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Abstract. In the paper it is shown how the known results of stability theory can be

simply applied to stability investigation of some nonlinear mathematical models with s-

tochastic perturbations. The known discrete delay Mosquito population equation with

an exponential nonlinearity is considered. It is assumed that this model is exposed to

stochastic perturbations which are directly proportional to the deviation of a system state

from an equilibrium point. The necessary and sufficient conditions for asymptotic mean

square stability of two (zero and positive) equilibrium points of a linear approximation of

the considered stochastic difference equations are obtained. These conditions at the same

time are sufficient conditions for stability in probability of equilibrium points of the initial

nonlinear equation. Numerical calculations and figures illustrate the obtained results. The

proposed investigation procedure can be applied for arbitrary nonlinear equations with an

order of nonlinearity higher than one.
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1 Introduction

Consider the known discrete delay Mosquito population equation [2, 3] in the
form

xn+1 = (axn + bxn−1)e−νxn ,

x0, x−1 > 0, n = 0, 1, 2, ... .
(1.1)

Usually (see, for instance, [2]) in (1.1) it is assumed that a ∈ (0, 1), b ∈ (0,∞),
ν = 1. But we will suppose that ν > 0 and the parameters a, b have arbitrary
values.

Putting in the equation (1.1) xn = x∗, we obtain that the equilibrium
points of the equation (1.1) are defined by the algebraic equation

x∗ = (ax∗ + bx∗)e−νx
∗
. (1.2)
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It is easy to see that the equation (1.2) has two solutions:

x∗1 = 0 (1.3)

and

x∗2 =
1

ν
ln(a+ b), a+ b > 0. (1.4)

Below we will assume that the equation (1.1) is influenced by stochastic
perturbations that are directly proportional to the deviation of the system
state xn from the equilibrium point x∗. Note that stochastic perturbations
of such type were first proposed in [1] and successfully used later by other
researchers for different mathematical models with continuous and discrete
time (see, for example, [4, 5] and references therein).

By this assumption some sufficient conditions for stability in probability
of the equilibrium points (1.3) and (1.4) are obtained. The obtained results
are illustrated by numerical calculations and figures of stability regions and
trajectories of the considered equations.

2 Stochastic perturbations and some auxil-
iary equations and definitions

Let {Ω,F,P} be a basic probability space, Fn ∈ F, n ∈ Z = {0, 1, ...}, be
a family of σ-algebras, E be an expectation, ξn, n ∈ Z, be a sequence of
Fn-adapted random variables such that Eξn = 0, Eξ2n = 1. Let a process xn
be a solution of the equation

xn+1 = (axn + bxn−1)e−νxn + σ(xn − x∗)ξn+1,

n = 0, 1, 2, ... ,
(2.1)

with an F0-adapted initial function

xi = ϕi, i ∈ Z0 = {−1, 0}. (2.2)

Here σ is an arbitrary constant and x∗ is an equilibrium point ((1.3) or (1.4))
of the equation (1.1). Note that the equilibrium point x∗ is a solution of the
equation (2.1) too.

Putting in (2.1) xn = x∗ + yn, via (1.2) we obtain

x∗ + yn+1 =(a(x∗ + yn) + b(x∗ + yn−1))e−ν(x
∗+yn) + σynξn+1

=[(ayn + byn−1)e−νx
∗

+ x∗]e−νyn + σynξn+1

or

yn+1 = (ayn + byn−1)e−νx
∗
e−νyn + x∗(e−νyn − 1) + σynξn+1. (2.3)

It is easy to see that stability of the zero solution of the equation (2.3) is
equivalent to stability of the solution x∗ of the equation (2.1).
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Note that the equation (2.3) is a nonlinear equation with an order of non-
linearity higher than one. It is known [4, p.150] that in this case a sufficient
condition for asymptotic mean square stability of the zero solution of the
linear approximation

zn+1 = (ae−νx
∗
− νx∗)zn + bzn−1e

−νx∗ + σznξn+1 (2.4)

of the nonlinear equation (2.3) at the same time is a sufficient condition for
stability in probability of the zero solution of the nonlinear equation (2.3).

It is easy to see that for the zero equilibrium point (1.3) the equations
(2.3), (2.4) are respectively

yn+1 = (ayn + byn−1)e−νyn + σynξn+1 (2.5)

and

zn+1 = azn + bzn−1 + σznξn+1. (2.6)

Similarly, for the equilibrium point (1.4) the equations (2.3), (2.4) are re-
spectively

yn+1 =

(
a

a+ b
yn +

b

a+ b
yn−1

)
e−νyn

+
1

ν
ln(a+ b)(e−νyn − 1) + σynξn+1

(2.7)

and

zn+1 =

(
a

a+ b
− ln(a+ b)

)
zn +

b

a+ b
zn−1 + σznξn+1. (2.8)

Definition 2.1. The zero solution of the equation (2.7) (or (2.5)) is called
stable in probability if for any ε > 0 and ε1 > 0 there exists a δ > 0
such that the solution yi = yi(ϕ) of the equation (2.7) (or (2.5)) satisfies
the inequality P{sup

i∈Z
|yi| > ε} < ε1 for any initial function ϕi such that

P{ sup
i∈Z0

|ϕi| < δ} = 1.

