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Abstract. In this paper the stability of equilibrium points of the nonlinear differential

equation with fractional nonlinearity is studied. It is supposed that this system is exposed

to additive stochastic perturbations that are of the type of white noise and are directly

proportional to the deviation of the system state from the equilibrium point. Sufficient

conditions for stability in probability of equilibrium points of the considered nonlinear

stochastic differential equation are obtained. Numerous color graphical illustrations of

obtained stability regions and trajectories of solutions are plotted. The proposed method

of stability investigation can be used for study of many other types of nonlinear systems

with the order of nonlinearity higher than one.
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1 Introduction. Equilibrium points

The main contribution of this paper is a method for stability investigation
of nonlinear systems with high order of nonlinearity and stochastic pertur-
bations which is demonstrated on the nonlinear delay differential equation of
the type of 𝑥̇(𝑡) = −𝑎𝑥(𝑡) + 𝑓(𝑥(𝑡 − 𝜏)). Systems of such type are enough
popular in researches. See, for example, [5], [7], [11], the famous Nichol-
son blowflies equation [4], [9], [12] 𝑥̇(𝑡) = −𝑎𝑥(𝑡) + 𝑏𝑥(𝑡 − 𝜏)𝑒−𝛾𝑥(𝑡−𝜏), the
Mackey-Glass model [8]

𝑥̇(𝑡) = −𝑎𝑥(𝑡) +
𝑏𝑥(𝑡− 𝜏)

1 + 𝑥𝑛(𝑡− 𝜏)
.

On the other hand there is a very large interest in study of the behavior of
solutions of nonlinear difference equations with the fractional nonlinearity of
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the type of

𝑥𝑛+1 =
𝜇+

∑𝑘
𝑗=0 𝑎𝑗𝑥𝑛−𝑗

𝜆+
∑𝑘

𝑗=0 𝑏𝑗𝑥𝑛−𝑗

, 𝑛 = 0, 1, ...,

(see [12] and a long list of the references therein).
Here similarly to [12] stability of equilibrium points of the nonlinear dif-

ferential equation with fractional nonlinearity

𝑥̇(𝑡) = −𝑎𝑥(𝑡) +
𝜇+

∑𝑘
𝑗=0 𝑎𝑗𝑥(𝑡− 𝜏𝑗)

𝜆+
∑𝑘

𝑗=0 𝑏𝑗𝑥(𝑡− 𝜏𝑗)
, 𝑡 > 0, (1)

and the initial condition

𝑥(𝑠) = 𝜙(𝑠), 𝑠 ∈ [−𝜏, 0], 𝜏 = max{𝜏1, .., 𝜏𝑘}, (2)

is investigated. Here 𝜇, 𝜆, 𝑎𝑗 , 𝑏𝑗 , 𝑗 = 0, ..., 𝑘, 𝜏0 = 0, 𝜏𝑗 > 0, 𝑗 > 0, are
known constants.

Put

𝐴 =

𝑘∑
𝑗=0

𝑎𝑗 , 𝐵 =

𝑘∑
𝑗=0

𝑏𝑗 , (3)

and suppose that the equation (1) has some point of equilibrium 𝑥̂ (not
necessary a positive one) defined by the condition 𝑥̇(𝑡) = 0. So, via (1), (3)
and the assumption

𝜆+𝐵𝑥̂ ∕= 0 (4)

the equilibrium point 𝑥̂ is defined by the algebraic equation

𝑎𝑥̂ =
𝜇+𝐴𝑥̂

𝜆+𝐵𝑥̂
. (5)

If 𝑎𝐵 ∕= 0 then by the condition (4) the equation (5) can be transformed
to the form

𝑎𝐵𝑥̂2 − (𝐴− 𝑎𝜆)𝑥̂− 𝜇 = 0. (6)

Thus, if
(𝐴− 𝑎𝜆)2 + 4𝑎𝐵𝜇 > 0 (7)

then the equation (1) has two points of equilibrium

𝑥̂1 =
𝐴− 𝑎𝜆+

√
(𝐴− 𝑎𝜆)2 + 4𝑎𝐵𝜇

2𝑎𝐵
(8)

and

𝑥̂2 =
𝐴− 𝑎𝜆−√

(𝐴− 𝑎𝜆)2 + 4𝑎𝐵𝜇

2𝑎𝐵
, (9)

if
(𝐴− 𝑎𝜆)2 + 4𝑎𝐵𝜇 = 0 (10)
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then the equation (1) has only one point of equilibrium

𝑥̂ =
𝐴− 𝑎𝜆

2𝑎𝐵
. (11)

At last if

(𝐴− 𝑎𝜆)2 + 4𝑎𝐵𝜇 < 0 (12)

then the equation (1) has not equilibrium points.

Remark 1.1 Assume that 𝑎𝐵 ∕= 0, 𝜇 = 0. If 𝐴 ∕= 0 and 𝐴 ∕= 𝑎𝜆 then the
equation (1) has two points of equilibrium:

𝑥̂1 =
𝐴− 𝑎𝜆

𝑎𝐵
, 𝑥̂2 = 0; (13)

if 𝐴 = 0 or 𝐴 = 𝑎𝜆 then the equation (1) has only one point of equilibrium:
𝑥̂ = 0.

Remark 1.2 Assume that 𝑎𝐵 = 0. If 𝐴 ∕= 𝑎𝜆 then the equation (1) has
only one equilibrium point

𝑥̂ = − 𝜇

𝐴− 𝑎𝜆
.

Remark 1.3 Consider the case 𝜇 = 𝐵 = 0, 𝜆 ∕= 0. If 𝐴 ∕= 𝑎𝜆 then the
equation (1) has only one point of equilibrium: 𝑥̂ = 0, if 𝐴 = 𝑎𝜆 then each
solution 𝑥̂ = 𝑐𝑜𝑛𝑠𝑡 is an equilibrium point of the equation (1).

