
1

Asymptotic Convex Optimization for Packing
Random Malleable Demands in Smart Grid
Gennady Shaikhet∗, Mohammad M. Karbasioun†, Evangelos Kranakis‡, Ioannis Lambadaris†

Carleton University, Ottawa, ON, Canada
∗School of Mathematics and Statistics {gennady}@math.carleton.ca

†Department of Systems and Computer Engineering {mkarbasi, ioannis}@sce.carleton.ca
‡School of Computer Science {kranakis}@scs.carleton.ca

Abstract—We consider a problem of supplying electricity to
a network of electric demands, N , in a smart-grid framework.
Each demand requires a random amount of electrical energy
which has to be supplied during the time interval [0, 1]. We
model this network by malleable rectangular shape demands, and
then relate the resulted scheduling problem to well known Strip
Packing problem. in this model, we assume that each demand i
has to be supplied without interruption, with possible duration
between �i and ri, which are given malleability constraints of
that demand (�i ≤ ri). At each moment of time, the power of
the grid is the sum of all the consumption rates for the demands
being supplied at that moment. Our goal is to find a scheduling
policy that minimizes the power peak - maximal power over [0, 1] -
and/or total operational convex cost of the system while satisfying
all the demands. To find such a policy, we first present an
asymptotic analysis of stochastic demands to find the proper tight
lower bounds for both types of costs in the system. Eventually we
will propose an on-line scheduling algorithm for demands with
stochastic energy demands and stochastic malleability constraints
and show that the presented algorithm is asymptotically optimum
and has fully linear running time.

I. INTRODUCTION

A. Motivations

Wisely designing and implementing a scheduling policy

plays a crucial role in resource allocation problems. In the

smart grid, the common resource is the available electrical

energy at any time. Resource allocation is the main job of what

is called Demand Side Management (DSM) [1]. The main

goal of DSM is enhancing the efficiency of the grid network

while reducing the total cost of using the (limited) resources

of that network. This is usually done by smart exploiting some

statistical characteristics of (stochastic) demands and then

shaping the load profile of the system as much as the natural or

logistical constraints permit. In optimization language there are

two main cost functions to be optimized in electrical networks.

The first one is the total convex cost of using the resources and

the second one is the Peak to Average Ratio (PAR) of energy

consumption rate of the system. Even tough these two costs are

somehow related to each other, they are not the same. The cost

of consuming the energy is considered to be a convex function

of instantaneous total power consumption due to the fact that

each additional unit of power needed to serve demands is

more expensive as the total power demand increases [2]. This

is because the supplementary power for serving the demands

when the consumption rate is high, is generally produced from

expensive natural non-sustainable resources e.g. fossil fuels.

In general DSM has several benefits for the grid such as re-

ducing the amount of additional supplementary power needed

to satisfy the demand during peak hours which itself results

in decreasing the CO2 emissions of power plants [3]. Also

DSM may result in reducing the possibility of power outage

due to sudden increase of demands. Furthermore with the

expected presence of plug-in hybrid electric vehicles (PHEVs)

to the market, during charging hours of PHEVs, the average

household load is expected to be doubled [4]. Specially for

efficiently serving the upcoming PHEVs to the the market,

it is vital to design and deploy suitable charging stations

with proper scheduling scheme [5]. Consequently a scheduling

policy plays a crucial role in enhancing the utilization of an

electrical network.

There are many works in the field of Demand Side Manage-

ment. As examples for online sxheduling we can refer to [2]

and [6], in which by using some queueing analysis techniques,

it is attempted to devise on-line scheduling schemes for the

random arriving demands with flexibility of delaying the start

of their service. Specially in [2], by using a threshold policy,

they proposed an asymptotic scheduling policy to minimize

the total convex cost of the consumed power in the system.

