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Optimal Execution in a General One-Sided Limit-Order Book∗

Silviu Predoiu†, Gennady Shaikhet‡, and Steven Shreve†

Abstract. We construct an optimal execution strategy for the purchase of a large number of shares of a financial
asset over a fixed interval of time. Purchases of the asset have a nonlinear impact on price, and this is
moderated over time by resilience in the limit-order book that determines the price. The limit-order
book is permitted to have arbitrary shape. The form of the optimal execution strategy is to make
an initial lump purchase and then purchase continuously for some period of time during which the
rate of purchase is set to match the order book resiliency. At the end of this period, another lump
purchase is made, and following that there is again a period of purchasing continuously at a rate set
to match the order book resiliency. At the end of this second period, there is a final lump purchase.
Any of the lump purchases could be of size zero. A simple condition is provided that guarantees
that the intermediate lump purchase is of size zero.
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1. Introduction. We consider optimal execution over a fixed time interval of a large asset
purchase in the face of a one-sided limit-order book. We assume that the ask price (sometimes
called the best ask price) for the underlying asset is a continuous martingale that undergoes
two adjustments during the period of purchase. The first adjustment is that orders consume
a part of the limit-order book, and this increases the ask price for subsequent orders. The
second adjustment is that resilience in the limit-order book causes the effect of these prior
orders to decay over time. In this paper, there is no permanent effect from the purchase we
model. However, the temporary effect requires infinite time to disappear completely.

We assume that there is a fixed shadow limit-order book shape toward which resilience
returns the limit-order book. At any time, the actual limit-order book relative to the mar-
tingale component of the ask price has this shape but with some left-hand part missing due
to prior purchases. An investor is given a period of time and a target amount of asset to be
purchased within that period. His goal is to distribute his purchasing over the period in order
to minimize the expected cost of purchasing the target. We permit purchases to occur in
lumps or to be spread continuously over time. We show that the optimal execution strategy
consists of three lump purchases, one or more of which may be of size zero, i.e., does not
occur. One of these lump purchases is made at the initial time, one at an intermediate time,
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and one at the final time. Between these lump purchases, the optimal strategy purchases at
a constant rate matched to the limit-order book recovery rate so that the ask price minus
its martingale component remains constant. We provide a simple condition under which the
intermediate lump purchase is of size zero (see Theorem 4.2 and Remark 4.4).

Bouchaud, Farmer, and Lillo [9] provide a survey of the empirical behavior of limit-order
books. Dynamic models for optimal execution designed to capture some of this behavior
have been developed by several authors, including Bertsimas and Lo [8], Almgren and Chriss
[6, 7], Grinold and Kahn [15] (Chapter 16), Almgren [5], Obizhaeva and Wang [10], and
Alfonsi, Fruth, and Schied [1, 4]. Trading in [8] is on a discrete-time grid, and the price
impact of a trade is linear in the size of the trade and is permanent. In [8], the expected-
cost-minimizing liquidation strategy for an order is to divide the order into equal pieces, one
for each trading date. Trading in [6, 7] is also on a discrete-time grid, and there are linear
permanent and temporary price impacts. In [6, 7], the variance of the cost of execution is
taken into account. This leads to the construction of an efficient frontier of trading strategies.
In [15] and [5], trading takes place continuously, and finding the optimal trading strategy
reduces to a problem in the calculus of variations.

Other authors focus on the possibility of price manipulation, an idea that traces back
to Huberman and Stanzl [16]. Price manipulation is a way of starting with zero shares
and using a strategy of buying and selling so as to end with zero shares while generating
income. Gatheral, Schied, and Slynko [13] permit continuous trading and use an integral
of a kernel with respect to the trading strategy to capture the resilience of the book. In
such a model, Gatheral [12] shows that exponential decay of market impact and absence of
price manipulation opportunities are compatible only with linear market impact. In [14], this
result is reconciled with the nonlinear market impact in models such as [2, 3, 4] and this
paper. Alfonsi, Schied, and Slynko [3] discover in a discrete-time version of the model of [13]
that, even under conditions that prevent price manipulation, it may still be optimal to execute
intermediate sells while trying to execute an overall buy order, and they provide conditions
to rule out this phenomenon.

