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Abstract--Many processes in automatic regulation, physics, mechanics, biology, economy, ecol- 
ogy, etc. can be modelled by hereditary systems (see, e.g., [1-4]). One of the main problems for the 
theory of such systems and their applications is connected with stability (see, e.g., [2-4]). Many sta- 
bility results were obtained by the construction of appropriate Lyapunov functionals. At present, the 
method is proposed which allows us, in some sense, to formalize the procedure of the corresponding 
Lyapunov functionals construction [5-10]. In this work, by virtue of the proposed procedure, the 
necessary and sufficient conditions of asymptotic mean square stability for stochastic linear difference 
equations are obtained. 

1. M A I N  R E S U L T  

Consider the scalar difference equation 

k 

Xi+I = E a j x i - j  "~ °'xi-l~i' 
j=o 

xi = ~oi, i E Zo. 

i E Z ,  
(1) 

Here i is the discrete time, i E Z U Zo, Zo = { - h , . . . ,  0}, Z = {0, 1 . . . .  }, h = max(k,  l). 

Let {12, a, P}  be a probabil i ty space, {fi e a}, i E Z, be a sequence of a-algebras,  ~0, ~1, . . .  
be mutual ly  independent random values, ~i be f i + r a d a p t e d  and independent from fi,  E~i = 0, 

Eel = 1. 
DEFINITION. Zero solution of equation (I) is cMled mean square stable i f  for every e > 0 there 
exists a 5 > 0 such that Ex~ < e, i 6 Z, if  [[~o[[ 2 = supiez  o E~o 2 < 5. If, besides, l i m i _ ~  E x  2 = 0, 
then equation (1) zero solution is called asymptotic mean square stable. 

THEOREM 1. [9]. Let there exist the nonnegative functional V~ = V(i ,  X - h , . . . ,  xi), i E Z,  for 
which the conditions 

EV(0,x_h,... ,x0) _< ciH~lT 2, 
EAVi _~ -c2Ex 2, i E Z ,  
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where AVi = V/.{_ 1 - -  Vi ,  c1 > 0,  c2 > 0 hold. Then equation (1) zero solution is asymptotic mean 
square stable. 

Consider the vectors x(i) = ( x i - k , . . . ,  xi-1,  x~) ~ and b = (0 , . . . ,  a)  ~ of dimension k + 1 and the 
square matr ix  ( 10 0 / 

0 1 ... 0 
A= . . . . . . . . . . . . . . .  

0 0 ... 1 

a k  a k - 1  a k - 2  . . .  ao 

Then equation (1) can be described in the form 

x(i  + 1) = Ax(i )  -t- bxi -~i .  (2) 

Consider the matrix equation 

in which the square matrix U 
?~k-t-l,k%l : 1. 

A ' D A  - D = -U ,  (3) 

= [[uij [[ of dimension k + 1 has all zero elements except for 

THEOREM 2. Let equation (3) have a positive semidefinite solution D. Then, for asymptotic 
mean square stability of  equation (1) zero solution, it is necessary and sufficient that the inequality 

cT2dk+l , k+l  < 1 (4) 

hold. 

PROOF. Consider the functional 

l 

Vi = x ' ( i )Dx( i )  + 0"2dk+l , k+ l  ~ X 2. • S--j" 
j - -1  

(5) 

Calculating EAVi by virtue of (5),(2), we obtain 

[ ' , ] X 2 _ X 2 EAV~ = E ~'(i + 1)D~(i  + 1) + ~2dk+~,k+~ ~ ~+l-j -- ~'( i )D~(i)  ~r2d,~+~,k+i ~ ~_j 
j----1 j----I 

= ~,[(Ax(i) + bx~_~,)'D(Ax(i) + bx~_~) - x'(i)Dx(i)] + a2dk+l,k+ W, (X~ X2 -- i-b) 

= E [x ' ( i ) (A 'DA - D)x( i )  + b'Dbx2_l] + a2dk+l,k+lE (x~ -- x~_t) 

= (a2dk+l,k+l -- I) Ex~. 