In their setting the running time of the system is assumed

to be infinite as well as the acceptable delay for starting the

serving of each demand. In [7] it is assumed that demands have

different stochastic power requirements and durations and then

authors try to propose an on-line energy storage control policy

that minimizes long-term average convex operational cost of

the grid, in the presence of a storage unit. On the other hand in

[8] authors propose a distributed algorithm using game theory

for serving the deterministic demands. In this model the power

network consists of demands each with its own energy demand

and with its own minimum and maximum acceptable power

level that should be scheduled in their own requested time

intervals. The primary goal of their algorithm is reducing the

total convex cost of the network, while they still show that their

algorithm can be used to reduce the PAR in the network. The

problem in [8] is off-line Scheduling of deterministic demands,

since complete knowledge of the demands, such as number of

demands and the amount of energy needed by each of them

are known in advance. Other scenarios can happen when the

complete knowledge of the demands is not available and also
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we may need to perform on-line scheduling. For example in [9]

authors try to find algorithms for different levels of knowledge

about the demands such as arrival times, durations and power

intensities. Again the goal is reducing the total convex cost of

the power consumption in the system.

In this paper we consider an asymptotic setting with a large

number of stochastic small malleable energy demands, which

will be defined precisely in subsection I-B. This model itself is

novel in the smart grid literature. We will relate this model to

Strip Packing problem [10] with some modifications. Then we

introduce two types of costs, i.e. the total convex operational

cost and the Peak to Average Ratio (PAR) of consuming power

of the system and find proper lower bound for these costs.

Finally we will propose a proper scheduling policy and then

by performing asymptotic stochastic analysis, we will show

the proposed policy is asymptotically optimum for both types

of costs.

B. Model

Consider a set N = {1, 2, ..., n} of energy demands

{Ai, i ∈ N}, needed to be scheduled in a finite time interval

[0, 1]. We assume that only ”rectangular” shape of scheduling

is permitted, meaning that each demand i ∈ N has to be

supplied without interruption in some interval [τi, τi+si] with

a constant power intensity di =
Ai

si
. Obviously,

0 ≤ τi ≤ τi + si ≤ 1, i ∈ N . (1)

In addition to (1), we impose a demand malleability constraint.

That is, we assume each demand has its own parameters �i
and ri with 0 ≤ �i ≤ ri ≤ 1 so that

�i ≤ si ≤ ri, i ∈ N . (2)

This is motivated by the existence of electric appliances

with flexibility on the charging rate. We are interested in

evaluating the asymptotic performance of the system, i.e. when

the number of demands, n = |N | , is large and on the other

hand the values of demands, (Ai), are relatively small. As an

example we may think of a PHEV charging facility with a

significantly large amount of relatively much smaller orders.

The triples (Ai, �i, ri), i ∈ N will become random i.i.d.

vectors, with a certain distribution of (�, r). Again in PHEV

charging facility example, it is reasonable to assume that

different customers have different energy demands and mal-

leability constraints but with some known distribution on

(Ai, �i, ri), i ∈ N .

A set of pairs π = {(τi, si), i ∈ N}, satisfying (1)–(2)

for the given set of demands with the parameters (Ai, �i, ri),
where i ∈ N and (�, r) ∈ Ω, will be called a scheduling
policy. Let Π be a set of all policies.

For a policy π ∈ Π, with (τi, si) ∈ π, we have

Pπ(t) =

n∑
i=1

(
Ai

si
· 1{τi≤t≤τi+si}

)
, 0 ≤ t ≤ 1. (3)

Let us introduce two types of costs:

Cπ
1 = Pπ

max =

(
max
t∈[0,1]

{Pπ(t)}
)
, (4)

and, for arbitrary convex function h

Cπ
2 =

(∫ 1

t=0

h
(
Pπ(t)

)
dt

)
. (5)

The corresponding optimum costs of (4) and (5) are com-

puted as follow:

Popt = inf
π∈Π

Pπ
max (6)

Copt = inf
π∈Π

Cπ
2 . (7)

The problem of finding these optimum values is known to

be NP complete (see [11]) and therefore an optimal height

or convex cost cannot always be computed in polynomial

time. Therefore instead of finding these optimum values and

policies resulting in these values, we are interested in finding

a scheduling policy (π∗) that is asymptotically optimum with

respect to either height (using equations (4) and (6) )

a.s. lim
n→∞

[
max
t∈[0,1]

{Pπ∗
(t)

]
= Popt, (8)

or convex cost (using equations (5) and (7))

a.s. lim
n→∞

[∫ 1

t=0

h
(
Pπ∗

(t)
)
dt

]
= Copt. (9)

C. Related literature

Our setting resembles a so-called strip-packing problem

[12]. Specially in the case of the height problem, by viewing

the demands as rectangles, we want to pack them with their

side si parallel to horizontal axis in a rectangular bin of width

[0, 1] × Popt where an optimal height Popt is unknown. As

it was mentioned before, the problem is known to be NP

complete and therefore an optimal height cannot always be

computed in polynomial time.