For the type of model we consider in this paper, based on a shadow limit-order book, Al-
fonsi and Schied [2] show that price manipulation is not possible under very general conditions.
Furthermore, it is never advantageous to execute intermediate sells while trying to execute an
overall buy order. In [2], trading takes place at finitely many stopping times, and execution
is optimized over these stopping times. In the present paper, where trading is continuous, we
do not permit intermediate sells. This simplification of the model is justified by Remark 3.1,
which argues that intermediate sells cannot reduce the total cost.

The present paper is inspired by Obizhaeva and Wang [10], who explicitly model the one-
sided limit-order book as a means of capturing the price impact of order execution. Empirical
evidence for the model of [10] and its generalizations by Alfonsi, Fruth, and Schied [1, 4] and
Alfonsi and Schied [2] are reported in [1, 2, 4, 10]. In [10] and [1], the limit-order book has a
block shape, and in this case the price impact of a purchase is linear, the same as in [8, 7].
However, the change of mindset is important because it focuses attention on the shape of the
limit-order book as the determinant of price impact, rather than making assumptions about
the price impact directly. This change of mindset was exploited in [2, 4], where more general
limit-order book shapes are permitted, subject to the condition discussed in Remark 4.4.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

OPTIMAL EXECUTION 185

In [2, 4], trading is on a discrete-time grid, and it is shown that for an optimal purchasing
strategy all purchases except the first and last ones are of the same size. Furthermore, the size
of the intermediate purchases is chosen so that the price impact of each purchase is exactly
offset by the order book resiliency before the next purchase. Similar results are obtained in
[2], although here trades are executed at stopping times.

In contrast to [2, 4, 10], we permit the order book shape to be completely general. However,
in our model all price impact is transient; [4, 10] also include the possibility of a permanent
linear price impact. In contrast to [2, 4], we do not assume that the limit-order book has a
positive density. It can be discrete or continuous and can have gaps. In contrast to [2, 4, 10],
we permit the resilience in the order book to be a function of the adjustments to the martingale
component of the ask price. Weiss [18] argues in a discrete-time model that this conforms
better to empirical observations.

Finally, we set up our model so as to allow for both discrete-time and continuous-time
trading, whereas [4, 10] begin with discrete-time trading and then study the limit of their
optimal strategies as trading frequency approaches infinity. The simplicity afforded by a fully
continuous model is evident in the analysis below. In particular, we provide constructive
proofs of Theorems 4.2 and 4.5 that describe the form of the optimal purchasing strategies.

Section 2 of this paper presents our model. It contains the definition of the cost of
purchasing in our more general framework, and that is preceded by a justification of the
definition. Section 3 shows that randomness can be removed from the optimal purchasing
problem and reformulates the cost function into a convenient form. In section 4, we solve the
problem, first in the case that is analogous to the one solved by [4] and then in full generality.
Sections 4.1 and 4.3 contain examples.

2. The model. Let T be a positive constant. We assume that the ask price of some
asset, in the absence of the large investor modeled by this paper, is a continuous nonnegative
martingale At, 0 ≤ t ≤ T , relative to some filtration {Ft}0≤t≤T satisfying the usual conditions.
We assume that

(2.1) E

[
max
0≤t≤T

At

]
<∞.

We show below that for the optimal execution problem of this paper one can assume without
loss of generality that this martingale is identically zero. We make this assumption beginning
in section 3 in order to simplify the presentation.

For some extended positive real number M , let μ be an infinite measure on [0,M) that
is finite on each compact subset of [0,M). Denote the associated left-continuous cumulative
distribution function by

F (x) � μ
(
[0, x)

)
, x ≥ 0.

This is the shadow limit-order book, in the sense described below. We assume F (x) > 0
for every x > 0. If B is a measurable subset of [0,M), then, in the absence of the large
investor modeled in this paper, at time t ≥ 0 the number of limit orders with prices in
B +At � {b+At; b ∈ B} is μ(B).

