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ABSTRACT 

Some new Lyapunov type theorems for stochastic difference equations 
with continuous time are proven. It is shown that these theorems simplify an 
application of Lyapunov functionals construction method. 
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Stability investigation of hereditary systems [1-3] is 
connected often with construction of some appropriate 
Lyapunov functionals. One general method of Lyapunov 
functionals construction was proposed and developed in 
[4-11] for both stochastic differential equations with after-
effect and stochastic difference equations with discrete 
time. After some modification of the basic Lyapunov-type 
stability theorem, this method was also used for stochastic 
difference equations with continuous time [12-14], which 
are popular enough in researches [15-20]. Here some new 
aspect of Lyapunov type theorems is shown, which allows 
to simplify an application of the general method of 
Lyapunov functionals construction for stochastic difference 
equations with continuous time. The theorems obtained 
here can similarly be applied for stochastic differential 
equations and stochastic difference equations with discrete 
time.  

I. DEFINITIONS AND BASIC LYAPUNOV 
TYPE THEOREM 

Let {Ω, F, P} be a probability space, {F t, t ≥ t0} be a 
nondecreasing family of sub-σ-algebras of F, i.e. 

1 2t t⊂F F  for t1 < t2, E be the expectation with respect to 

the measure P, Et = E(./Ft) be the conditional expectation 
with respect to σ-algebra Ft.  

Consider the stochastic difference equation  
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with the initial condition 
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θ = φ θ , θ∈Θ = − , , = +  (2) 

Here x ∈ Rn, h0, h1, … are positive constants, the function-
als a1 ∈ Rn and a2 ∈ Rn×m satisfy the condition 
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φ(θ), θ ∈ Θ, is a 
0tF -measurable function, the perturba-

tion ξ(t) ∈ Rm is a Ft-measurable stationary stochastic 
process such that  

0( ) 0 ( ) ( )t ts s s I s t h′ξ = , ξ ξ = , − ≥ .Ε E  (4) 

A solution of problem (1), (2) is an Ft-measurable 
process x(t) = x(t; t0, φ), which is equal to the initial func-
tion φ(t) from (2) for t ≤ t0 and with probability 1 defined 
by (1) for t > t0. 
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Definition 1.1. The solution of Eq. (1) with initial condi-
tion (2) is called uniformly mean square bounded if there 
exists a positive number C such that for all t ≥ t0  

2
0( )x t t C| ; , φ | ≤ .E   (5) 

Definition 1.2. The trivial solution of Eqs. (1), (2) is called 
mean square stable if for any ε > 0 and t0 there exists a δ = 

δ(ε, t0) > 0 such that E|x(t; t0, φ)|2 < ε for all t ≥ t0 if || φ ||2 = 
supθ∈Θ E|φ(θ)|2 < δ. 

Definition 1.3. The solution of Eq. (1) with initial condi-
tion (2) is called asymptotically mean square trivial if  

2
0lim ( ) 0

t
x t t

→∞
| ; , φ | = .E  (6) 

Definition 1.4. The solution of Eq. (1) with initial condi-
tion (2) is called asymptotically mean square quasitrivial if 
for each t ∈ [t0, t0 + h0 ) 

2
0 0lim ( ) 0

j
x t jh t

→∞
| + ; , φ | = .E  (7) 

Definition 1.5. The trivial solution of Eqs. (1), (2) is called 
asymptotically mean square stable if it is mean square sta-
ble and for each initial function φ the solution of Eq. (1) is 
asymptotically mean square trivial.  

Definition 1.6. The trivial solution of Eqs. (1), (2) is called 
asymptotically mean square quasistable if it is mean square 
stable and for each initial function φ the solution of Eq. (1) 
is asymptotically mean square quasitrivial.  

Definition 1.7. The solution of Eq. (1) with initial condi-
tion (2) is called uniformly mean square summable if  
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∈ , + =
| + ; , φ | < ∞.∑ E  (8) 

Definition 1.8. The solution of Eq. (1) with initial condi-
tion (2) is called mean square integrable if  

0

2
0( )t x t t dt∞ | ; , φ | < ∞.∫ E  (9) 

Remark 1.1. If the solution of Eqs. (1), (2) is asymptoti-
cally mean square trivial then it is also asymptotically 
mean square quasitrivial, but the inverse statement is not 
true.  