Let condition (4) hold. Then the functional (5) satisfies the conditions of Theorem 1. It means 

that equation (1) zero solution is asymptotic mean square stable. It follows that condition (4) is 
sufficient for asymptotic mean square stability of equation (1) zero solution. 

Let condition (4) not hold, i.e., a2dk+1,k+1 > 1. Then EAV~ _> 0. From here it follows that 

i - 1  

E~Vj  = EV~ - Ego > 0, 
j=O 

i.e., E ~  _> EV0 > 0. It means that  equation (1) zero solution cannot be mean square stable. 
Therefore, condition (4) is necessary for asymptotic mean square stability of equation (1) zero 
solution. Theorem 2 is proved. 
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2. EXAMPLES 

R e m a r k  t h a t  for every  k, equa t ion  (3) is t he  sy s t em of  (k + 1)(k + 2 ) /2  equat ions .  Cons ide r  

t h e  different  p a r t i c u l a r  cases of  equa t ion  (3). 

EXAMPLE 1. Le t  k = 0, a0 = a. In  th is  case, equa t ion  (3) has  t he  form d l l ( a  2 - 1) = - 1 .  T h e  

necessa ry  and  sufficient cond i t ion  of  a s y m p t o t i c  mean  square  s t ab i l i t y  is 

1 or_ 2 
0 < d l l  - 1 _ a - - - -  ~ < 

or  a 2 + ~2 < 1. I f  a = 0, th is  condi t ion  takes  t he  form lal < 1. 

EXAMPLE 2. Le t  k = 1, a0 = a, a l  = b. In  th is  case, equa t ion  (3) is t he  sys t em of  equa t ions  

b2d22 - d l l  = 0, (b - 1)d12 + abd22 = O, d l l  + 2ad12 + (a 2 - 1)d22 = - 1 .  

Solving th is  sys tem,  we o b t a i n  the  necessary  and  sufficient condi t ion  of  a s y m p t o t i c  mean  square  

s t a b i l i t y  

0 < d22 = 1 - b < 0._2. 
(1 + b)((1 - b) 2 - a 2) 

I f  a = 0, th i s  cond i t ion  has  the  form Ibl < 1, lal < 1 - b. In  F igure  1, the  region of  s t ab i l i t y  is 
shown by (1) a 2 = 0, (2) a 2 = 0.4, (3) a 2 = 0.8. 
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Figure 1. 

EXAMPLE 3. Let  k = 2, ao = a, a l  = 0, a2 = b. In  th is  case, equa t ion  (3) is t he  s y s t e m  of  

equa t ions  

b2d33 - d l l  --  O, bdx3 - d12 --  O, d l l  - d22 -- O, bd~3 + abd33 - d13 = O, 

d12 + ad13 - d23 = O, d22 + 2ad23 + (a 2 - 1)dz3 = - 1 .  

Solving th i s  sys tem,  we ob t a in  t he  necessary  and sufficient cond i t ion  of  a s y m p t o t i c  m e a n  square  

s t a b i l i t y  ( -1 
0 < d a s =  1 - b 2 - a  - 1 - - ( a + b ) b J  < a - 2 "  

In  F igu re  2, t he  region of  s t ab i l i t y  is shown by (1) a 2 = 0, (2) a z = 0.4, (3) a 2 = 0.8. 
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Figure 2. 
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Figure 3. 

EXAMPLE 4. Let k = 2, a0 = a, al  -- b, a2 ~- b 2. In  this case, equat ion (3) is the  sys tem of 

equat ions  

b4d33 - dl l  = 0, 

b2d23 ~- ab~d33 - d13 ~- 0, 

d12 -~ ad13 + abd33 + (b - 1)d23 = 0, 

b2d13+b3dz3-d12=O,  

d l l + 2 b d 1 3 + b 2 d z z - d 2 2 - - O ,  

d 2 2 + 2 a d 2 3 + ( a 2 - 1 ) d 3 3  = -1 .  

Solving this system, we obtain the necessary and sufficient condition of asymptotic mean square 
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s t a b i l i t y  

In  F i g u r e  3, t h e  r eg ion  o f  s t a b i l i t y  is s h o w n  by  (1) a 2 = 0, (2) 0.2 _ 0.4, (3) 0 .2 : 0.8. 
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