There is a strictly positive constant X such that our large investor must purchase X
shares over the time interval [0, T ]. His purchasing strategy is a nondecreasing right-continuous
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adapted process X with XT = X. We interpret Xt to be the cumulative amount of purchasing
done by time t. We adopt the convention X0− = 0, so that X0 = ΔX0 is the number of shares
purchased at time zero. Here and elsewhere, we use the notation ΔXt to denote the jump
Xt −Xt− in X at time t.

The effect of the purchasing strategy X on the limit-order book is determined by a re-
silience function h, a strictly increasing, locally Lipschitz function defined on [0,∞) and
satisfying

(2.2) h(0) = 0, h(∞) � lim
x→∞h(x) >

X

T
.

The function h together with X determines the volume effect process1 E satisfying

(2.3) Et = Xt −
∫ t

0
h(Es) ds, 0 ≤ t ≤ T.

It is shown in Appendix A that there is a unique nonnegative right-continuous finite-variation
adapted process E satisfying (2.3). As with X, we adopt the convention E0− = 0. We note
that ΔXt = ΔEt for 0 ≤ t ≤ T .

Let B be a measurable subset of [0,M). The interpretation of E is that, in the presence
of the large investor using strategy X, at time t ≥ 0 the number of limit orders with prices
in B + A(t) is μt(B), where μt is the σ-finite infinite measure on [0,M) with left-continuous
cumulative distribution function (F (x)− Et)

+, x ≥ 0. In other words, Et units of mass have
been removed from the shadow limit-order book μ. In any interval in which no purchases are
made, (2.3) implies d

dtEt = −h(Et). Hence, in the absence of purchases, the volume effect
process decays toward zero and the limit-order book tends toward the shadow limit-order
book μ, displaced by the ask price A.

To calculate the cost to the investor of using the strategy X, we introduce the following
notation. We first define the left-continuous inverse of F ,

ψ(y) � sup{x ≥ 0|F (x) < y}, y > 0.

We set ψ(0) � ψ(0+) = 0, where the second equality follows from the assumption that
F (x) > 0 for every x > 0. The ask price in the presence of the large investor is defined to be
At +Dt, where

(2.4) Dt � ψ(Et), 0 ≤ t ≤ T.

This is the price after any lump purchases by the investor at time t (see Figure 1). We give
some justification for calling At +Dt the ask price after the following three examples.

Example 2.1 (block order book). Let q be a fixed positive number. If q is the density of
shares available at each price, then for each x ≥ 0 the quantity available at prices in [0, x]
is F (x) = qx. This is the block order book considered by [10]. In this case, ψ(y) = y/q and
F (ψ(y)) = y for all y ≥ 0.

1The case that resilience is based on price rather than volume is also considered in [2, 4].
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Figure 1. Limit-order book at time t. The shaded region corresponds to the remaining shares. The white
area Et corresponds to the amount of shares missing from the order book at time t. The current ask price is
At +Dt.

Figure 2. Density and cumulative distribution of the modified block order book.

Example 2.2 (modified block order book). Let 0 < a < b <∞ be given, and suppose

(2.5) F (x) =

⎧⎨⎩
x, 0 ≤ x ≤ a,
a, a ≤ x ≤ b,
x− (b− a), b ≤ x <∞.

This is a block order book, except that the orders with prices between a and b are not
present (see Figure 2). In this case,

(2.6) ψ(y) =

{
y, 0 ≤ y ≤ a,
y + b− a, a < y <∞.

We have F (ψ(y)) = y for all y ≥ 0.
Example 2.3 (discrete order book). Suppose that

(2.7) F (x) =
∞∑
i=0

I(i,∞)(x), x ≥ 0,

which corresponds to an order of size 1 at each of the nonnegative integers (see Figure 3).
Then

(2.8) ψ(y) =
∞∑
i=1

I(i,∞)(y), y ≥ 0.
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Figure 3. Measure and cumulative distribution function of the discrete order book.

For every nonnegative integer j, we have F (j) = j, F (j+) = j + 1, ψ(j + 1) = j, ψ(j+) = j,
F (ψ(j)+) = j, and ψ(F (j)+) = j.