2 Stochastic perturbations, centering and lin-
earization. Definitions and auxiliary state-
ments

As it was first proposed in [2] and successfully used later in some other
researches (see, for instance [1], [3], [12]), we will suppose that the equation
(1) is exposed to stochastic perturbations of the type of white noise 𝑤̇(𝑡)
which are directly proportional to the deviation of the solution 𝑥(𝑡) of the
equation (1) from the equilibrium point 𝑥̂. Thus, (1) takes the form

𝑥̇(𝑡) = −𝑎𝑥(𝑡) +
𝜇+

∑𝑘
𝑗=0 𝑎𝑗𝑥(𝑡− 𝜏𝑗)

𝜆+
∑𝑘

𝑖=0 𝑏𝑖𝑥(𝑡− 𝜏𝑖)
+ 𝜎(𝑥(𝑡)− 𝑥̂)𝑤̇(𝑡). (14)

Note that the equilibrium point 𝑥̂ of the equation (1) is also the equilib-
rium point of the equation (14). Putting 𝑥(𝑡) = 𝑦(𝑡) + 𝑥̂ and

𝛾𝑗 =
𝑎𝑗 − 𝑎𝑏𝑗 𝑥̂

𝜆+𝐵𝑥̂
, 𝑗 = 0, ..., 𝑘, (15)
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we will center the equation (14) in the neighborhood of the point of the
equilibrium 𝑥̂. From (14), (15) it follows that 𝑦(𝑡) satisfies the equation

𝑦̇(𝑡) = −𝑎𝑦(𝑡) +
𝛾0𝑦(𝑡) +

∑𝑘
𝑗=1 𝛾𝑗𝑦(𝑡− 𝜏𝑗)

1 +
∑𝑘

𝑖=0 𝑏𝑖(𝜆+𝐵𝑥̂)−1𝑦(𝑡− 𝜏𝑖)
+ 𝜎𝑦(𝑡)𝑤̇(𝑡), (16)

It is clear that stability of the trivial solution of the equation (16) is equivalent
to stability of the equilibrium point of the equation (14).

Together with the nonlinear equation (16) we will consider the linear part
(in a neighborhood of the zero) of this equation

𝑧̇(𝑡) = −(𝑎− 𝛾0)𝑧(𝑡) +

𝑘∑
𝑗=1

𝛾𝑗𝑧(𝑡− 𝜏𝑗) + 𝜎𝑧(𝑡)𝑤̇(𝑡). (17)

Two usual definitions for stability are used below [6].

Definition 2.1 The trivial solution of the equation (16) is called stable in
probability if for any 𝜀1 > 0 and 𝜀2 > 0 there exists 𝛿 > 0 such that the
solution 𝑦(𝑡) = 𝑦(𝑡, 𝜙) satisfies the condition P{sup𝑡≥0 ∣𝑦(𝑡, 𝜙)∣ > 𝜀1} < 𝜀2
for any initial function 𝜙(𝑠) such that P{sup𝑠∈[−𝜏,0] ∣𝜙(𝑠)∣ ≤ 𝛿} = 1.

Definition 2.2 The trivial solution of the equation (17) is called mean
square stable if for any 𝜀 > 0 there exists 𝛿 > 0 such that the solution
𝑧(𝑡) = 𝑧(𝑡, 𝜙) satisfies the condition E∣𝑧(𝑡, 𝜙)∣2 < 𝜀 for any initial function
𝜙(𝑠) such that sup𝑠∈[−𝜏,0] E∣𝜙(𝑠)∣2 < 𝛿. If besides lim𝑡→∞ E∣𝑧(𝑡, 𝜙)∣2 = 0
for any initial function 𝜙(𝑠) then the trivial solution of the equation (2.4) is
called asymptotically mean square stable.

Below the following method for stability investigation is used. Since the
order of nonlinearity of the equation (16) is higher than one then sufficient
stability conditions for asymptotic mean square stability of the trivial solution
of the constructed linear equation (17) (the linear part of (16)) at the same
time are [14] sufficient conditions for stability in probability of the trivial so-
lution of the nonlinear equation (16) and therefore for stability in probability
of the equilibrium point of the equation (14). The sufficient conditions for
asymptotic mean square stability of the trivial solution of the linear equation
(17) were obtained via V.Kolmanovskii and L.Shaikhet general method of
Lyapunov functionals construction (see [12], [13] and the references therein).

3 Stability of equilibrium points

The equation of the type of (17) is very well studied. The following lemmas
consist some well known sufficient conditions for asymptotic mean square
stability of the trivial solution of the equation (17).
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Lemma 3.1 If

𝑎 > 𝛾0 +
𝑘∑

𝑗=1

∣𝛾𝑗 ∣+ 𝑝, 𝑝 =
𝜎2

2
, (18)

then the trivial solution of the equation (17), (15) is asymptotically mean
square stable.

Lemma 3.2 If⎛⎝𝑎−
𝑘∑

𝑗=0

𝛾𝑗

⎞⎠⎛⎝1−
𝑘∑

𝑗=1

∣𝛾𝑗 ∣𝜏𝑗
⎞⎠ > 𝑝,

𝑘∑
𝑗=1

∣𝛾𝑗 ∣𝜏𝑗 < 1, (19)

then the trivial solution of the equation (17), (15) is asymptotically mean
square stable.

The proofs of Lemmas 3.1 and 3.2 follows from [13] (the conditions (3.4)
and (3.10)).

Remark 3.1 If in the equation (1) the delays are absent, i.e., 𝜏𝑗 = 0,
𝑗 = 0, ..., 𝑘, then the condition (19) is not worse than the condition (18) that
does not depend on delays.

Suppose at first that the condition (10) holds. In this case the equation
(14) has only one point of equilibrium 𝑥̂ defined by (11) and via (15), (11)

𝑘∑
𝑗=0

𝛾𝑗 =
𝐴− 𝑎𝐵𝑥̂

𝜆+𝐵𝑥̂
=

𝐴− 1
2 (𝐴− 𝑎𝜆)

𝜆+ 1
2𝑎 (𝐴− 𝑎𝜆)

= 𝑎.