Remark 1.2. It follows from condition (8) that  
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Really, arbitrary t ≥ t0 can be represented in the form t = s + 
kh0 with an integer k ≥ 0 and s ∈ [t0, t0 + h0). So,  
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Remark 1.3. If the solution of Eqs. (1), (2) is uniformly 
mean square summable then it is uniformly mean square 
bounded and asymptotically mean square quasitrivial.  

Everywhere below it is supposed that the functional 
V(t) = V(t, x(t), x(t – h1), x(t – h2), …) equals zero if and 
only if x(t) = x(t – h1) = x(t – h2) = … = 0. Let also [t] be 
the integer part of a number t and ∆V(t) = V(t + h0) – V(t). 

Theorem 1.1. [14] Let there exists a nonnegative func-
tional V(t) = V(t, x(t), x(t – h1), x(t – h2), …), such that  

2
1 0 0 0( ) sup ( ) [ )

s t
V t c x s t t t h

≤
≤ | | , ∈ , + ,E E  (10) 

2
2 0( ) ( )V t c x t t t∆ ≤ − | | , ≥ ,E E  (11) 

where c1, c2 are positive numbers. Then the trivial solution 
of Eqs. (1), (2) is asymptotically mean square quasistable.  

Remark 1.4. [14] If the conditions of Theorem 1.1 hold 
then the solution of Eq. (1) for each initial function (2) is 
uniformly mean square summable and mean square inte-
grable.  

Corollary 1.1. Let there exists a nonnegative functional V(t) 
= V(t, x(t), x(t – h1), x(t – h2), …), which satisfies condi-
tions (10) and E∆V(t) = −cE|x(t)|2, t ≥ t0. Then the inequal-
ity c > 0 is the necessary and sufficient condition for as-
ymptotic mean square quasistability of the trivial solution 
of Eq. (1).  

Proof. A sufficiency follows from Theorem 1.1. To prove a 
necessity it is enough to note that if c ≤ 0 then  

0 0
0

( ) ( ) ( ) 0
i

j
V t jh V t ih V t

=
∆ + = + − ≥∑ E E E  

or EV(t + ih0) ≥ EV(t) > 0. It means that the trivial solution 
of Eq. (1) cannot be asymptotically mean square quasista-
ble.  ■ 
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II. FORMAL PROCEDURE OF LYAPUNOV 
FUNCTIONALS CONSTRUCTION 

It follows from Theorem 1.1 and Remark 1.4 that an 
investigation of asymptotic behaviour of the solution of Eq. 
(1) can be reduced to construction of appropriate Lyapunov 
functionals.  

Below some formal procedure of Lyapunov function-
als construction for Eqs. (1), (2) is proposed. This proce-
dure consists of four steps.  

Step 1. Represent the functionals a1 and a2 at the right-hand 
side of Eq. (1) in the form  

1 1 2 1 2 3( ( ) ( ) ( ) ) ( ) ( ) ( )a t x t x t h x t h F t F t F t, , − , − , ... = + + ∆ ,  

2 1 2 1 2( ( ) ( ) ( ) ) ( ) ( )a t x t x t h x t h G t G t, , − , − , ... = + ,  (12) 

where  
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Step 2. Suppose that for the auxiliary equation  
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there exists a Lyapunov functional v(t) = v(t, y(t), y(t – h1), 
…, y(t − hk)), which satisfies the conditions of Theorem 
1.1.  

Step 3. Consider Lyapunov functional V(t) for Eq. (1) in 
the form V(t) = V1(t) + V2(t), where the main component is 
V1(t) = v(t, x(t) − F3(t), x(t – h1), …, x(t – hk)). Calculate 
E∆V1(t) and, in a reasonable way, estimate it.  

Step 4. In order to satisfy the conditions of Theorem 1.1, 
the additional component V2(t) of the functional V(t) is 
chosen by some standard way.  

Construction of Lyapunov functionals via this proce-
dure is demonstrated in [4-14] for different types of he-
reditary systems.  

Note that some standard way for construction of addi-
tional functional V2 allows to simplify the fourth step of the 
procedure and do not use the functional V2 at all. Below 
corresponding auxiliary Lyapunov type theorems are con-
sidered.  

III. AUXILIARY LYAPUNOV TYPE  
THEOREMS 

The following theorems in some cases allow to con-
struct Lyapunov functionals with conditions that are 
weaker than (11).  