We return to the definition of the ask price as At+Dt to provide some justification, leading
up to Definition 2.4, for the total cost of a purchasing strategy. Suppose, as in Example 2.2,
F is constant on an interval [a, b] but strictly increasing to the left of a and to the right of
b. Let y = F (x) for a ≤ x ≤ b. Then ψ(y) = a and ψ(y+) = b. Suppose, at time t, we
have Et = y. Then Dt = a, but the measure μt assigns mass zero to [a, b). The ask price is
At +Dt, but there are no shares for sale at this price, nor in an interval to the right of this
price. Nonetheless, it is reasonable to call At +Dt the ask price for an infinitesimal purchase
because if the agent will wait an infinitesimal amount of time before making this purchase,
shares will appear at the price At+Dt due to resilience. We make this argument more precise.

Suppose the agent wishes to purchase a small number ε > 0 shares at time t at the ask
price At+Dt. This purchase can be approximated by first purchasing zero shares in the time
interval [t, t+ δ], where δ is chosen so that

∫ t+δ
t h(Es) ds = ε and

Es = Xt −
∫ s

0
h(Eu) du, t ≤ s < t+ δ.

In other words, Es for t ≤ s < t + δ is given by (2.3) with X held constant (no purchases)
over this interval. With δ chosen this way, E(t+δ)− = Et − ε. Resilience in the order book
has created ε shares. Suppose the investor purchases these shares at time t+ δ, which means
that ΔXt+δ = ΔEt+δ = ε and Et+δ = Et. Immediately before the purchase, the ask price is
At+δ + ψ(Et − ε); immediately after the purchase, the ask price is At+δ + ψ(Et) = At+δ + a.
The cost of purchasing these shares is

(2.9) εAt+δ +

∫
[ψ(Et−ε),a]

ξ d
(
F (ξ)− Et + ε

)+
.

Because
∫
[ψ(Et−ε),a] d

(
F (ξ)−Et+ε)+ = ε, the integral in (2.9) is bounded below by εψ(Et−ε)

and bounded above by εa. But a = ψ(Et) = Dt and ψ is left continuous, so the cost per share



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

OPTIMAL EXECUTION 189

obtained by dividing (2.9) by ε converges to At + a = At +Dt as ε (and hence δ) converges
down to zero.

On the other hand, an impatient agent who does not wait before purchasing shares could
choose a different method of approximating an infinitesimal purchase at time t that leads to a
limiting cost per share At + b. In particular, it is not the case that our definition of ask price
is consistent with all limits of discrete-time purchasing strategies. Our definition is designed
to capture the limit of discrete-time purchasing strategies that seek to minimize cost.

To simplify calculations of the type just presented, we define the functions

ϕ(x) =

∫
[0,x)

ξ dF (ξ), x ≥ 0,(2.10)

Φ(y) = ϕ
(
ψ(y)

)
+
[
y − F

(
ψ(y)

)]
ψ(y), y ≥ 0.(2.11)

We note that Φ(0) = 0, and we extend Φ to be zero on the negative half-line. In the absence
of the large investor, the cost one would pay to purchase all the shares available at prices in
the interval [A(t), A(t) + x) at time t would be A(t) + ϕ(x). The function Φ(y) captures the
cost, in excess of At, of purchasing y shares in the absence of the large investor. The first
term on the right-hand side of (2.11) is the cost less At of purchasing all the shares with prices
in the interval [At, At + ψ(y)). If F has a jump at ψ(y), this might be fewer than y shares.
The difference, y − F (ψ(y)) shares, can be purchased at price At + ψ(y), and this explains
the second term on the right-hand side of (2.11). We present these functions in the three
examples considered earlier.

Example 2.1 (block order book, continued). We have simply ϕ(x) = q
∫ x
0 ξ dξ =

q
2x

2 for all
x ≥ 0, and Φ(y) = q

2ψ
2(y) = 1

2qy
2 for all y ≥ 0. Note that Φ is convex and Φ′(y) = ψ(y)

for all y ≥ 0, including at y = 0 because we define Φ to be identically zero on the negative
half-line.