Thus, the stability condition (19) for the equilibrium point (11) does not
hold. Moreover,

𝑎 =
𝑘∑

𝑗=0

𝛾𝑗 ≤ 𝛾0 +
𝑘∑

𝑗=1

∣𝛾𝑗 ∣.

Thus, the stability condition (18) for the equilibrium point (11) does not hold
too.

Suppose now that the condition (7) holds. Then the equation (14) has
two points of equilibrium 𝑥̂1 and 𝑥̂2 defined by (8) and (9) respectively. Put

𝑆 =
√

(𝐴− 𝑎𝜆)2 + 4𝑎𝐵𝜇, (20)

𝛾
(𝑙)
𝑗 =

𝑎𝑗 − 𝑎𝑏𝑗 𝑥̂𝑙

𝜆+𝐵𝑥̂𝑙
, 𝑗 = 0, ..., 𝑘, (21)

Corollary 3.1 Assume that the condition (7) holds and 𝛾
(𝑙)
0 ≥ 0, 𝑙 = 1, 2.

Then for the fixed 𝜇 and 𝜆 the condition (18) cannot be true for the both
points of equilibrium 𝑥̂1 and 𝑥̂2 together.
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Proof: Via (18), (21), (8) for the equilibrium point 𝑥̂1 we obtain

1 >
1

𝑎

𝑘∑
𝑗=0

∣∣∣𝛾(1)
𝑗

∣∣∣ ≥ 1

𝑎

∣∣∣∣∣∣
𝑘∑

𝑗=0

𝛾
(1)
𝑗

∣∣∣∣∣∣ = 1

𝑎

∣∣∣∣𝐴− 𝑎𝐵𝑥̂1

𝜆+𝐵𝑥̂1

∣∣∣∣
=

∣∣∣∣ 𝐴− 1
2 (𝐴− 𝑎𝜆+ 𝑆)

𝑎𝜆+ 1
2 (𝐴− 𝑎𝜆+ 𝑆)

∣∣∣∣ = ∣∣∣∣𝐴+ 𝑎𝜆− 𝑆

𝐴+ 𝑎𝜆+ 𝑆

∣∣∣∣ .
Similarly for the equilibrium point 𝑥̂2 we have

1 >
1

𝑎

𝑘∑
𝑗=0

∣∣∣𝛾(2)
𝑗

∣∣∣ ≥ 1

𝑎

∣∣∣∣∣∣
𝑘∑

𝑗=0

𝛾
(2)
𝑗

∣∣∣∣∣∣ = 1

𝑎

∣∣∣∣𝐴− 𝑎𝐵𝑥̂2

𝜆+𝐵𝑥̂2

∣∣∣∣
=

∣∣∣∣ 𝐴− 1
2 (𝐴− 𝑎𝜆− 𝑆)

𝑎𝜆+ 1
2 (𝐴− 𝑎𝜆− 𝑆)

∣∣∣∣ = ∣∣∣∣𝐴+ 𝑎𝜆+ 𝑆

𝐴+ 𝑎𝜆− 𝑆

∣∣∣∣ .
Thus, we obtain two conflicting conditions. The proof is completed.

Corollary 3.2 Assume that the condition (7) holds and 𝑎 ∕= 0. If

2𝑎𝑆

𝑆 +𝐴+ 𝑎𝜆

⎛⎝1−
𝑘∑

𝑗=1

∣𝛾(1)
𝑗 ∣𝜏𝑗

⎞⎠ > 𝑝,
𝑘∑

𝑗=1

∣𝛾(1)
𝑗 ∣𝜏𝑗 < 1, (22)

then the equilibrium point 𝑥̂ = 𝑥̂1 (defined by (8)) of the equation (14) is
stable in probability.

If

2𝑎𝑆

𝑆 −𝐴− 𝑎𝜆

⎛⎝1−
𝑘∑

𝑗=1

∣𝛾(2)
𝑗 ∣𝜏𝑗

⎞⎠ > 𝑝,

𝑘∑
𝑗=1

∣𝛾(2)
𝑗 ∣𝜏𝑗 < 1, (23)

then the equilibrium point 𝑥̂ = 𝑥̂2 (defined by (9)) of the equation (14) is
stable in probability.

Assume now that 𝑎 = 0. If

𝐴2

𝑄

(
1− ∣𝐴∣

𝑄
𝜏

)
> 𝑝, 𝜏 =

𝑘∑
𝑗=1

∣𝑎𝑗 ∣𝜏𝑗 < 𝑄

∣𝐴∣ , 𝑄 = 𝐵𝜇−𝐴𝜆, (24)

then the equilibrium point 𝑥̂ = −𝜇𝐴−1 is stable in probability.

Proof: For 𝑎 ∕= 0 via (19) it is enough to note that for 𝑥̂1

𝑎−
𝑘∑

𝑗=0

𝛾
(1)
𝑗 = 𝑎− 𝐴− 𝑎𝐵𝑥̂1

𝜆+𝐵𝑥̂1
= 𝑎− 𝐴− 1

2 (𝐴− 𝑎𝜆+ 𝑆)

𝜆+ 1
2𝑎 (𝐴− 𝑎𝜆+ 𝑆)

=
2𝑎𝑆

𝑆 +𝐴+ 𝑎𝜆
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and similarly for 𝑥̂2

𝑎−
𝑘∑

𝑗=0

𝛾
(2)
𝑗 = 𝑎− 𝐴− 𝑎𝐵𝑥̂2

𝜆+𝐵𝑥̂2
= 𝑎− 𝐴− 1

2 (𝐴− 𝑎𝜆− 𝑆)

𝜆+ 1
2𝑎 (𝐴− 𝑎𝜆− 𝑆)

=
2𝑎𝑆

𝑆 −𝐴− 𝑎𝜆
.

For 𝑎 = 0 via Remark 1.2 and (15) we have

−
𝑘∑

𝑗=0

𝛾𝑗 = − 𝐴

𝜆−𝐵𝜇𝐴−1
=

𝐴2

𝑄
,

𝑘∑
𝑗=0

∣𝛾𝑗 ∣𝜏𝑗 = 𝜏

∣𝜆+𝐵(−𝜇)𝐴−1∣ =
∣𝐴∣
𝑄

𝜏.

