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Abstract—We address the problem of serving plug-in hybrid
electric vehicles (PHEVs) in a charging station using a local
storage energy unit, with finite capacity. Our goal is to find a
control policy minimizing the operational cost of the charging
station. We assume that the price of the electrical power unit is
determined by a Real Time Pricing scheme, in which, the price of
the electrical power is continuously updated with respect to the
state of the grid at each time instance. We first model the charging
station as a continuous time Markov Decision Process with three
control actions: the probability of blocking new arrivals, the rate
of charging the battery and the proportion of cars being served
by the battery. By using dynamic programming, we prove the
existence of the optimal policy minimizing a discounted cost over
an infinite time horizon. We also show that it is stationary and
bang-bang, i.e. the admissible action set in the optimal policy
assumes only the extreme values in the action set.

I. INTRODUCTION

A. Motivation

Plug-in hybrid electric vehicles (PHEVs) have attracted the
interest of both industry and consumers. It is expected that
PHEVs will take a 10% market share of new car sales by
the year 2015 and can pass 50% by the year 2050 [1]. This
interest in PHEVs is mainly due to high gasoline prices and
public concerns about green house emissions. In practice, the
introduction of PHEVs remains challenging. For example by
deploying only night-time charging, an average size PHEV
needs a battery with a capacity of 40 miles per full charge;
this necessitates the deployment of relatively big and expensive
batteries for PHEVs. However, using charging stations will
decrease this value to 13 miles per full charge [2], which will
decrease the size of the battery and consequently reduce PHEV
prices in the market.

Charging a large number of PHEVs at the same time,
will push the peak demand in the electrical grid. It will
increase the need for extra supplementary power supplies
during peak hours and hence decrease the efficiency of the
grid. To decrease the peak demand, different ”Demand Side
Management (DSM)” [3] techniques are deployed. Without
necessarily decreasing the total energy consumption, DSM
”shifts” some consumption demands from peak times to ”off-
peak” times to flatten the consumption profile of the system
as much as possible and consequently enhances the utilization
of the total power grid. DSM uses different schemes to influ-
ence the consumption pattern. Among them are some pricing
schemes to encourage consumers to change their consumption
behaviour in order to enhance the utility of the whole electrical
grid. Time of Use (TOU) scheme, is one of the most popular
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of such pricing schemes. In TOU scheme, different tariffs
for the electrical power unit are set in different times of a
day. For example in the Double Tariff scheme, which is very
popular in the electricity market, consumers pay more per
power unit during day-time in weekdays than during night-
times and weekends.

In order to have better connection between the electricity
prices and real-time situation of the grid, ”Real Time Pricing”
(RTP) scheme has been introduced. In RTP scheme, the price
of an electrical power unit is continuously updated with respect
to the state of the grid at each time instance and sent to the
consumers in real time practically without delay [4]. Using
RTP scheme, a utility can set the prices based on the state of
the power generation, consumption rate and grid congestion at
each time instance. Unfortunately due to limited flexibility of
consumers, they don’t respond to energy prices as much and
show only a minor shift in their consumptions [5]. Therefore in
addition to these types of incentives, we need to develop more
complex and sophisticated control policies than just working
with prices.

B. Related Research and Goal

Related work to our problem appears in [1], [6] and [7].
In [1], authors suggest a model for a charging station using a
local storage unit, while the price of electrical power unit is
fixed. In their model, the policy of serving demands is fixed
and independent of the states. The main goal in [1] is to
determine the proper size of the storage unit, by comparing the
simulation results of the charging station model for different
size of the storage unit. The simulation results mainly focus
on the average cost and the blocking probability of the station.

In [6], a discrete time Markov Decision Process (MDP)
model for serving electrical demands is presented. In this
model it is assumed that the electrical demands can be fulfilled
either by using the electrical supply from the grid or by
drawing power from a local storage unit. In this model the
demands arrive to the system according to a Poisson process,
with identical but independent exponentially distributed ran-
dom service times. In this model demands may not be blocked,
but they can be delayed. The cost function is assumed to be
a fixed convex function of consumed electrical power over
the time. The goal in [6] is finding a control policy which
minimizes the infinite horizon average cost of the system.
Eventually an MDP problem is solved asymptotically for large
storage capacity values.