Example 2.2 (modified block order book, continued). With F and ψ given by (2.5) and
(2.6), we have

ϕ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1

2
x2, 0 ≤ x ≤ a,

1

2
a2, a ≤ x ≤ b,

1

2
(x2 + a2 − b2), b ≤ x <∞,

and

Φ(y) =

⎧⎪⎪⎨⎪⎪⎩
1

2
y2, 0 ≤ y ≤ a,

1

2

(
(y + b− a)2 + a2 − b2

)
, a ≤ y <∞.

Note that Φ is convex with subdifferential

(2.12) ∂Φ(y) =

⎧⎨⎩
{y}, 0 ≤ y < a,
[a, b], y = a,
{y + b− a}, a < y <∞.
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Figure 4. Functions Φ and ψ for the modified block order book with parameters a = 4 and b = 14.

In particular, ∂Φ(y) = [ψ(y), ψ(y+)] for all y ≥ 0 (see Figure 4).
Example 2.3 (discrete order book, continued). With F given by (2.7), we have ϕ(x) =∑∞

i=0 iI(i,∞)(x). In particular, ϕ(0) = 0, and for integers k ≥ 1 and k − 1 < x ≤ k,

ϕ(x) =

k−1∑
i=0

i =
k(k − 1)

2
.

For 0 ≤ y ≤ 1, ψ(y) = 0 and hence ϕ(ψ(y)) = 0, [y − F (ψ(y))]ψ(y) = 0, and Φ(y) = 0. For

integers k ≥ 1 and k < y ≤ k + 1, (2.8) gives ψ(y) = k, and hence ϕ(ψ(y)) = k(k−1)
2 . Finally,

for y in this range, [y − F (ψ(y))]ψ(y) = k(y − k). We conclude that

(2.13) Φ(y) =

∞∑
k=1

k

(
y − 1

2
k − 1

2

)
I(k,k+1](y).

For each positive integer k, Φ(k−) = Φ(k+) = 1
2k(k − 1), so Φ is continuous. Furthermore,

∂Φ(k) = [k − 1, k] = [ψ(k), ψ(k+)]. For nonnegative integers k and k < y < k + 1, Φ′(y)
is defined and is equal to ψ(y) = k. Furthermore, Φ′(0) = ψ(0) = 0. Once again we have
∂Φ(y) = [ψ(y), ψ(y+)] for all y ≥ 0, and because ψ is nondecreasing, Φ is convex (see Figure
5).

We decompose the purchasing strategy X into its continuous and pure jump parts Xt =
Xc
t +

∑
0≤s≤tΔXs. The investor pays price At +Dt for infinitesimal purchases at time t, and

hence the total cost of these purchases is
∫ T
0 (At+Dt) dX

c
t . On the other hand, if ΔXt > 0, the

investor makes a lump purchase of size ΔXt = ΔEt at time t. Because mass Et− is missing in
the shadow order book immediately prior to time t, the cost of this purchase is the difference
between purchasing Et and purchasing Et− from the shadow order book, i.e., the difference
in what the costs of these purchases would be in the absence of the large investor. Therefore,
the cost of the purchase ΔXt at time t is AtΔXt+Φ(Et)−Φ(Et−). These considerations lead
to the following definition.
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Figure 5. Functions Φ and ψ for the discrete order book.

Definition 2.4. The total cost incurred by the investor using purchasing strategy X over the
interval [0, T ] is

C(X) �
∫ T

0

(
At +Dt) dX

c
t +

∑
0≤t≤T

[
AtΔXt +Φ(Et)− Φ(Et−)

]
=

∫ T

0
Dt dX

c
t +

∑
0≤t≤T

[
Φ(Et)− Φ(Et−)

]
+

∫
[0,T ]

At dXt.(2.14)

Our goal is to determine the purchasing strategy X that minimizes EC(X).

3. Problem simplifications. To compute the expectation of C(X) defined by (2.14), we
invoke the integration by parts formula∫

[0,T ]
At dXt = ATXT −A0X0− −

∫ T

0
Xt dAt

for the bounded variation process X and the continuous martingale A. Our investor’s strate-
gies must satisfy 0 = X0− ≤ Xt ≤ XT = X, 0 ≤ t ≤ T , and hence E

∫ T
0 Xt dAt = 0 (see

Appendix B) and E
∫ T
0 At dXt = XEAT = XA0. It follows that

(3.1) EC(X) = E

∫ T

0
Dt dX

c
t + E

∑
0≤t≤T

[
Φ(Et)−Φ(Et−)

]
+XA0.