Theorem 3.1. Let there exists a nonnegative functional V1(t) 
= V1(t, x(t), x(t – h1), x(t – h2), …), which satisfies condition 
(10) and the conditions  
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Then the trivial solution of Eqs. (1), (2) is asymptotically 
mean square quasistable.  

Proof. According to the procedure of Lyapunov functionals 
construction described above, let us construct the func-
tional V(t) in the form V(t) = V1(t) + V2(t), where V1(t) sat-
isfies conditions (13), (14) and  
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Note that N(t + h0) = N(t) + 1. So, calculating ∆V2(t), we 
obtain  
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From here and (13), (14), for the functional V(t) = V1(t) + 
V2(t) we get E∆V(t) ≤ (a + b) E|x(t)|2. Together with (14) 
this inequality implies (11). So, there exists the functional 
V(t), which satisfies the conditions of Theorem 1, i.e., the 
trivial solution of Eqs. (1), (2) is asymptotically mean 
square quasistable. The theorem is proven.  ■ 

Theorem 3.2. Let there exists a nonnegative functional V(t) 
= V(t, x(t), x(t – h1), x(t – h2), …), which satisfies condi-
tions (10) and  

2 2
0 0( ) ( ) ( )V t a x t b x t kh t t∆ ≤ | | + | − | , ≥ ,E E E  

  (15) 

where k is a positive integer. If the solution of Eqs. (1), (2) 
is uniformly mean square bounded but is not uniformly 
mean square summable then  

0a b+ ≥ .   (16) 

Proof. Rewrite (15) for t + jh0 with t ≥ t0, j = 0, 1, …, i.e.,  
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From here and V(t) ≥ 0 it follows  
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Consider t ∈ [t0, t0 + h0]. Since the solution of Eqs. (1), (2) 
is uniformly mean square bounded, i.e., E| x(t)|2 ≤ C, then 
using (10), (2), we have  

2 2
0 1

0
( ) ( ) ( || || )

i

j
a b x t jh c C k a C b

=
− + | + | ≤ + | | + | | φ < ∞.∑ E  

Let us suppose that (16) does not hold, i.e., a + b < 0. Then 
condition (8) holds, i.e., the solution of Eqs. (1), (2) is uni-
formly mean square summable, and we obtain the contra-
diction with the condition of Theorem 3.2. Therefore, (16) 
holds. The theorem is proven.  ■ 

Corollary 3.1. Let there exists a nonnegative functional V(t) 
= V(t, x(t), x(t – h1), x(t – h2), …), which satisfies condi-
tions (10), (15) and  

0a b+ < .   (19) 

Then the solution of Eqs. (1), (2) is either mean square 
unbounded or uniformly mean square summable.  

Corollary 3.2. Let there exists a nonnegative functional V(t) 
= V(t, x(t), x(t – h1), x(t – h2), …), which satisfies condi-
tions (10) and (15). If the solution of Eqs. (1), (2) is uni-
formly mean square bounded but is not mean square inte-
grable then condition (16) holds. If condition (19) holds 
then the solution of Eqs. (1), (2) is either mean square un-
bounded or mean square integrable.  

Really, integrating (15) from s = t0 to s = T, we obtain  
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0

2( )T
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−
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Using V(t) ≥ 0, (10), (2), we have  

0
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0 0 0 0
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2
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The statement of Corollary 3.2 follows from here similarly 
to Theorem 3.2 and Corollary 3.1.  

Theorem 3.3. Let there exists a nonnegative functional V(t) 
= V(t, x(t), x(t – h1), x(t – h2), …), which satisfies condi-
tions (10), (15), (19). If a > 0 then each uniformly mean 
square bounded solution of Eq. (1) is asymptotically mean 
square quasitrivial. If a ≤ 0 then the trivial solution of Eq. 
(1) is asymptotically mean square quasistable.  