So, (19) implies (24). The proof is completed.

Remark 3.2 If 𝜏𝑗 = 0, 𝑗 = 1, ..., 𝑘, then the conditions (22), (23) take the
forms

2𝑎𝑆

𝑆 +𝐴+ 𝑎𝜆
> 𝑝,

2𝑎𝑆

𝑆 −𝐴− 𝑎𝜆
> 𝑝, (25)

respectively. Moreover, the inequalities (25) are necessary conditions for
implementation of the conditions (22), (23) with arbitrary 𝜏𝑗 , 𝑗 = 1, ..., 𝑘.
If 𝑎 < 0 or 𝑝 ≥ 2𝑎 > 0 then the conditions (22), (23) cannot be true for
the same 𝜇 and 𝜆. Really, if 𝑎 < 0 then from (25) the contradiction follows:
0 < 𝑆 < 𝐴 + 𝑎𝜆 < −𝑆 < 0. If 𝑝 ≥ 2𝑎 > 0 then from (25) another
contradiction follows: 0 ≤ −(2𝑎/𝑝− 1)𝑆 < 𝐴+ 𝑎𝜆 < (2𝑎/𝑝− 1)𝑆 ≤ 0.

Corollary 3.3 Put

𝑞 =

⎧⎨⎩
𝑝

2𝑎−𝑝 𝑖𝑓 𝑝 < 2𝑎,
𝑝

𝑝−2𝑎 𝑖𝑓 𝑝 > 2𝑎,

+∞ 𝑖𝑓 𝑝 = 2𝑎,

(26)

assume that 𝑎 ∕= 0, 𝑆 > 0, 𝜏𝑗 = 0, 𝑗 = 1, ..., 𝑘, and consider the following
cases.

Case 1: 𝑎 > 0, 𝐵 > 0.
If

𝑝 < 2𝑎, 𝜇 >

⎧⎨⎩
𝑞2(𝐴+𝑎𝜆)2−(𝐴−𝑎𝜆)2

4𝑎𝐵 𝑓𝑜𝑟 𝜆 ≥ −𝐴
𝑎 ,

𝐴
𝐵𝜆 𝑓𝑜𝑟 𝜆 < −𝐴

𝑎 ,

(27)

or

𝑝 ≥ 2𝑎,
𝐴

𝐵
𝜆 < 𝜇 <

𝑞2(𝐴+ 𝑎𝜆)2 − (𝐴− 𝑎𝜆)2

4𝑎𝐵
, 𝜆 < −𝐴

𝑎
, (28)

then the equilibrium point 𝑥̂1 is stable in probability.
If

𝑝 < 2𝑎, 𝜇 >

⎧⎨⎩
𝑞2(𝐴+𝑎𝜆)2−(𝐴−𝑎𝜆)2

4𝑎𝐵 𝑓𝑜𝑟 𝜆 < −𝐴
𝑎 ,

𝐴
𝐵𝜆 𝑓𝑜𝑟 𝜆 ≥ −𝐴

𝑎 ,

(29)
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or

𝑝 ≥ 2𝑎,
𝐴

𝐵
𝜆 < 𝜇 <

𝑞2(𝐴+ 𝑎𝜆)2 − (𝐴− 𝑎𝜆)2

4𝑎𝐵
, 𝜆 ≥ −𝐴

𝑎
, (30)

then the equilibrium point 𝑥̂2 is stable in probability.
Case 2: 𝑎 > 0, 𝐵 < 0.
If

𝑝 < 2𝑎, 𝜇 <

⎧⎨⎩
𝑞2(𝐴+𝑎𝜆)2−(𝐴−𝑎𝜆)2

4𝑎𝐵 𝑓𝑜𝑟 𝜆 ≥ −𝐴
𝑎 ,

𝐴
𝐵𝜆 𝑓𝑜𝑟 𝜆 < −𝐴

𝑎 ,

(31)

or

𝑝 ≥ 2𝑎,
𝐴

𝐵
𝜆 > 𝜇 >

𝑞2(𝐴+ 𝑎𝜆)2 − (𝐴− 𝑎𝜆)2

4𝑎𝐵
, 𝜆 < −𝐴

𝑎
, (32)

then the equilibrium point 𝑥̂1 is stable in probability.
If

𝑝 < 2𝑎, 𝜇 <

⎧⎨⎩
𝑞2(𝐴+𝑎𝜆)2−(𝐴−𝑎𝜆)2

4𝑎𝐵 𝑓𝑜𝑟 𝜆 < −𝐴
𝑎 ,

𝐴
𝐵𝜆 𝑓𝑜𝑟 𝜆 ≥ −𝐴

𝑎 ,

(33)

or

𝑝 ≥ 2𝑎,
𝐴

𝐵
𝜆 > 𝜇 >

𝑞2(𝐴+ 𝑎𝜆)2 − (𝐴− 𝑎𝜆)2

4𝑎𝐵
, 𝜆 ≥ −𝐴

𝑎
, (34)

then the equilibrium point 𝑥̂2 is stable in probability.
Case 3: 𝑎 < 0, 𝐵 > 0.
If

𝐴

𝐵
𝜆 < 𝜇 <

𝑞2(𝐴+ 𝑎𝜆)2 − (𝐴− 𝑎𝜆)2

4𝑎𝐵
, 𝜆 > −𝐴

𝑎
, (35)

then the equilibrium point 𝑥̂1 is stable in probability.
If

𝐴

𝐵
𝜆 < 𝜇 <

𝑞2(𝐴+ 𝑎𝜆)2 − (𝐴− 𝑎𝜆)2

4𝑎𝐵
, 𝜆 < −𝐴

𝑎
, (36)

then the equilibrium point 𝑥̂2 is stable in probability.
Case 4: 𝑎 < 0, 𝐵 < 0.
If

𝐴

𝐵
𝜆 > 𝜇 >

𝑞2(𝐴+ 𝑎𝜆)2 − (𝐴− 𝑎𝜆)2

4𝑎𝐵
, 𝜆 > −𝐴

𝑎
, (37)

then the equilibrium point 𝑥̂1 is stable in probability.
If

𝐴

𝐵
𝜆 > 𝜇 >

𝑞2(𝐴+ 𝑎𝜆)2 − (𝐴− 𝑎𝜆)2

4𝑎𝐵
, 𝜆 < −𝐴

𝑎
, (38)

then the equilibrium point 𝑥̂2 is stable in probability.