Strip packing problem (also called two-dimensional strip

packing) is a variant of the bin-packing problem ([13] and

[14]) in which rectangles are packed into a strip of width

1 and infinite height in a way that rectangles don’t overlap

each other. Strip packing has been extensively explored in

the literature (see [11] and [15] for reviewing some of the

important works in this area). The objective in many works

related to Strip Packing is minimizing the height of the

packing in the strip, i.e. the height problem. The value of the

demands can be considered as random values with a certain

distribution or as deterministic values. Then the performance

of a scheduling policy π in both cases can be measured by

worse case analyses [16]. Also for stochastic demands, we can

use average case analyses [17].

Also scheduling policies are mainly divided into two cate-

gories, on-line and off-line algorithms. An algorithm is called

on-line, when demands arrive one by one and then a de-

mand Ai is scheduled without knowledge of next demands,

i.e. Ai+1, · · ·An [13]. For off-line scheduling problem, most

commonly referred work is [18] which has an asymptotic

worst case performance ratio (1 + ε) while its running time

is polynomial in both n (the number of demands) and (1/ε).
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On the other hand [19] proposes an on-line scheduling policy

with the same performance ratio for on-line problem while the

running time is just linear in the number of demands, n and

worse than exponential in (1/ε).

The most related works in strip packing literature to our

work is [20] and [19]. In [20], authors generalize the setting of

[18] to find an off-line scheduling policy for Malleable Tasks

where each task could use different number of resources (e.g.

processor, memories,...) which can also alternate their service

times. On the other hand in [19], authors propose a on-line

scheduling policy for malleable demands where demands can

be lengthened while their areas remain fixed. In their setting

the height of each rectangular demand is below bounded by its

initial height but does not have upper bound for the heights

of the rectangles. The values of demands (their width and

heights) are unknown but deterministic. The main drawback

of this algorithm is the running time in term of (1/ε).

The scheduling problem in this paper (which is called Power

Strip Packing (PSP) in the sequel) is different from strip

packing problem (we call it Traditional Strip Packing (TSP))

in some aspects. In TSP, the height Hπ
t at any time t, for

a scheduling policy π, is defined as the uppermost boundary
of scheduled rectangles at time t, while in PSP the height

of the strip packing at time t is obtained from equation (3).

This difference arises from the nature of the electric power, in

which the overall height (i.e. power) at any given time is just

the sum of the scheduled (i.e. active) demands (See Figure

1). Naturally, Pπ
t ≤ Hπ

t for any policy π and consequently

Pπ
max ≤ Hπ

max. Another difference which also arises from the

nature of power demands, is that demands can overlap each

other and then the amount of consumed power at each time is

the sum of all scheduled demands at that time.

D. Our Contributions

In this paper, we address the problem of optimal power

demand scheduling subject to malleability constraints to mini-

mize either the total convex cost or the Peak to Average Ratio

of the power grid. The contribution of our work to the literature

of smart grid and Strip Packing is as follows:

• We model a network of electric demands by malleable
rectangular shape demands, and then relate the resulted

scheduling problem to well known Strip Packing prob-

lem.

Fig. 1: Different interpretations of power and height in PSP and TSP.
For simplicity the height of each rectangle is assumed to be 1. In PSP:
P (t1) = 2 and P (t2) = 4 where in TSP H(t1) = H(t2) = 5.

• In addition to minimizing the maximum height of the

scheduling, our problem aims at minimizing the total

convex cost of the consumption power (height) in the

network.

• We present an asymptotic analysis of stochastic demands

to find the proper tight lower bounds for two types of

costs in the system, i.e. maximum height and total convex

cost.

• Eventually we will propose an on-line scheduling al-

gorithm for demands with stochastic energy demands

and stochastic malleability constraints and show that the

presented algorithm is asymptotically optimum and also

has fully linear running time.

