm -rl)f1
(D

+g(t,z(t),z(t —91),...,z(t—6,)),
zg = ¢ € Hp.

Using the method of Lyapunov functionals we get a new sufficient condition for the stability in probability of the trivial
solution of (1). Analogous studies of the stability of stochastic systems with delay were also made in [2-7].
Let {Q, f, P} be a probability space with flow of o-algebras f, C f. Let Hy, be the space of fj-measurable functions

o(s), s € [—h, 0], h € max[h;, 7;, 8;], with values in R and norm |¢| = sup_, . <o | ¢(s) | whose trajectories are
bounded and right continuous for s < O and left continuous for s = 0 with probability 1, £,(t), ..., §,(0) be mutually
independent scalar Wiener processes, A, B;, o; be constant n X n matrices, the function g(t, Xy, Xy, ..., X) satisfy the condition
l
lg(t, 20, 21, ... 2DL2 ¥ ksl "N )
. J=0 ' ’ :
B0 gy >l =1 sl

x(t) be a solution of (1) at time t, x, be the trajectory of the process x(s) for s < t.
The trivial solution of (1) is said to be stable in probability if for any ¢, > 0 and &, > 0 one can find a 6 > 0 such
that the solution x(t) = x(t, ¢) of (1) satisfies the inequality

P{sup |z(t, )| > e1} < e2
t>0

for any initial functions ¢ € H, which are less than é with probability 1, i.e.,

P{ sup [p(s) <6} =1.
—h<s<0

The square matrix R is said to be negative if the quadratic form x'Rx is negative definite.
The complete mfxmtesunal L operator of (1) is defined by

)

LV(t,p) = ‘L";oi["(‘“ vera) = V(L o),

where y(s) is-a solution of (1) for s = t with initial condition y(t + s) = ¢(s), s € [—h, 0].

We describe a class of functionals for which this operator can be computed.

We represent an arbitrary functional V(t, ¢) defined on [0, o) X Hj in the form V(t, ¢) = V(t, ¢(0), ¢(s)), s < 0,
and set :
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Vo(t,z) =V (t, ) = V(t,zt) = V(t, z,z(t + 5)),
p=z¢, 5<0, z=p(0)=z(t)

Let D be the class of functionals V(t, ¢) for which the function V LX) is twice continuously differentiable in x and
has bounded derivative in t for almost all t = 0. On functionals from D the complete infinitesimal operator L is defined and
is equal to

LV(t ) = at Volt, z) + (Az(t)+ Z Boolt -k
i=1

+g(t,z(t), z(t — 6y),. .. x(t—Gl)))/%V‘p(t,z)

— (3)
2Zz(t 0',6 5V (t, z)oi2(t — 7).
We consider the functional
V(t,z¢) = |z(t) ] +1/ t)+Z/ Biz(s) ds
t
5 (v ot e (o hi =0 fa(e) ds
i=1 t—h;
4)
+Zb/ z(s)| ds + ( u+12/ |a, s)2ds
+(v+1+wv(b,h)) Z k;8% =1 / lz(s)|? ds.
j=1 "'61'
Here
v20, b;=|Bi|, pi=|(A+B)Bil, B=)_ B,
i=1
r L
(b,h) =D bihi, €i(8) =Y k6%, 5>0, i=0,1.
1= 3=1
In addition, let I be the identity matrix,
T r 1 m -
igl i) (P; h) iglpthu Q B ;U;Ur
THEOREM 1. If the matrix
= inf [ =Bt v h)
RO_A+B+Q+U1:§0[ —+ ] 5)
is negative, then the functional (4) satisfies the condition |
LV(t,z) <0 | 6)
for all trajectories x, such that
llzell < o, (7

where 6 is a sufficiently small positive number.
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Proof. From (3) and (4) we get

LV(t,z¢) = 21"(t)(A:z(t) +3 Bia(t - hi)

=1

+g(t,2(t), 2t — 01),...,=(t — ol)))
T t ’
+2v (z(t) + ; /t.—h,- B;z(s) ds)
x ((A + B)z(t) + g(t, 2(t), 2(t — 61),...,z(t — 9,)))

+ o+ )Y los®)? + v (k) +£0(6)(, ) =)

i=1

- ; 6)b; :
_V;(pz+60( ) 1.)-/;

lz(s)[? ds + blz()|?
h;
+ (v + 1+ (b, h)er @)z = Y bile(t - hi)|?
i=1

l
— (v 14w, ) Y ks8% " Halt ~ 65)1%
=1

Using (2) and (7) we get
LV(t,z¢) < 2(v + 1)z’ (t)Rsz(t),
where
Rs; = Ro + (1 + "V(—’:"l—))eo(a).

Since Ry is negative, for sufficiently small & the matrix R; is also negative. Consequently (6) holds. The theorem is
proved. : '
Remark 1. Analogously to [7] and [8] one can show that from the existence of a functional satisfying the inequalities

Vt.o) 2 le@)F, V(0,0) <cllell®
and (6) and (7) the stability in probability of the trivial solution of (1) follows. Thus we have
THEOREM 2. If the matrix (5) is negative, then the trivial solution of (1) is stable in probability.
Remark 2. Let the nonlinearity in (1) be absent, i.e., g = 0. Then it follows from the proof of Theorem 1 and the
negativity of (5) that for some ¢ > 0 one has :

LV (t, z¢) < 2(v + 1)z’ (t) Roa(t) < —clz(t)[*.

Thus [6], the negativity of (5) not only guarantees the stability in probability of the trivial solution of (1) but also the mean-
square asymptotic stability of the trivial solution of (1) forg = 0.
Example. We consider the system of equations
#1(t) = a1z1(t) + biz1(t — h)z2(t — h)

+ 1z (t) + o1z (t — m)éa(t), ®)
£9(t) = agza(t) + boz1(t — h)z2(t — h)

+ coz32(t) + o222t — m2)éa(t).

Here o; > 1, ap > 1, §(t) and £,(t) are mutually independent Wiener processes. In this case the matrix Ry has the

> Lay B 1(0} 0
Ro—(0a2)+2(0 g, 7

Thus if 2a, + 0; < 0, i = 1, 2, then the trivial solution of (8) is stable in probability.
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