Proof: It is enough to prove Case 1, the proofs of the others cases are similar.
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Consider the equilibrium point 𝑥̂1. Assume first that 𝑝 < 2𝑎. If 𝐴+𝑎𝜆 ≥ 0
then via (20) from the first line of (27) it follows that 𝑆 > 𝑞(𝐴 + 𝑎𝜆). Via
(26) and 𝜏𝑗 = 0, 𝑗 = 1, ..., 𝑘, this inequality coincides with (22). If 𝐴+𝑎𝜆 < 0
then from the second line of (27) we have 𝐵𝜇 > 𝐴𝜆. So, via (20) we obtain
𝑆 > ∣𝐴+ 𝑎𝜆∣ and, therefore, 𝑆 > 𝑆 +𝐴+ 𝑎𝜆 > 0. From this and 2𝑎 > 𝑝 the
condition (22) with 𝜏𝑗 = 0, 𝑗 = 1, ..., 𝑘 follows.

Let now 𝑝 > 2𝑎. Then via (28) 𝐴 + 𝑎𝜆 < 0 and 𝐵𝜇 > 𝐴𝜆. Thus, from
(20), (28) it follows that 𝑞∣𝐴 + 𝑎𝜆∣ > 𝑆 > ∣𝐴 + 𝑎𝜆∣. From this via (26) the
condition (22) with 𝜏𝑗 = 0, 𝑗 = 1, ..., 𝑘 follows. Finally, if 𝑝 = 2𝑎 then (28)
is equivalent to 𝐵𝜇 > 𝐴𝜆 and via (20) 𝑆 > ∣𝐴 + 𝑎𝜆∣ that implies (22) with
𝜏𝑗 = 0, 𝑗 = 1, ..., 𝑘.

Consider the equilibrium point 𝑥̂2. Assume first that 𝑝 < 2𝑎. If 𝐴+𝑎𝜆 ≥
0, then from the second line of (29) it follows that 𝐵𝜇 > 𝐴𝜆. Via (20) it
means that 𝑆 > 𝐴+𝑎𝜆 and therefore 𝑆 > 𝑆−𝐴−𝑎𝜆. From this and 𝑝 < 2𝑎
the condition (23) with 𝜏𝑗 = 0, 𝑗 = 1, ..., 𝑘 follows. If 𝐴 + 𝑎𝜆 < 0 then
from the first line of (29) we obtain 𝑆 > 𝑞∣𝐴 + 𝑎𝜆∣. From this and (26) the
condition (23) with 𝜏𝑗 = 0, 𝑗 = 1, ..., 𝑘 follows.

Let now 𝑝 > 2𝑎. Then via (30) 𝐴 + 𝑎𝜆 ≥ 0 and 𝐵𝜇 > 𝐴𝜆. Thus, from
(20), (30) it follows that 𝑞(𝐴 + 𝑎𝜆) > 𝑆 > 𝐴 + 𝑎𝜆 ≥ 0. From this and (26)
the condition (23) with 𝜏𝑗 = 0, 𝑗 = 1, ..., 𝑘 follows. At last if 𝑝 = 2𝑎 then
(30) is equivalent to 𝐵𝜇 > 𝐴𝜆 and via (20) 𝑆 > 𝐴 + 𝑎𝜆 that implies (23)
with 𝜏𝑗 = 0, 𝑗 = 1, ..., 𝑘. The proof is completed.

Corollary 3.4 Put 𝜏 =
∑𝑘

𝑗=1 ∣𝑎𝑗 ∣𝜏𝑗 , 𝑄 = 𝐵𝜇−𝐴𝜆 and assume that 𝑎 = 0,

𝐴𝐵 ∕= 0, 𝜏 < 𝑄∣𝐴∣−1. If 𝐵 > 0 and

𝐴𝜆

𝐵
+

𝐴2
(
1−√

1− 4𝑝𝜏 ∣𝐴−1∣
)

2𝑝𝐵
< 𝜇 <

𝐴𝜆

𝐵
+

𝐴2
(
1 +

√
1− 4𝑝𝜏 ∣𝐴−1∣

)
2𝑝𝐵

,

(39)
or if 𝐵 < 0 and

𝐴𝜆

𝐵
+

𝐴2
(
1 +

√
1− 4𝑝𝜏 ∣𝐴−1∣

)
2𝑝𝐵

< 𝜇 <
𝐴𝜆

𝐵
+

𝐴2
(
1−√

1− 4𝑝𝜏 ∣𝐴−1∣
)

2𝑝𝐵
,

(40)
then the equilibrium point 𝑥̂ = −𝜇𝐴−1 is stable in probability.

Proof: It is enough to note that the conditions (39), (40) are the solution
of the inequality

𝑝𝑄2 −𝐴2𝑄+𝐴2∣𝐴∣𝜏 < 0, 𝑤ℎ𝑒𝑟𝑒 𝑄 = 𝐵𝜇−𝐴𝜆 > 0,

which is equivalent to (24).
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4 Numerical analysis

Example 4.1 Consider the equation

𝑥̇(𝑡) = −𝑎𝑥(𝑡) +
𝜇+ 𝑎1𝑥(𝑡− 𝜏1) + 𝑎2𝑥(𝑡− 𝜏2)

𝜆+ 𝑏1𝑥(𝑡− 𝜏1) + 𝑏2𝑥(𝑡− 𝜏2)
+ 𝜎(𝑥(𝑡)− 𝑥̂)𝑤̇(𝑡), (41)

that is an equation of the type of (14) with 𝑘 = 2, 𝑎0 = 𝑏0 = 0.
Case 1. Put 𝑎 = 1, 𝑎1 = 1.5, 𝑎2 = −0.5, 𝑏1 = 1.2, 𝑏2 = 1.8, 𝜏1 = 0.4,

𝜏2 = 0.3, 𝜎 = 1.2. Thus, 𝑎 > 0, 𝐵 = 1.2 + 1.8 = 3 > 0, 𝑝 = 0.72 < 2𝑎 = 2,
𝐴 = 1.5− 0.5 = 1 > 0.