The paper is organized as follows: In the next section

after introducing the asymptotic setting of the system, the

lower bounds of two different criteria are calculated. Then

a scheduling policy will be proposed which will be further

shown to be asymptotically optimal. Finally in the section III

some simulation results will be illustrated.

II. ASYMPTOTIC OPTIMIZATION

A. Random Setting

In this section we consider an asymptotic setting with a

large number of stochastic small malleable energy demands,

scheduling a significantly large amount of relatively much

smaller orders. Consider a set N = {1, 2, ..., n} of ”rect-

angular” shape energy demands {Ai, i ∈ N}, needed to

be scheduled in a finite time interval [0, 1]. In addition, we

assume each demand has its own parameters �i and ri with

0 ≤ �i ≤ ri ≤ 1 so that �i ≤ si ≤ ri. The triples

(Ai, �i, ri), i ∈ N will become random i.i.d. vectors, with a

certain distribution of (�, r). Assume that the pair of demand

constraints (�, r) is distributed uniformly in a region

Ω = {(�, r) : 0 ≤ � ≤ r ≤ 1},
This would imply that a likelihood for a demand to have r as

a right constraint would be directly proportional to r, since

(L,R) ∼ Unif (Ω) ⇒ Prob[R ∈ (r, r + dr)] = 2rdr. (10)

By the Law of Large Numbers this would make the number

of demands with a certain right constraint r to be directly
proportional to its value. That would be a natural situation,

where the system changes extra for short (”express”) right

constraints, with all left constraints being equal to a constant,

as small, as possible, just to satisfy technical requirements of

a charging facility.

B. Model and Results

For convenience, as well as to address possible industry

applications of the method, we will replace Ω by its discrete

version. For this we take an arbitrary natural number d > 1
(which would be set by a charging system), and define

Ωd =

{(
i

d
,
j

d

)
: i, j ∈ {1, ..., d− 1}, i ≤ j

}
(11)
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Assume that we are given random vectors (�i, ri), i ∈ N ,

i.i.d., distributed uniformly in Ωd. Set

pk := Prob

[
r1 =

k

d

]
. (12)

Easy algebra gives us

pk =
2k

d(d− 1)
. (13)

Thus implying a beautiful fact, that we will use extensively,

that the relation pk over k remains constant:

pk
k

=
2

d(d− 1)
, k = 1, ..., d− 1. (14)

Now we are ready to introduce an asymptotic regime, empha-

sizing the large number of demands and small sizes for each

demand. Suppose n is large, and there is another large number

m(n), directly proportional to n with some coefficient λ > 0:

n

m(n)
→ λ , as n → ∞. (15)

Let {ξi}, i = 1, ..., n be a sequence of i.i.d. random variables

with α := E(ξ1) < ∞ and σ2 := V ar(ξ1) < ∞. For the

distribution of the sizes of the demands we assume

Ai = (in distribution) =
ξi

m(n)
, (16)

which reflects the fact that demand sizes are small.

Recall the definition (3) for the function Pπ(t), as well

as the definition for a scheduling policy π, with respect to

malleability constraint (2). Note that Π - a set of all possible

policies, depends on n, as well as on (Ai, �i, ri), i = 1, ..., n.

Now recall two types of costs defined in (4) and (5) which we

rewrite them here:

Cπ
1 = Pπ

max =

(
max
t∈[0,1]

{Pπ(t)}
)
, (17)

and, for arbitrary convex function h

Cπ
2 =

(∫ 1

t=0

h
(
Pπ(t)

)
dt

)
. (18)

and their corresponding optimum values:

Popt = inf
π∈Π

Pπ
max. (19)

Copt = inf
π∈Π

Cπ
2 . (20)

For the set of demands, N , with | N |= n, the following

asymptotic lower bound Ln
P for Popt easily follows from (15),

(16):

Popt ≥
n∑

i=1

Ai = Ln
P . (21)

Also to find the corresponding lower bound Ln
C for Copt, one

needs to apply Jensen’s inequality to get

Copt ≥ h

(∫ 1

t=0

Pπ(t)

)
dt = h

(
n∑

i=1

Ai

)
= Ln

C . (22)

Now in asymptotic regime when n → ∞, by using the Law

of Large Numbers, we have:

n∑
i=1

Ai =

n∑
i=1

ξi
m(n)

→ λα a.s. n → ∞. (23)

Then using (23), the asymptotic values for Ln
P and Ln

C ,

become as follows:

Ln
P → λα a.s. n → ∞. (24)

Ln
C → h(λα) a.s. n → ∞. (25)

To state the main result of the section, we first need to

introduce the scheduling policy π∗, which we call it Grouping
Policy.