In [7], authors introduce a model of serving electrical
demands using power from either the grid or a local storage
unit. The total amount of demands and the total available
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power from the grid is assumed to be bounded as well as the
capacity of the storage unit. However, since the total electricity
demand is assumed to be less than the available power from
the grid, there are no blocked demands. The resulting model
follows a discrete time MDP and the goal is to minimize the
expected total discounted cost of serving demands.

In this paper, we will present a model for controlling a
charging station facility using a local storage energy unit with
finite capacity. We take into account the price fluctuations for
electrical power by considering a Real Time Pricing scheme.
Our goal is to determine an optimal charging policy resulting
in the minimum operational cost. To do so, we first model the
charging station as a continuous time Markov Decision Process
with three control actions at each state. We prove the existence
of a stationary and bang-bang optimal policy minimizing a
discounted cost over an infinite time horizon and further extend
our results and determine the optimal policy minimizing the
infinite horizon average cost. The rest of the paper is organized
as follows: In Section II, we will propose a new model for a
charging station. In Section III after introducing the proper
cost functions and the optimal total discounted cost, we will
determine the optimal policy minimizing a discounted cost
over an infinite time horizon. In Section IV, we will define
the infinite horizon average cost and then we will show how
to find the average cost optimal policy from a discounted cost
optimal policy. Finally in Section V, the performance of the
optimal policy is compared against other policies.

II. CHARGING STATION MODEL

Our model is motivated by the research in [1]. We assume
vehicles arriving to a charging station, each carrying a certain
charging demand. The arrivals are assumed to be Poisson
with rate �; the demands are independent and identically
distributed (i.i.d) exponential random variables with rate µ
(To simplify the analysis, we assume that the electrical power
is quantized by the number of cars being charged.). The
Markovian/memoryless assumptions for the arrivals and de-
mands distributions, although may not be entirely realistic,
they will nevertheless enable us to model our problem as a
Markov Decision Process (MDP); this would not be possible
for general arrival and demand distributions. We believe this
approach may provide useful intuition to similar practical
problems.

The charging station can draw the electrical power either
directly from the grid or from a local storage facility (a
battery). At any time the grid is able to charge at most S
cars. By level of the battery we mean the number of cars that
can be simultaneously charged from the battery at a given
time. The level fluctuates between 0, indicating that the battery
is empty, and R (the capacity of the battery) - the battery
is fully charged. Both S and R are fixed/given deterministic
parameters of the model. Let i = i(t) denote the number of
cars in the charging station at time t and j = j(t) be the level
of the battery at time t. The station can not have more than
S+j cars being charged at any given time, which is regulated
by blocking the newly arrived cars. This implies

0  j  R and 0  i  S + j (1)

Fig. 1: The out-flow of the state g, i, j in the charging station

At any given time, a car can be served either by the grid or
the battery. Letting iS and iR represent the number of cars
being charged by the grid and battery respectively, we have

0  iS  S and 0  iR  j and iR + iS = i (2)

If iS < S at some point of time, the remaining S� iS unused
power units of the grid could be used to charge the battery,
if it is not fully charged, i.e. j < R. The charging time of
each level of battery when using a unit of electrical power is
a random variable exponentially distributed with rate µ which
is independent of charging times of other levels of battery and
also independent of charging times of PHEVs. Therefore we
assume that the charging times of each PHEV and each level
of battery are i.i.d exponential random variables with the same
rate µ. If the battery is being charged using (S�iS ) units from
the power grid, the charging rate of each level of battery is
(S � iS )µ.

The state of the charging station at each time t, is deter-
mined by a three-dimensional vector X = (g, i, j). Variables
i and j are defined as above. An additional variable g denoting
the price of each unit of electrical power in the grid, supports
our assumption about RTP scheme for pricing. In particular,
we assume that g 2 G, where G, the power unit price set,
is a finite discrete set composed of all possible values of g.
Furthermore assume that the time the grid remains in each
of the states from G is an exponential random variable with
rate rg =

P
g0 6=g rgg0 , where rgg0 is the rate of going from

a state of price g to one of price g0. We assumed that new
updated prices will be sent to the station using a high-speed
connection without delay. Therefore at each time t, the state
of the system, X , belongs to the state space

X = {(g, i, j) : g 2 G, 0  j  R, 0  i  S + j} (3)

Now we are going to introduce controls to represent our model
as a controlled Markov Process. At each time t, and state of
the system X = (g, i, j), we introduce a control vector uX,t =
(�X,t , iRX,t

,↵X,t) in the following manner. The controls will
be applied at transition instances so that an appropriate cost
(to be introduced) is optimized.