In Figure 1 the regions of stability in probability for the equilibrium points
𝑥̂1 and 𝑥̂2 are shown in the space of the parameters (𝜇, 𝜆): in the white
region there are no equilibrium points; in the yellow region there are possible
unstable equilibrium points; the red, cyan, magenta and grey regions are the
regions for stability in probability of the equilibrium point 𝑥 = 𝑥̂1 given by
the condition (18) (red and cyan) and the condition (22) (cyan, magenta
and grey); the blue, green and grey regions are the regions for stability in
probability of the equilibrium point 𝑥̂ = 𝑥̂2 given by the condition (18) (blue)
and the condition (23) (blue, green and grey); in the grey region the both
equilibrium points 𝑥̂ = 𝑥̂1 and 𝑥̂ = 𝑥̂2 are stable in probability. The curves
1 and 2 are the bounds of the equilibrium points 𝑥̂1 and 𝑥̂2 stability regions
respectively given by the conditions (27) and (29) for the case 𝜏1 = 𝜏2 = 0.
One can see that the stability regions obtained for positive delays are placed
inside of the regions with the zero delays.

Figure 1: Stability regions for the equilibrium points 𝑥̂1 and 𝑥̂2 of the equa-
tion (41) by the values of the parameters: 𝑎 = 1, 𝑎1 = 1.5, 𝑎2 = −0.5,
𝑏1 = 1.2, 𝑏2 = 1.8, 𝜏1 = 0.4, 𝜏2 = 0.3, 𝜎 = 1.2
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Figure 2: Stability regions for the equilibrium points 𝑥̂1 and 𝑥̂2 of the equa-
tion (41) by the values of the parameters: 𝑎 = 1, 𝑎1 = 1.5, 𝑎2 = −0.5,
𝑏1 = 1.2, 𝑏2 = 1.8, 𝜏1 = 0.15, 𝜏2 = 0.01, 𝜎 = 2.2

Put now 𝜏1 = 0.15, 𝜏2 = 0.01, 𝜎 = 2.2. Then 𝑝 = 2.42 > 2𝑎 = 2 and
the condition (18) does not hold. The appropriate stability regions obtained
with the same values of all other parameters by the conditions (28), (30) for
the equilibrium points 𝑥̂1 (magenta) and 𝑥̂2 (green) are shown in Figure 2.
Similarly to Figure 1 the stability regions obtained for positive delays are
placed inside of the regions with the zero delays (the bounds 1 and 2).

Case 2. Put 𝑎 = 1, 𝑎1 = −1.5, 𝑎2 = −0.5, 𝑏1 = −1.2, 𝑏2 = −1.8,
𝜏1 = 0.3, 𝜏2 = 0.4, 𝜎 = 1.1. Thus, 𝑎 > 0, 𝐵 = −1.2 − 1.8 = −3 < 0,
𝑝 = 0.605 < 2𝑎 = 2, 𝐴 = −1.5− 0.5 = −2 < 0.

In Figure 3 the regions of stability in probability for the equilibrium points
𝑥̂1 and 𝑥̂2 are shown in the space of the parameters (𝜇, 𝜆): in the white
region there are no equilibrium points; in the yellow region there are possible
unstable equilibrium points; the red, cyan, magenta and grey regions are the
regions for stability in probability of the equilibrium point 𝑥 = 𝑥̂1 given by
the condition (18) (red and cyan) and the condition (22) (cyan, magenta and
grey); the blue, brown, green and grey regions are the regions for stability
in probability of the equilibrium point 𝑥̂ = 𝑥̂2 given by the condition (18)
(blue, brown) and the condition (23) (blue, brown, green and grey); in the
grey region the both equilibrium points 𝑥̂ = 𝑥̂1 and 𝑥̂ = 𝑥̂2 are stable in
probability. The curves 1 and 2 are the bounds of the equilibrium points 𝑥̂1

and 𝑥̂2 stability regions respectively given by the conditions (31) and (33)
for the case 𝜏1 = 𝜏2 = 0. One can see that the stability regions obtained for
positive delays are placed inside of the regions with the zero delays.

Put now 𝜏1 = 0.02, 𝜏2 = 0.03, 𝜎 = 2.1. Then 𝑝 = 2.205 > 2𝑎 = 2 and
the condition (18) does not hold. The appropriate stability regions obtained
with the same values of all other parameters by the conditions (32), (34) for
the equilibrium points 𝑥̂1 (magenta) and 𝑥̂2 (green) are shown in Figure 4.
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Figure 3: Stability regions for the equilibrium points 𝑥̂1 and 𝑥̂2 of the equa-
tion (41) by the values of the parameters: 𝑎 = 1, 𝑎1 = −1.5, 𝑎2 = −0.5,
𝑏1 = −1.2, 𝑏2 = −1.8, 𝜏1 = 0.3, 𝜏2 = 0.4, 𝜎 = 1.1

Similarly to Figure 3 the stability regions obtained for positive delays are
placed inside of the regions with the zero delays (the bounds 1 and 2).