Algorithm 1 Grouping Policy π∗

INPUT (Ai, �i, ri) where (�i, ri) ∈ Ω and i = 1, . . . , n
OUTPUT Scheduling parameters (τi, si) where i =
1, . . . , n
if ri < 1

2 then
set τi = 0, si = ri
(i.e., schedule the demand in the interval [0, ri]);

else if ri >
1
2 then

set τi = 1− ri, si = ri,
(schedule the demand in the interval [1− ri, 1]);

else if ri =
1
2 then

alternatively set either τi = 0, si = 1/2, or τi = 1/2, si =
1/2,

(schedule in
[
0, 1

2

]
or
[
1
2 , 1
]

alternatively).

end if

Note the online nature of π∗ - the system does not need to

know anything about the other demands, each demand can be

scheduled, once its information is accessed.

Theorem 1: A policy π∗ is asymptotically optimal, in the

sense that the lower bounds (21)–(22) are asymptotically

achieved.

a.s. lim
n→∞

[
max
t∈[0,1]

{Pπ∗
(t)

]
= lim

n→∞Ln
P (26)

a.s. lim
n→∞

[∫ 1

t=0

h
(
Pπ∗

(t)
)
dt

]
= lim

n→∞Ln
C (27)

Proof: In what follows we omit the superscript π∗ to

simplify the notation. Decompose the set of all demands into

	d
2
 groups, in the following fashion:

Qk =

{{
i ∈ N : ri =

k
d or 1− k

d

}
, k = 1, ..., 	d−1

2 
;{
i ∈ N : ri =

1
2

}
k = d

2 .

(28)

Next, introduce the functions Pk, for k = 1, .., 	d
2
 as

Pk(t) =
∑
i∈Qk

(
Ai

si
· 1{τi≤t≤τi+si}

)
, 0 ≤ t ≤ 1. (29)
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Comparing with (3), we look at Pk as a total electricity

demand over a group k. Obviously,

Pπ∗
(t) =

∑
k

Pk(t). (30)

From the definition of the scheduling policy π∗, each Pk

will be a piecewise constant, with only two possible values

Pk(t) =

{
Pk,1 0 ≤ t ≤ k

d ,

Pk,2,
k
d < t ≤ 1,

(31)

where

Pk,1 =
∑
i∈Qk

(
Ai

si
· 1{τi≤t≤τi+si}

)
, 0 ≤ t ≤ k

d
, (32)

Pk,2 =
∑
i∈Qk

(
Ai

si
· 1{τi≤t≤τi+si}

)
,
k

d
< t ≤ 1.

The main step would be to prove the following a.s. limits

lim
n→∞Pk,1 = lim

n→∞Pk,2 (33)

= λα
2

d− 1
, for k = 1, ..., 	d− 1

2

,

lim
n→∞Pk,1 = lim

n→∞Pk,2 (34)

= λα
1

d− 1
, for k =

d

2
.

Given the above, the theorem, namely (26)–(27), will follow

from (30) and a simple algebraic relation⌊
d− 1

2

⌋
λα

2

d− 1
+ λα

1

d− 1
· 1{d is even} = λα, (35)

as well as from the smoothness of a convex function h.

We start by proving (33). For k = 1, ..., d
2 − 1, decompose

Qk into a unit of disjoint Qk,1 and Qk,2:

Qk,1 =

{
i ∈ N : ri =

k

d

}
; (36)

k = 1, ..., 	d− 1

2



Qk,2 =

{
i ∈ N : ri = 1− k

d

}
.

Using the above together with (32), we have (see the expla-

nation below)

Pk,1 =
∑

i∈Qk,1

Ai

ri
= (distribution) =

∑
i∈Qk,1

d

k

ξi
m

(37)

=

( |Qk,1|
n

)(
d

k

n

m

) ⎛⎝ 1

|Qk,1|
∑

i∈Qk,1

ξi

⎞
⎠

→ pk
d

k
λ α = λα

2

d− 1
.