The control variable �X,t 2 [0, 1] represents the fraction
of arriving cars being blocked by the controller. It means
upon arrival of a new car, the controller accepts this car with
probability (1 � �X,t). Clearly, when i = S + j, �X,t = 1.
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The second control variable ↵X,t 2 [0, 1] will represent the
proportion of available grid power to be used for charging
the battery. So when there are (S � iS ) power grid units
available, the battery charge rate is equal to ↵X,t(S � iS )µ.
Clearly, when j = R, ↵X,t ⌘ 0. The last control variable
is iRX,t

. When entering a new state X , the controller splits
the cars being charged in the station between the grid and
the battery. In other words the controller determine iR and
iS , independent of their values in previous states. Here we
assume that there is no restriction to assign a car previously
being charged by the grid, to be charged by the battery and
vice versa. With respect to conditions in Equation (2), we have:
iR 2 {(i�S)+, ...,min(i, j)}, where (i�S)+ = max(0, i�S).
Clearly, when i = 0 or j = 0, we have iRX,t

⌘ 0 and iS X,t
⌘

i. These definitions result in uX,t = (�X,t , iRX,t
,↵X,t) 2 ⌦,

where ⌦ = [0, 1]⇥ {(i� S)+, ...,min(i, j)}⇥ [0, 1]. Figure 1
illustrates the transition diagram in the resulted Markov pro-
cess. These rates form the generator matrix Q. The resulting
controlled Markov process has a finite state-space.

III. OPTIMAL CONTROL POLICY

We now need to introduce instantaneous cost function for
our model. Given the state at time t is Xt = (g, i, j) and
the selected action vector is uX,t = (�X,t , iRX,t

,↵X,t). We
define the operational grid cost incurred by the charging station
during the time interval [t, t+ dt], as follows:

C1
t (X,uX,t)dt = (giS X,t

+ g↵X,t (S � iS X,t
)� V i)dt

where V is the revenue obtained by the charging station per
unit time from each PHEV being charged at the station.

In addition, we are interested in taking into account the
quality of service offered by the station, in terms of the
number of blocked PHEVs. Let Cbl be the cost incurred per
each blocked PHEV. Then the corresponding blocking cost in
the time interval [t, t + dt] is: C2

t (X,uX,t)dt = Cbl��X,tdt.
Combining these two costs results in the following equation:

Ct(X,uX,t)dt = (C1
t (X,uX,t) + C2

t (X,uX,t))dt

= (g · iS X,t
+ g · ↵X,t · (S � iS X,t

)

� V · i+ Cbl��X,t)dt (4)

This cost function is stationary and independent of the time.
So at each time t, we can write:

Ct(X,uX,t)dt = C(X,uX,t)dt (5)

A control policy is a set of decision rules z = {uX,t =
(�X,t , iRX,t

,↵X,t) 2 ⌦ : X 2 X , t}. Denote by Z the set
of all policies. We are interested in finding a policy which
minimizing the average incurred cost during the operating
time of the system. In the sequel, we assume that the system
operates over an infinite horizon time [0,1).

Our problem can be modelled as a Markov Decision Pro-
cess (MDP). Following standard practice in Markov Decision
Processes, we will introduce a finite horizon �-discounted cost
problem and find its optimal control policy. Then the optimal
policy of the infinite horizon problem can be derived as a limit
of the optimal policies of a sequence of �-discounted problems
[8]. Let � be the discount rate. Then given the initial state is

X and the time horizon is {t : t > 0}, J�
t (X), the minimum

expected total �-discounted cost is defined as follows:

J�
t (X) = min

z2Z
Ez

X

✓Z t

0
e��⌧C(X⌧ ,uX,⌧ )d⌧

◆
(6)

So the infinite horizon optimal �-discounted expected cost is:

J�(X) = min
z2Z

Ez
X

✓Z 1

0
e��⌧C(X⌧ ,uX,⌧ )d⌧

◆
(7)

If there exists a policy z⇤, resulting in J�(X), this policy
is called the optimal �-discounted expected cost policy. This
optimal policy satisfies the following optimality condition [9]:

J�
t+dt(X) = min

u
X,0

2⌦

�
C(X,uX,0)dt

+e��dtdt(
X

X02X
P(Xdt = X 0|X0 = X,uX,0)J

�
t (X

0))} (8)

Lemma 1: For the cost function defined in (4), the optimal
policy z⇤ with respect to equation (7) exists and it is stationary.