Definition 2.2. The zero solution of the equation (2.8) (or (2.6)) is called
mean square stable if for each ε > 0 there exists a δ > 0 such that E|zi|2 < ε,
i ∈ Z, for any initial function ϕi such that sup

i∈Z0

E|ϕi|2 < δ; asymptotically

mean square stable if it is mean square stable and for each initial function
ϕi such that sup

i∈Z0

E|ϕi|2 <∞ the solution zi of the equation (2.8) (or (2.6))

satisfies the condition lim
i→∞

E|zi|2 = 0.
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3 Stability of the equilibrium points

Consider first the zero equilibrium (1.3). It is known [4, p.18] that the nec-
essary and sufficient conditions for asymptotic mean square stability of the
zero solution of the equation (2.6) are the inequalities

|b| < 1, |a| < 1− b,

σ2 <
(1 + b)[(1− b)2 − a2]

1− b
.

(3.1)

At the same time the inequalities (3.1) are [4, p.150] sufficient conditions for
stability in probability of the zero solution of the equation (2.5) and therefore
for stability in probability of the zero equilibrium point of the equation (2.1).

Similarly to (3.1) from (2.8) we obtain the necessary and sufficient condi-
tions for asymptotic mean square stability of the zero solution of the equation
(2.8) ∣∣∣∣ b

a+ b

∣∣∣∣ < 1,

∣∣∣∣ a

a+ b
− ln(a+ b)

∣∣∣∣ < 1− b

a+ b
,

σ2 <

(
1 + b

a+b

)((
1− b

a+b

)2
−
(

a
a+b − ln(a+ b)

)2)
1− b

a+b

.

(3.2)

Note that the conditions (3.2) can be represented in the form

a > 0, a+ 2b > 0, 1 < a+ b < exp

(
2a

a+ b

)
,

σ2 <

(
1 + 2

b

a

)(
2a

a+ b
− ln(a+ b)

)
ln(a+ b).

(3.3)

So, the conditions (3.3) are sufficient conditions for stability in probability of
the zero solution of the equation (2.7) and therefore of the equilibrium point
(1.4) of the equation (2.1).

Remark 3.1. Note that stability conditions (3.3) for the equilibrium point
(1.4) do not depend on the parameter ν in spite of the equilibrium point (1.4)
depends on ν. In reality it is not a big surprise because putting x′i = νxi we

transform the equation (1.1) to the equation x′n+1 = (αx′n+βx′n−1)e−x
′
n that

does not depend on ν. The equilibrium point (1.4) by this transformation
equals ln(a+ b), i.e., does not depend on ν too.

Remark 3.2. Via the conditions (3.3) we have a + b > 1. So, by the
conditions (3.3) from (1.4) it follows that x∗2 > 0 and we have the zero
equilibrium point x∗1 and the positive equilibrium point x∗2.
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4 Numerical simulation

To construct stability regions in the space of the parameters (a, b) let us
transform the conditions (3.1) and (3.3) to more convenient for numerical
calculations form.

From (3.1) it follows that the bound of a stability region is defined by the
formulas

a = ±
√

1− b
1 + b

(1− σ2 − b2),

−
√

1− σ2 < b <
√

1− σ2.

(4.1)

Via (3.3) we obtain that in the case σ = 0 the part of a stability region
bound is defined as follows

b =

{
1− a, a ∈ (0, 2),
− 1

2a, a ≥ 2.
(4.2)

Putting in (3.3) b = µa, via a > 0 and a+ 2b > 0 we obtain another part of
a stability region bound in the parametrical form

a =
1

1 + µ
exp

(
2

1 + µ

)
, b =

µ

1 + µ
exp

(
2

1 + µ

)
, µ > −1

2
. (4.3)

Putting in (3.3) b = µa in the case σ2 > 0, we have

σ2 < (1 + 2µ)

(
2

1 + µ
− ln[a(1 + µ)]

)
ln[a(1 + µ)]. (4.4)

Solving this inequality with respect to a, we obtain the parametrical equation
of another part of a stability region bound

a =
1

1 + µ
exp

(
1

1 + µ
±

√
1

(1 + µ)2
− σ2

1 + 2µ

)
,

b =µa, µ >
1− σ2 −

√
1− σ2

σ2
.

(4.5)

In Fig.4.1 the bounds of stability regions for the zero equilibrium point
(1.3) (triangle ABC) and the equilibrium point (1.4) (BCD) are shown in the
deterministic case (σ = 0). These regions are constructed by virtue of the
conditions (4.1) and (4.2), (4.3) respectively. Here the points A, B, C, D
have the following coordinates: A(−2,−1), B(0, 1), C(2,−1), D(2e4,−e4).