Proof. It follows from Corollary 1.1 that by conditions (10), 
(15), (19) each uniformly mean square bounded solution of 
Eq. (1) is uniformly mean square summable and, therefore, 
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it is asymptotically mean square quasitrivial. Let us show 
that if a ≤ 0 then the trivial solution of Eq. (1) is stable. 
Really, if a = 0 then from (19) we have b < 0. So, it follows 
from (15) that  

2
0( ) ( ) 0V t b x t kh∆ ≤ | − | ≤ .E E  (20) 

Rewrite condition (20) in the form E∆V(t + jh0) ≤ bE|x(t + 
( j − k)h0)|2, t ≥ t0, j = 0, 1, …. Summing this inequality 
from j = 0 to j = k, we obtain  
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It follows also from (20) that  

0 0( ) ( ) ( 2 ) ( )V t V t h V t h V s≤ − ≤ − ≤ ... ≤ ,E E E E  
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where 0

0 0 0 0 0[ )t t
hs t h t t h−⎡ ⎤= − ∈ , +⎣ ⎦ . From (10) we get  
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2
1
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Using (1)-(4), for t ≤ t0 + h0, we have  
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  (24) 

From (21)-(24) we obtain |b| E| x(t)|2 ≤ c1 A ||φ||2, t ≥ t0. It 
means that the trivial solution of Eqs. (1), (2) is mean 
square quasistable.  

Let a < 0. If b ≤ 0 then condition (10) follows from 
(15). So, it follows from Theorem 1.1 that the trivial solu-
tion of Eq. (1) is asymptotically mean square quasistable. If 
b > 0 then condition (15) is a particular case of (13). It fol-
lows from here and (10), (19) that the functional V(t) satis-
fies the conditions of Theorem 3.1 and, therefore, the trivial 
solution of Eqs. (1), (2) is asymptotically mean square qua-
sistable. The theorem is proven.  ■ 

Corollary 3.3. Let there exists a nonnegative functional V(t) 
= V(t, x(t), x(t – h1), x(t – h2), …), which satisfies condi-
tions (10) and  

2 2
0 0( ) ( ) ( ) 0V t a x t b x t kh b t t∆ = | | + | − | , > , ≥ .E E E  

Then inequality (19) is the necessary and sufficient condi-
tion for asymptotic mean square quasistability of the trivial 
solution of Eq. (1).  

Proof. A sufficiency follows from Theorem 3.3 and a ne-
cessity from Corollary 1.1.  ■ 

Example 3.1. Consider the equation  

( 1) ( ) ( ) ( ) ( 1)x t x t x t k x t m t+ = α + β − + γ − ξ + . (25) 

In compliance with the procedure of Lyapunov func-
tionals construction let us consider an auxiliary equation in 
the form y(t + 1) = αy(t). If |α| < 1 then the functional v(t) = 
y2(t) is a Lyapunov functional for this equation, since ∆v(t) 
= y2(t + 1) – y2(t) = (α2 − 1) y2(t).  

Put V1(t) = x2(t). Calculating E∆V1(t) for Eq. (25), we 
have  
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2 2 2 2( ) ( ) ( )x t k x t m+ | αβ | +β − + γ − .E E  
  (26) 

Choosing an additional functional V2(t) in the form  

2 2 2 2
2

1 1
( ) ( ) ( ) ( )

k m

j j
V t x t j x t j

= =
= | αβ | +β − + γ − ,∑ ∑  

we obtain  

2 2 2
2

1

2 2 2

1

2 2 2

2 2 2

2 2 2

2 2 2 2

( ) ( ) [ ( 1 ) ( )]

[ ( 1 ) ( )]

( ) [ ( ) ( )]

[ ( ) ( )]

( ) ( )

( ) ( ) ( )

k

j

m

j

V t x t j x t j

x t j x t j

x t x t k

x t x t m

x t

x t k x t m

=

=

∆ = | αβ | +β + − − −

+ γ + − − −

= | αβ | +β − −

+ γ − −

= | αβ | +β + γ

− | αβ | +β − − γ − .

∑

∑

E E

E

E

E

E

E E

 

  (27) 

It follows from (26), (27) that if the inequality (|α| + |β|)2 + 
γ2 < 1 holds then the functional V(t) = V1(t) + V2(t) satisfies 
the conditions of Theorem 1.1 and, therefore, the trivial 
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solution of Eq. (25) is asymptotically mean square quasist-
able.  

By virtue of Theorem 3.1 the same result can be ob-
tained only via the functional V1(t) without construction of 
the additional functional V2(t). Really, it follows from (26) 
that the functional V1(t) satisfies conditions (13), (14) with 
a = α2 + |αβ| − 1 and b = |αβ| + β2 + γ2.  

It follows also from Corollary 3.3 that if β = 0 then the 
inequality α2 + γ2 < 1 is the necessary and sufficient condi-
tion for asymptotic mean square quasistability of the trivial 
solution of Eq. (25).  
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