Proof: The state space X is finite and the resulting
Markov chain (Figure 1) is irreducible. In addition, since
we assumed that S and R are finite values, (Section II),
the transition rates are finite and all of these transition rates
are independent of time. Moreover from Equation (5), we
know that the cost function C(X,uX,t) is independent of
time. Therefore the optimal policy exists and it is stationary
[8]. That is when at time t, the state of the system is
Xt = X , the optimal action exists, is independent of t and
only depends on the state of the system, X . So we have:
z⇤ = {u⇤

X,t
= u⇤

X
: X 2 X , t}.

A. Deriving the Optimal Policy

So far it has been shown the optimal policy exists and it is
stationary. Now in this subsection, we will show how to find
the optimal policy. To do so first we relate the continuous
time Markov chain {Xt : t � 0} to a suitable discrete
time Markov chain. Then we will find the corresponding cost
function and transition probabilities for the resulting discrete
time Markov chain. Eventually we will apply them to the
corresponding discrete time dynamic programming equations
to find the optimal action for each state and hence the optimal
policy. By using the method of ”uniformization” [10], we can
relate the continuous time Markov chain {Xt : t � 0} to a
suitable discrete time chain {Xk : k � 0}. Define the ”total
event rate” as follows: ⇢ = � + (S + R)µ +

P
g2G rg . Let

0 = t0 < t1 < t2 < · · · < tn < · · · be the transition epochs
with respect to possible transitions defined in the original
Markov Chain shown in Figure 1. By suitably introducing
”dummy” transitions, the inter-transition intervals become i.i.d
exponential random variables with rate ⇢. It can be shown [10]
that for a policy z 2 Z , the �-discounted expected cost up to
time tn, i.e.: Ez

X

⇣R tn
0 e��⌧C(X⌧ ,uX,⌧ )d⌧

⌘
is equal to a cost:

Ez
X

 
n�1X

k=0

�kCd(Xk,uX,k)

!
(9)

where {Xk : k � 0} is the discrete time Markov chain
obtained from {Xt : t � 0} by using the uniformization tech-
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nique, such that Xk , Xtk . Equivalently uX,k , uX,tk
is the

action at k-th transition, where the discrete time Markov chain
is at the state X . Furthermore in equation (9), � , ⇢

⇢+ �
< 1.

So Cd(Xk,uX,k), the discrete version of C(X⌧ ,uX,⌧ ), is:

Cd(Xk,uX,k) = g iS X,k
+ g ↵X,k (S � iS X,k

)

� V iX + � �X,kCbl (10)

The expectation in (9) is taken with respect to the probability
distribution associated to the discrete time Markov chain
{Xk : k � 0} when the control policy z is used. Following
are the resulting transition probabilities:

Pz(Xk+1 = (g0, i0, j0)|Xk = (g, i, j),uX,k = (�, iR ,↵)) · ⇢

=

8
>>>>>>>><

>>>>>>>>:

�(1� �) · 1{i<S+j}, g0 = g, i0 = i+ 1, j0 = j

rgg0 , g0 6= g, i0 = i, j0 = j

iRµ1{ij>0}, g0 = g, i0 = i� 1, j0 = j � 1

iSµ1{i>0}, g0 = g, i0 = i� 1, j0 = j

↵(S � iS )µ · 1{j<R}, g0 = g, i0 = i+ 1, j0 = j

⇢� ⇢0, g0 = g, i0 = i, j0 = j
(11)

Where ⇢0 = � (1��)·1{i<S+j}+
P

g0 6=g rgg0+iRµ1{ij>0}+
iSµ1{i>0} + ↵(S � iS )µ · 1{j<R}.

For each initial state X 2 X , we can define the n-step
optimal �-discounted expected cost as follows: J�

n(X) =

minz2Z Ez
X

⇣Pn�1
k=0 �

kCd(Xk,uX,k)
⌘

. Then the infinite hori-
zon optimal �-discounted expected cost is defined as follows:

J�(X) = min
z2Z

Ez
X

 1X

k=0

�kCd(Xk,uX,k)

!
(12)

Since the state space X is finite, it can be shown [8] that
limn!1 J�

n(X) = J�(X). Furthermore the optimal policy
exists and it is stationary.