In Fig.4.2 together with the stability regions from Fig.4.1 in another scale
the similar stability regions are shown for σ = 0.85: the bound 1 for the zero
equilibrium point (1.3) and the bound 2 for the positive equilibrium point
(1.4).

Below we will suppose that ν = 1, σ = 0.85 and for simulation of solutions
of the equations (2.5)-(2.8) we will simulate ξn as an uniformly distributed
on (−

√
3,
√

3) random variable. So, Eξn = 0, Eξ2n = 1.
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First consider the equations (2.6), (2.1) in the point K(0.2,−0.2) (see
Fig.4.2), i.e. with a = 0.2, b = −0.2. This point belongs to stability region
of the zero equilibrium point, i.e. x∗ = 0. So, the zero solution of the
equation (2.6) is asymptotically mean square stable and the zero solution
of the equation (2.1) is stable in probability. In Fig.4.3 one can see 100
trajectories of a solution of the equation (2.6) with the initial function z−1 =
−4, z0 = 2. All trajectories go to zero. In Fig.4.4 300 trajectories of a
solution of the equation (2.1) with the initial function x−1 = −0.4, x0 = 0.3
are shown. All trajectories go to zero.

Consider now the equations (2.8), (2.1) in the point L(2, 0.5) (see Fig.4.2),
i.e. with a = 2, b = 0.5. This point belongs to stability region of the
equilibrium point x∗ = 0.9163. So, the zero solution of the equation (2.8) is
asymptotically mean square stable and the solution x∗ of the equation (2.1)
is stable in probability. In Fig.4.5 one can see 100 trajectories of a solution
of the equation (2.8) with the initial function z−1 = x∗ − 3.5, z0 = x∗ + 1.
All trajectories go to zero. In Fig.4.6 300 trajectories of a solution of the
equation (2.1) with the initial function x−1 = x∗ + 0.4, x0 = x∗ − 0.3 are
shown. In spite of some trajectories go to −∞ almost all trajectories go to
the equilibrium point x∗ = 0.9163.
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Figure 4.1: Regions of stability in probability of the equilibrium points (1.3)
(triangle ABC) and (1.4) (BCD) for σ = 0.

Figure 4.2: Regions of stability in probability of the equilibrium points (1.3)
and (1.4) for σ = 0 and σ = 0.85.
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Figure 4.3: 100 trajectories of the equation (2.6) in the point K with a = 0.2,
b = −0.2, σ = 0.85, x∗ = 0, x−1 = −4, and x0 = 2.

Figure 4.4: 300 trajectories of the equation (2.1) in the point K with a = 0.2,
b = −0.2, σ = 0.85, x∗ = 0, x−1 = −0.4, and x0 = 0.3.
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Figure 4.5: 100 trajectories of the equation (2.8) in the point L with a = 2,
b = 0.5, σ = 0.85, x∗ = 0.9163, x−1 = x∗ − 3.5, and x0 = x∗ + 1.

Figure 4.6: 300 trajectories of the equation (2.1) in the point L with a = 2,
b = 0.5, σ = 0.85, x∗ = 0.9163, x−1 = X∗ + 0.4, and x0 = X∗ + 0.3.
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Figure 4.7: 100 trajectories of the equation (2.8) in the point M with a = 7,
b = −2, σ = 0.85, x∗ = 1.6094, x−1 = x∗, and x0 = x∗ + 0.3.

Figure 4.8: 100 trajectories of the equation (2.1) in the point M with a = 7,
b = −2, σ = 0.85, x∗ = 1.6094, x−1 = X∗, and x0 = X∗ + 0.3.
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Figure 4.9: 100 trajectories of the equation (2.8) in the point N with a = 0.5,
b = 1.5, σ = 0.85, x∗ = 0.6931, x−1 = 0, and x0 = 0.001.

Figure 4.10: 100 trajectories of the equation (2.8) in the pointN with a = 0.5,
b = 1.5, σ = 0.85, x∗ = 0.6931, x−1 = X∗ − 0.001, and x0 = X∗.
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Similar pictures for the equations (2.8), (2.1) in the point M(7,−2) (see
Fig.4.2) one can see in Fig.4.7 and Fig.4.8 for a = 7, b = −2 and x∗ = 1.6094,
x−1 = x∗, x0 = x∗ + 0.3.

In conclusion consider a behavior of the solutions (2.8), (2.1) in the point
N(0.5, 1.5) (see Fig.4.2), i.e. with a = 0.5, b = 1.5, which does not belong to
stability region of the equilibrium point x∗ = 0.6931. In Fig.4.9 one can see
100 trajectories of a solution of the equation (2.8) with the initial function
z−1 = 0, z0 = 0.001. The equilibrium point x∗ = 0.6931 is unstable, so,
in spite of the initial function is almost zero, trajectories do not go to zero
and fill whole space. Similar picture is shown in Fig.4.10: 100 trajectories of
a solution of the equation (2.1) with the initial function x−1 = x∗ − 0.001,
x0 = x∗ do not go to the equilibrium and fill whole space, in spite of the
initial function almost equals to the equilibrium point x∗ = 0.6931.
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