Here we used Law of Large Numbers for for the convergence

of the first and third brackets; the relation (15) for the second

bracket, as well as the relation (14). Similar convergence holds

for Pk,2 :

Pk,2 =
∑

i∈Qk,2

Ai

ri
= (distribution) =

∑
i∈Qk,2

d

d− k

ξi
m

(38)

→ pd−k
d

d− k
λ α = λα

2

d− 1
,

thus proving (33). The only difference intreating the case k =
d
2 , is that, instead (36), we need to set

Q d
2 ,1

= {i ∈ N : τi = 0} ; (39)

Q d
2 ,2

=

{
i ∈ N : τi =

1

2

}
.

Using the fact that, by the policy π∗, we must have (with a

negligible difference)

|Q d
2 ,1

| = |Q d
2 ,2

| = 1

2
|Q d

2
|, (40)

we repeat the lines (38) as to get (34), and hence (35).

Therefore we have:

a.s. lim
n→∞

[
max
t∈[0,1]

{Pπ∗
(t)

]
= λα, (41)

a.s. lim
n→∞

[∫ 1

t=0

h
(
Pπ∗

(t)
)
dt

]
= h(λα). (42)

Finally combining the equations (24)-(25) with (41)-(42), with

respect to definitions (4) and (5)), results in the following

equations:

a.s. lim
n→∞ |Pπ∗

max − Ln
P |

≤ lim
n→∞ |Pπ∗

max − λα|+ |Ln
P − λα| = 0 (43)

a.s. lim
n→∞ |Cπ∗

2 − Ln
C |

≤ lim
n→∞ |Cπ∗

2 − h(λα)|+ |Ln
C − (λα)| = 0 (44)

This concludes the theorem.

III. COMPUTATIONAL RESULTS

Figures 2 and 3 illustrate the outputs of the Grouping

Policy π∗, for different values of n when d = 9 and

λ = 1 and ξi’s are i.i.d Gaussian random variables with

α = 10 and σ2 = 4. The cost function h is assumed to

be: h(x) = x4. As it is illustrated in these figures with

increasing the number of demands the performance of π∗

gets better which is consistent with the asymptotic nature of

thus policy. In figure 2, to illustrate the performance of the

Grouping Policy π∗ with respect to Peak to Average ratio

criteria, i.e. Cπ∗
1 = Pπ∗

max ( equation (17)), two different ratios

are computed: theoretical asymptotic height ratio and real

height ratio are calculated. The theoretical asymptotic height

ratio is the proportion of the Pπ∗
max over theoretical asymptotic

lower bound λα (equation (24)) and the real height ratio is the
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Fig. 2: The performance of the policy π∗ with respect to Peak to
Average Ratio criteria

proportion of the Pπ∗
max over real lower bound Ln

P =
∑n

i=1 Ai

(equation (21)). Similarly figure 3 illustrates the performance

of the Grouping Policy π∗ with respect to total convex cost

criteria, i.e. Cπ
2 =

(∫ 1

t=0
h
(
Pπ(t)

)
dt
)

( equation (18)), with

respect to theoretical asymptotic and real cost ratios. So in

figure 3, the theoretical asymptotic cost ratio is the proportion

of the Cπ∗
2 over theoretical asymptotic lower bound h(λα)

(equation (25)) and the real height ratio is the proportion of

the Pπ∗
max over real lower bound Ln

C = h(
∑n

i=1 Ai) (equation

(22)).

IV. CONCLUSION

In this paper considering a problem of supplying electricity

to malleable demands, we introduced Power Strip Packing

(PSP) problem. With respect to two cost criteria, power peak

and total operational convex cost of the system we showed

that using a linear time algorithm will result in asymptotically

optimal performance. The main contribution of this work is

to propose a deterministic scheduling policy for supplying

stochastic demands with stochastic malleability constraints and

show that this policy is asymptotically optimum. It should be

noted that, even though we focused on PSP in this paper, our

analysis and results are also valid for traditional strip packing

problem. One possible extension of this work is proposing

a scheduling policy for more general distribution on vectors

(�i, ri), which we are currently working on it and we will

propose the more general random scheduling policy in our

future works.
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