Theorem 1: In the optimal policy z⇤, the set of all ad-
missible actions for u⇤

X
has the form A = {0, 1} ⇥ {(i �

S)+,min(i, j)} ⇥ {0, 1}. In other words the optimal policy
actions attain the extreme values in their corresponding sets.
Such policies are known as bang-bang policies.

Proof: To prove Theorem 1, first we will derive the
dynamic programming equations for discrete Markov chain
X and perform the necessary minimization with respect to �,
iR and ↵. The optimal policy is obtained from the discrete
time formulation of the dynamic programming equation [10],
as follows:

J�
k+1(X) = min

u
X,0

2⌦

�
Cd(X,uX,0) (13)

+
�

⇢
(
X

X02X
P(X1 = X 0|X0 = X,uX,0)J

�
k(X

0) )}

Where uX,0 denotes the chosen action at k = 0, while the the
system is in initial state X . However, since the optimal policy
is stationary, for each X 2 X we have: uX,0 = uX . Now
we can expand Equation (13), using uX = (�X , iRX

,↵X ).
For simplicity in our notations, in the following equations, we
will replace (�X , iRX

,↵X ) with (�, iR ,↵). Performing some

easy algebra results in:

J�
k+1(X) =

min
�2[0,1]

{��(Cbl �
�

⇢
1{i<S+j}(J

�
k(g, i+ 1, j)� J�

k(g, i, j)) )}

+ min
i
R
2{(i�S)+,··· ,min(i,j)}, ↵2[0,1]

{

iS (g +
�µ

⇢
1{i>0}(J

�
k(g, i� 1, j)� J�

k(g, i, j))

+iR
�µ

⇢
1{ij>0}(J

�
k(g, i� 1, j � 1)� J�

k(g, i, j))

+↵(S � iS )(g +
�µ

⇢
1{j<R}(J

�
k(g, i, j + 1)� J�

k(g, i, j)))}

+ terms not depending on (�, iR ,↵) (14)

Equation (14) shows that the optimal choice for � doesn’t
depend on ↵ and iR . We know that if i = S + j, then � ⌘ 1.
So when i < S + j, the optimal choice for � is obtained as
follows:

� =

(
0, (Cbl ⇢� �(J�

k(g, i+ 1, j)� J�
k(g, i, j)) ) � 0

1, (Cbl ⇢� �(J�
k(g, i+ 1, j)� J�

k(g, i, j)) ) < 0

(15)

To find the optimal choices for ↵ and iR , we should consider
the second part of the Equation (14). First assume that i·j = 0.
Then as it is discussed in Section II, iR = 0 and iS = i. Also
we know that if j = R, then ↵ ⌘ 0. From Equation (2),
we have: (S � iS ) � 0, independent of our choice for iR .
Therefore when i · j = 0 and j < R, by using Equation (14),
the optimal choice for ↵ is as follows:

↵ =

(
0, (g⇢+ �µ(J�

k(g, i, j + 1)� J�
k(g, i, j))) � 0

1, (g⇢+ �µ(J�
k(g, i, j + 1)� J�

k(g, i, j))) < 0

(16)

Now consider a case when i > 0 and j = R. Hence ↵ ⌘ 0.
Consequently by using Equation (14), the optimal choice for
iR is as follows:

iR =

8
>>>>>><

>>>>>>:

(i� S)+, �g⇢+ �µJ�
k(g, i� 1, j � 1)

� �µJ�
k(g, i� 1, j) � 0

min(i, j), �g⇢+ �µJ�
k(g, i� 1, j � 1)

� �µJ�
k(g, i� 1, j) < 0

(17)

The most general case happens when i · j > 0 and j < R. In
this case Equation (14) becomes as follows:

J�
k+1(X) = min

i
R
,↵
{

iR(�g +
�µ

⇢
(J�

k(g, i� 1, j � 1)� J�
k(g, i� 1, j))

+↵(S � iS )(g +
�µ

⇢
(J�

k(g, i, j + 1)� J�
k(g, i, j))) }

+ terms not depending on (iR ,↵) (18)

As we can see in Equation (18), only the second term depends
on ↵. Now since (S � iS ) � 0 (Equation (2)), in order to
minimize the RHS of Equation (18) with respect to ↵, we
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should minimize the following expression: ↵(S � iS )(g +
�µ

⇢
(J�

k(g, i, j + 1) � J�
k(g, i, j))), which results in using the

same criteria as Equation (16). Now if this criteria result in
↵ = 0, Equation (18) becomes as follows:

J�
k+1(X) = min

i
R

{

iR(�g +
�µ

⇢
(J�

k(g, i� 1, j � 1)� J�
k(g, i� 1, j)); }

+ terms not depending on (iR) (19)

Equation (19) tells us that using the same criteria as Equation
(17) gives us the optimal value of iR , which minimizes
Equation (18). On the other hand if using the criteria in
Equation (16) results in ↵ = 1, then Equation (18) becomes
as follows:

J�
k+1(X) =

min
i
R

{iR
�µ

⇢
(J�

k(g, i� 1, j � 1)� J�
k(g, i� 1, j)

+ J�
k(g, i, j + 1)� J�

k(g, i, j))) }
+ terms not depending on (iR ,↵) (20)

Therefore in cases when i · j > 0 and j < R, if using criteria
in Equation (16) results in ↵ = 1, to find the optimal choice
for iR , we should use the following criteria:

iR =

8
>>>>>><

>>>>>>:

(i� S)+, (J�
k(g, i� 1, j � 1)� J�

k(g, i� 1, j)

+J�
k(g, i, j + 1)� J�

k(g, i, j))) � 0

min(i, j), (J�
k(g, i� 1, j � 1)� J�

k(g, i� 1, j)

+J�
k(g, i, j + 1)� J�

k(g, i, j))) < 0

(21)

Equations (15), (16), (17) and (21) show that for every state
X 2 X , there exists a set of admissible actions A, as follows:

A = {0, 1}⇥ {(i� S)+,min(i, j)}⇥ {0, 1} (22)

such that uX = (�X , iRX
,↵X ) 2 A. Denote by ZA, the set

of all admissible policies. Then for each zA 2 ZA, including
z⇤, we have: zA = {uX 2 A : X 2 X}. Therefore instead of
initial action set ⌦ (Section II), we are sure that the actions in
the optimal policy belong to a much smaller set A, which is
indeed the boundaries of the initial set. In the literature, such
policies are called ”bang-bang” policies. So z⇤ is a bang-bang
policy.

Using dynamic equation (14) iteratively along with the
criteria in optimal policy in Section III, we will find the infinite
horizon optimal �-discounted expected cost J�(X) and its
corresponding optimal policy z⇤ 2 ZA, with finite number of
iterations [10].

B. Expected total �-discounted cost

Cd(X,uX ) (Equation (10)) is the cost of the discrete-time
Markov chain {Xk : k � 0}, when it is in the state X 2 X
and action uX,k is determined by stationary policy z. Then the
�-discounted expected cost of a stationary and time-invariant
policy z, when the initial state is X 2 X , is computed as

follows:

J�
z (X) = Ez

X

 1X

k=0

�kCd(Xk,uX,k)

!
(23)

Define the column vectors J�z and Cz of size |X |, where their
elements are J�

z (X) and Cd(X,uX ) respectively. In [10](Page
43, Chapter 4), it is shown that for a stationary policy z, the
set of |X | linear equations:

(I|X| � �Pz)J�z = Cz (24)

has a unique solution. It assures us that for a stationary policy
z and for each state X 2 X , the Equation (23) will definitely
converge to a unique value. So for each stationary and time-
invariant policy z, including the optimal policy z⇤, we can
compute the expected total �-discounted cost as follows:

J�
z (X) = Ez

XJ
�
z (X) (25)

The Expectation in Equation (25) is computed with respect
to a given initial distribution X. Therefore to compute the
the expected total �-discounted cost of a stationary and time-
invariant policy z, instead of using Equation (23), we can use
linear Equation (24) along with Equation (25). In Section V,
we will compare the expected total �-discounted cost of the
optimal policy z⇤ with that of certain other policies.

IV. MINIMIZING THE INFINITE HORIZON AVERAGE COST

For each stationary policy z = {uX 2 ⌦ : X 2 X}, where
we have uX,t = uX for each X 2 X , its equivalent stationary
discrete time Markov chain (Section III) is irreducible. More-
over since the state space X is finite (Section II), it is positive
recurrent and hence ergodic [11]. Therefore the steady state
probability distribution ⇡ = {⇡(X) : X 2 X} exists [11]-
[10], and is the solution of ⇡ = ⇡P subject to ⇡ · 1 = 1,
where P is the transition probability matrix for the resulting
discrete time Markov chain {Xz

k : k � 0} and 1 is a column
vector of size |X | with all elements equal to 1. Similarly for
the optimal policy z⇤ = {u⇤

