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An unsolved problem of stability for stochastic difference equation with continuous
time is proposed for consideration.
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Contributions to the theory and application of difference equations and stochastic

difference equations with continuous time are advancing (see, for instance [1–6,8–12]).

At the same time, there are a number of simple problems that are easy to formulate but

whose solutions are unknown. In order to attract attention to such problems, a stability

problem for a stochastic difference equation is proposed. This problem is close enough to a

known result, but, nevertheless, is not solved until now. To solve this problem maybe it is

necessary to use some new ideas.

Let {V;F;P} be a probability space, {Ft; t $ 0} be a non-decreasing family of

sub-s-algebras of F and E be the expectation with respect to the measure P.

Consider the scalar stochastic difference equation with continuous time

xðt þ 1Þ ¼ axðtÞ þ bxðt2 1Þ þ sxðtÞjðt þ 1Þ; t . 21;

xðuÞ ¼ fðuÞ; u [ Q ¼ ½22; 0�;
ð1Þ

where a, b and s are known constants, the perturbation j(t) is a Ft-measurable stationary

stochastic process such that

EjðtÞ ¼ 0; Ej2ðtÞ ¼ 1:

Definition 1. The trivial solution of equation (1) is called mean square stable if for any

e . 0 there exists a d . 0 such that Ejxðt;fÞj
2
, e for all t $ 0 if kfk

2
¼

supu[QEjfðuÞj
2
, d:

Definition 2. The trivial solution of equation (1) is called asymptotically mean square

stable if it is mean square stable, and for each initial function f

lim
t!1

Ejxðt;fÞj
2
¼ 0:
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Definition 3. The trivial solution of equation (1) is called asymptotically mean square

quasistable, if it is mean square stable and for each t [ ½0; 1Þ, each initial function f and

a positive integer j

lim
j!1

Ejxðt þ j;fÞj
2
¼ 0:

Remark 1. It is evident that asymptotic mean square quasistability follows from asymptotic

mean square stability but the converse statement is not true [10].

Similar to [7], it can be shown that the necessary and sufficient condition for

asymptotic mean square quasistability of the trivial solution of equation (1) is

jbj , 1; jaj , 1 2 b; s2 ,
1 þ b

1 2 b
½ð1 2 bÞ2 2 a2�: ð2Þ

Stability regions defined by conditions (2) are shown in Figure 1 for different values of

s 2: (1) s2 ¼ 0, (2) s2 ¼ 0:4 and (3) s2 ¼ 0:8.

Consider now the difference equation

xðt þ hÞ ¼ axðtÞ þ b

ðt
t2h

xðsÞdsþ sxðtÞjðt þ hÞ; t . 2h;

xðuÞ ¼ fðuÞ; u [ Q ¼ ½22h; 0�; ð3Þ

where h . 0 and all other parameters are the same as in equation (1).

In the case s ¼ 0, the characteristic equation of equation (3) is

elh ¼ aþ
b

l
ð1 2 e2lhÞ: ð4Þ

Figure 1. Regions of stability for equation (1): (1) s 2 ¼ 0, (2) s 2 ¼ 0:4 and (3) s 2 ¼ 0:8.
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Putting l ¼ iv, i 2 ¼ 21, transform equation (4) to the system of two equations

cosvh ¼ aþ
b

v
sinvh; sinvh ¼ 2

b

v
ð1 2 cosvhÞ: ð5Þ

It is easy to show that system (5) has three solutions:

a ¼ 1; b ¼ 2v tan
vh

2
;

aþ bh ¼ 1;

a ¼ cosvhþ 2cos2 vh

2
; b ¼ 2v cot

vh

2
:

ð6Þ

Solutions (6) define the region of asymptotic stability for the trivial solution of

equation (3) if s ¼ 0. In Figure 2, the corresponding stability region (the bound 1) is

shown for h ¼ 1.

Immediately from (3), it follows Ex 2ðt þ hÞ # ½ðjaj þ jbjhÞ2 þ s2�sups#½t2h;t�Ex
2ðsÞ.

Thus, the inequality

jaj þ jbjh ,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 s2

p
; ð7Þ

is a sufficient condition for asymptotic mean square stability of the trivial solution of

equation (3). Corresponding stability region is shown in Figure 2 (the bound 2) for h ¼ 1

and s2 ¼ 0:4.

The problem is: to get the necessary and sufficient conditions for asymptotic mean

square stability of the trivial solution of equation (3) for s – 0.

Figure 2. Regions of stability for equation (3): (1) h ¼ 1, s 2 ¼ 0 and (2) h ¼ 1, s 2 ¼ 0:4.
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Remark 2. If b ¼ 0, then condition (7) takes the form a2 þ s2 , 1 and coincides with (2).

It is the necessary and sufficient condition for asymptotic mean square stability of the

trivial solution of equation (3) in the case b ¼ 0. Thus, the points A and B (in Figure 2)

with the coordinates 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 s2

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 s2

p
, respectively, belong to the bound of the

exact stability region.
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