Case 3. Put 𝑎 = −1.2, 𝑎1 = 1.5, 𝑎2 = 0.5, 𝑏1 = 1.2, 𝑏2 = 1.8, 𝜏1 = 0.04,
𝜏2 = 0.03, 𝜎 = 2. Thus, 𝑎 < 0, 𝐵 = 1.2+1.8 = 3 > 0, 𝐴 = 1.5+0.5 = 2 > 0,
the condition (18) does not hold. In Figure 5 the regions of stability in
probability for the equilibrium points 𝑥̂1 and 𝑥̂2 are shown in the space of
the parameters (𝜇, 𝜆): in the white region there are no equilibrium points; in
the yellow region there are possible unstable equilibrium points; the magenta
region is the region for stability in probability of the equilibrium point 𝑥1

given by the condition (22), the green region is the region for stability in
probability of the equilibrium point 𝑥̂2 given by the condition (23). The
curves 1 and 2 are the bounds of the equilibrium points 𝑥̂1 and 𝑥̂2 stability
regions respectively given by the conditions (35) and (36) for the case 𝜏1 =
𝜏2 = 0. One can see that the stability regions obtained for positive delays
are placed inside of the regions with the zero delays.

Case 4. Put 𝑎 = −1, 𝑎1 = −1.5, 𝑎2 = −0.5, 𝑏1 = −1.2, 𝑏2 = −1.8,
𝜏1 = 0.04, 𝜏2 = 0.05, 𝜎 = 1.7. Thus, 𝑎 < 0, 𝐵 = −1.2 − 1.8 = −3 < 0,
𝐴 = −1.5−0.5 = −2 < 0. The appropriate regions of stability in probability
for the equilibrium points 𝑥̂1 and 𝑥̂2 obtained by the conditions (22), (23),
(37), (38) are shown in Figure 6.

Example 4.2 Consider the equation

𝑥̇(𝑡) = −𝑎𝑥(𝑡) +
𝜇+ 𝑎0𝑥(𝑡) + 𝑎1𝑥(𝑡− 𝜏1)

𝜆+ 𝑏0𝑥(𝑡) + 𝑏1𝑥(𝑡− 𝜏1)
+ 𝜎(𝑥(𝑡)− 𝑥̂)𝑤̇(𝑡), (42)

that is a particular case of the equation (14) with 𝑘 = 1. The linear part of
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Figure 4: Stability regions for the equilibrium points 𝑥̂1 and 𝑥̂2 of the equa-
tion (41) by the values of the parameters: 𝑎 = 1, 𝑎1 = −1.5, 𝑎2 = −0.5,
𝑏1 = −1.2, 𝑏2 = −1.8, 𝜏1 = 0.02, 𝜏2 = 0.03, 𝜎 = 2.1

the type of (21) for this equation has the form

𝑧̇(𝑡) = 𝛾0𝑧(𝑡) + 𝛾1𝑧(𝑡− 𝜏1) + 𝜎𝑧(𝑡)𝑤̇(𝑡), (43)

where

𝛾0 = 𝛾0 − 𝑎, 𝛾𝑗 =
𝑎𝑗 − 𝑎𝑏𝑗 𝑥̂

𝜆+𝐵𝑥̂
, 𝑗 = 0, 1, 𝐵 = 𝑏0 + 𝑏1.

The necessary and sufficient condition for asymptotic mean square sta-
bility of the trivial solution of the equation (43) is ([12], p.8, Lemma 1.5)

𝛾0 + 𝛾1 < 0, 𝐺−1 > 𝑝, (44)

where

𝐺 =

⎧⎨⎩
𝛾1𝑞

−1 sin(𝑞𝜏)−1
𝛾0+𝛾1 cos(𝑞𝜏) , 𝛾1 + ∣𝛾0∣ < 0, 𝑞 =

√
𝛾2
1 − 𝛾2

0 ,
1+∣𝛾0∣𝜏
2∣𝛾0∣ , 𝛾1 = 𝛾0 < 0,

𝛾1𝑞
−1 sinh(𝑞𝜏)−1

𝛾0+𝛾1 cosh(𝑞𝜏) , 𝛾0 + ∣𝛾1∣ < 0, 𝑞 =
√
𝛾2
0 − 𝛾2

1 .

(45)

Note that if in the equation (43) 𝜏1 = 0 then the sufficient condition (19)
for asymptotic mean square stability of the trivial solution of the equation
(43) takes the form 𝑎 > 𝛾0 + 𝛾1 + 𝑝 and coincides with the necessary and
sufficient condition (44) for asymptotic mean square stability of the triv-
ial solution of the equation (43). Let us show that for small enough delay
the sufficient stability conditions (18), (19) together are enough close to the
necessary and sufficient stability condition (44).
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Figure 5: Stability regions for the equilibrium points 𝑥̂1 and 𝑥̂2 of the equa-
tion (41) by the values of the parameters: 𝑎 = −1.2, 𝑎1 = 1.5, 𝑎2 = 0.5,
𝑏1 = 1.2, 𝑏2 = 1.8, 𝜏1 = 0.04, 𝜏2 = 0.03, 𝜎 = 2

In Figure 7 the stability regions for the equilibrium point 𝑥̂1 given by
the condition (18) (green and magenta), by the condition (22) (magenta and
cyan) and by the condition (44) (grey, green, magenta and cyan) are shown
for the following values of the parameters

𝑎 = 1, 𝑎0 = −0.4, 𝑏0 = 0.2, 𝑎1 = 𝑏1 = 1.5, 𝜏1 = 0.4, 𝜎 = 1.3. (46)

One can see that both stability conditions (18) and (22) complement each
other and both these conditions together give the region of stability (green,
magenta and cyan) that is close enough to the exact stability region obtained
by the necessary and sufficient stability condition (44).

In Figure 8 the similar picture for the same values of the parameters
(45) is shown for the equilibrium point 𝑥̂2: both stability conditions (18)
(magenta and green (small region placed between magenta and the bound
2)) and (22) (magenta and cyan) complement each other and both these
conditions together give the region of stability (green, magenta and cyan)
that is close enough to the exact stability region (green, magenta, cyan and
grey) obtained by the necessary and sufficient stability condition (44).

For numerical simulation of solutions of the equations (42) and (43) the
algorithm for numerical simulation of the Wiener process trajectories is used
that is described in [10]. 25 trajectories of the Wiener process obtained via
this algorithm are shown in Figure 9.