X
2 A : X 2 X} in Section III,

by finding each action vector u⇤
X

for each state X 2 X , the
transition probability matrix Pz⇤

in (11) is fully determined.
For a policy z, the average cost per unit time incurred by

the discrete Markov chain {Xz
k : k � 0} is:

J(z) = lim
N!1

1

N
Ez

N�1X

k=0

Cd(Xk,uX,k) (26)

Considering the ergodicity of the Markov chain Equation (26)
becomes as follows: J(z) = EzCd(X,uX ). In [10], it is shown
that for continuous time Markov Decision Processes, {Xt :
t > 0}, we have:

lim
T!1

1

T

Z T

0
C(Xt,uX,t)dt = J(z) (27)

Furthermore it is shown that as � ! 1, the optimal �-
discounted expected cost policy z⇤� , is then average cost
optimal. Therefore the optimal average cost value is:

J⇤ = lim
�!1

Ez⇤
�Cd(X,uX ) (28)
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Fig. 2: The Discounted Utility U(z) = �J(z) per unit time for
optimal policy is compared to constant policies and threshold policy
for different values of �.

The expectation in (28) is taken with respect to the stationary
probability distribution associated to the discrete time Markov
chain {X⇤

k : k � 0} obtained from the optimal policy z⇤� with
transition probabilities obtained from Equation (11).

V. SIMULATION RESULTS

In Figures 2 and 3, the output of the optimal policy in
Section III, is compared to three ↵-Constant stationary policies
for different values of �. In each of these three policies, ↵ is
assumed to have the same value for all states X 2 X , i.e.
z↵ = {↵X = ↵, �X = 1{i=S+j}, iRX

= (i � S)+ :
X 2 X} for ↵ = 0, 0.5, 1. For example z↵, for ↵ = 1 is
the policy used in [1]. Furthermore it is compared to another
policy, called Simple Threshold. In this policy for each state
X = (g, i, j) 2 X , the action uX,t = (�X , iRX

,↵X ) is
determined as follows: �X = 1{i=S+j}, ↵X = 1{gV } and
iRX

= (i � S)+ · 1{gV } + min(i, j) · 1{g>V }, where V
is defined in Section III and is the revenue obtained per unit
time from each PHEV being charged at the station.

In these figures, the average Utility U per unit time is
illustrated. U(z) = �J(z) where J(z) is computed with
respect to Equation (27) for each of these policies, including
the optimal policy z⇤. The parameters of the charging station
are given as follows: S = 30, R = 35, � = 120, µ = 4,
V = 5.5 and Cbl = 0.5. In addition, the given power unit
price set is: G = {3, 5, 10}. All of theses unit prices are
assumed to have the same mean times, e.g. 8 hours in a day,
and equal transition probabilities to all other unit prices, i.e. 1

2
in our setting. Therefore the transition rate between different
unit prices is as follows: rgg0 =

1

16
for all g 6= g0. Also

in Figure 2, it is assumed � = 0.9. As we expected from
Equations (12) and (28), the output of the optimal policy z⇤

dominates that of other policies.
In Figure 2, the expected total �-discounted cost (Section

III-B) is considered. Note that since this cost depends on
the initial state, in order to compare the output of differ-
ent policies, we assume that the initial state is uniformly
distributed in state space X . Then after computing the �-
discounted expected cost J�

z (X) (Equation (23)), we perform
the averaging based on this assumption. On the other hand, in
Figure 3, the long term average cost (Section IV) of the above
policies are computed and compared with each other.
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Fig. 3: The average Utility U(z) = �J(z) per unit time for optimal
policy is compared to constant policies and threshold policy for
different values of �.

VI. CONCLUSION AND FUTURE WORK

We considered the problem of optimally controlling a
charging station of PHEVs in which PHEVs are charged either
directly from the electrical grid or from a local storage unit.
We modelled it as a continuous time Markov Decision Process
in which the controller should decide on whether to accept or
block the arriving demands, in addition to the charging rate of
the local storage unit and the number of demands served by it.
Then after introducing a proper cost function, we showed how
to find the optimal policy. Finally we proved that the optimal
policy is stationary and bang-bang.

As a possible future direction we will consider how to
mathematically characterize the switching curve which sep-
arates different regions in the optimal policy. Furthermore as
important future work, we will consider some different models
for PHEV demands and also charging rates of the PHEVs and
local storage unit.
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