Consider the point 𝐴 with 𝜇 = 4, 𝜆 = −2. This point belongs to the
stability regions for the both equilibrium points: 𝑥̂1 = 2.696 (Figure 7) and
𝑥̂2 = −0.873 (Figure 8). In the point 𝐴(4,−2) the trivial solution of the
equation (43) is asymptotically mean square stable. Thus, in the point 𝐴 all
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Figure 6: Stability regions for the equilibrium points 𝑥̂1 and 𝑥̂2 of the equa-
tion (41) by the values of the parameters: 𝑎 = −1, 𝑎1 = −1.5, 𝑎2 = −0.5,
𝑏1 = −1.2, 𝑏2 = −1.8, 𝜏1 = 0.04, 𝜏2 = 0.05, 𝜎 = 1.7

trajectories of the equation (43) solutions with different given initial functions
and the values of the parameters (45) converge to zero if 𝑡 → ∞. 200 such
trajectories are shown in Figure 10 by the initial functions (𝑠 ≤ 0)

𝑥(𝑠) = 𝑥̂1 +
𝑗

33
cos

(
10

7
𝑠

)
− 8.5, 𝑗 = 0, 2, 4, ..., 198,

𝑥(𝑠) =
25

28
𝑥̂1 − 𝑗

33
cos

(
10

7
𝑠

)
+ 3, 𝑗 = 1, 3, 5, ..., 199.

In Figure 11 trajectories of solutions of the nonlinear equation (42) are
shown in the point 𝐴 for the values of the parameters (45). In the point 𝐴
the equilibrium point 𝑥̂1 = 2.696 of the equation (42) is stable in probability.
Thus, in the point 𝐴 50 trajectories of solutions of the equation (42) with
the initial functions

𝑥(𝑠) = 𝑥̂1 − 2𝑗

33
cos

(
10

7
𝑠

)
+ 1.5, 𝑠 ≤ 0, 𝑗 = 1, 2, ..., 50,

that belong to some neighborhood of the equilibrium point 𝑥̂1, converge to
𝑥̂1 if 𝑡 → ∞ (magenta trajectories) but other 50 trajectories of solution with
the one initial function

𝑥(𝑠) = 𝑥̂1 +
6

11
cos

(
10

7
𝑠

)
− 2.2, 𝑠 ≤ 0,

that is placed out of the neighborhood of 𝑥̂1, fill by itself the whole space
(green trajectories). Only some of these trajectories, that come to neighbor-
hood of 𝑥̂1 converge to 𝑥̂1 if 𝑡 → ∞.
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Figure 7: Stability regions for the equilibrium point 𝑥̂1 = 2.696 of the equa-
tion (42) by the values of the parameters: 𝑎 = 1, 𝑎0 = −0.4, 𝑏0 = 0.2,
𝑎1 = 1.5, 𝑏1 = 1.5, 𝜏1 = 0.4, 𝜎 = 1.3

Figure 12 is similar to Figure 11, but it shows 100 trajectories for the
equilibrium point 𝑥̂2 = −0.873: 50 trajectories (magenta) with the initial
functions

𝑥(𝑠) = 𝑥̂2 − 𝑗

15
cos

(
5

3
𝑠

)
+ 2.1, 𝑠 ≤ 0, 𝑗 = 1, 2, ..., 50,

that belong to a small enough neighborhood of the equilibrium point 𝑥2 con-
verge to this equilibrium and 50 trajectories (green) with one initial function

𝑥(𝑠) = 𝑥̂2 +
4

11
cos (2𝑠) + 1.8, 𝑠 ≤ 0,

that is placed out of this neighborhood of 𝑥̂2 fill by itself the whole space.
Consider now the point 𝐵 with 𝜇 = −2, 𝜆 = −4 (Figure 7). This point

does not belong to stability region for the equilibrium point 𝑥̂1 = 2.536, thus,
in the point 𝐵(−2,−4) the equilibrium point 𝑥̂1 is unstable. In Figure 13
five hundred trajectories of the solution of the equation (42) are shown with
the initial function

𝑥(𝑠) = 𝑥̂1 + 0.015 sin

(
10

3
𝑠

)
, 𝑠 ≤ 0,

that is placed close enough to the equilibrium point 𝑥̂1. One can see that the
trajectories do not converge to 𝑥̂1 and fill by itself the whole space.

In Figure 14 the similar picture is shown for the unstable equilibrium
point 𝑥̂2 = −2 in the point 𝐶 with 𝜇 = 4, 𝜆 = 2.5 (Figure 8) with the initial
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Figure 8: Stability regions for the equilibrium point 𝑥̂2 = −0.873 of the
equation (42) by the values of the parameters: 𝑎 = 1, 𝑎0 = −0.4, 𝑏0 = 0.2,
𝑎1 = 1.5, 𝑏1 = 1.5, 𝜏1 = 0.4, 𝜎 = 1.3

function

𝑥(𝑠) = 𝑥̂2 − 0.025 cos

(
5

3
𝑠

)
, 𝑠 ≤ 0.

5 Conclusions

In this paper we have obtained sufficient conditions for stability in probability
of the equilibrium points of a differential equation with fractional nonlinearity
and stochastic perturbations. The obtained results are illustrated by figures
with stability regions and trajectories of stable and unstable solutions.

The detailed description of the proposed method including the numerical
simulations of stochastic perturbations and solutions of the considered equa-
tions will help to researchers in stability theory and different applications
in investigation of systems with various other types of nonlinearities of high
orders.
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Figure 9: 25 trajectories of the Wiener process
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Figure 11: 100 trajectories of solutions of the equation (42) in the point
A(4,-2) for the stable equilibrium point 𝑥̂1 = 2.696

Figure 12: 100 trajectories of solutions of the equation (42) in the point
A(4,-2) for the stable equilibrium point 𝑥̂2 = −0.873
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Figure 13: 500 trajectories of the solution of the equation (42) in the point
B(-2,-4) for the unstable equilibrium point 𝑥̂1 = 2.536

Figure 14: 500 trajectories of the solution of the equation (42) in the point
C(4,2.5) for the unstable equilibrium point 𝑥̂2 = −2