Since the third term on the right-hand side of (3.1) does not depend on X, minimization of
EC(X) is equivalent to minimization of the first two terms. But the first two terms do not
depend on A, and hence we may assume without loss of generality that A is identically zero.
Under this assumption, the cost of using strategy X is

(3.2) C(X) =

∫ T

0
Dt dX

c
t +

∑
0≤t≤T

[
Φ(Et)− Φ(Et−)

]
.
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But, with A ≡ 0, there is no longer a source of randomness in the problem. Consequently,
without loss of generality we may restrict the search for an optimal strategy to nonrandom
functions of time. Once we find a nonrandom purchasing strategy minimizing (3.2), then even
if A is a continuous nonzero nonnegative martingale, we have found a purchasing strategy
that minimizes the expected value of (2.14) over all (possibly random) purchasing strategies.

Remark 3.1. We do not allow our agent to make intermediate sells in order to achieve the
ultimate goal of purchasing X shares because doing so would not decrease the cost, at least
when the total amount of buying and selling is bounded. Indeed, in addition to the purchasing
strategy X, suppose the agent has a selling strategy Y , which we take to be a nondecreasing
right-continuous adapted process with Y0− = 0. We assume that both X and Y are bounded.
For each t, Xt represents the number of shares bought by time t and Yt is the number of
shares sold. These processes must be chosen so that XT −YT = X. We have not modeled the
limit-buy-order book, but if we did so in a way analogous to the model of the limit-sell-order
book, then the bid price at each time t would be less than or equal to At. Therefore, the net
cost of executing the strategy (X,Y ) would satisfy

C(X,Y ) ≥
∫ T

0
Dt dX

c
t +

∑
0≤t≤T

[
Φ(Et)− Φ(Et−)

]
+

∫
[0,T ]

At dXt −
∫
[0,T ]

At dYt.

The integration by parts formula implies∫
[0,T ]

At dXt −
∫
[0,T ]

At dYt = AT (XT − YT )−A0(X0− − Y0−)−
∫ T

0
(Xt − Yt) dAt

= ATX −
∫ T

0
(Xt − Yt) dAt.

Because we can apply Lemma B.1 to both X and Y , the expectation of
∫ T
0 (Xt − Yt) dAt is

zero and

(3.3) EC(X,Y ) ≥ E

∫ T

0
Dt dX

c
t + E

∑
0≤t≤T

[
Φ(Et)− Φ(Et−)

]
+XA0.

The right-hand side of (3.3) is the formula (3.1) obtained for the cost of using the purchasing
strategy X alone, but the X in inequality (3.3) makes a total purchase of XT = X +YT ≥ X .
If we replace X by min{X,X}, we obtain a feasible purchasing strategy whose total cost is
less than or equal to the right-hand side of (3.3).

Theorem 3.2. Under the assumption (made without loss of generality) that A is identically
zero, the cost (3.2) associated with a nonrandom nondecreasing right-continuous function Xt,
0 ≤ t ≤ T , satisfying X0− = 0 and XT = X is equal to

(3.4) C(X) = Φ(ET ) +

∫ T

0
Dth(Et) dt.

Proof. The proof proceeds in two steps. In Step 1 we show that, as we have seen in the
examples, Φ is a convex function with subdifferential

(3.5) ∂Φ(y) = [ψ(y), ψ(y+)], y ≥ 0.
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In Step 2 we justify the integration formula

(3.6) Φ(ET ) =

∫ T

0
D−Φ(Et) dEct +

∑
0≤t≤T

[
Φ(Et)− Φ(Et−)

]
,

where D−Φ(Et) denotes the left-hand derivative ψ(Et) = Dt of Φ at Et, and Ec is the
continuous part of E: Ect = Et −

∑
0≤s≤tΔEs. From (2.3) and (3.6) we have immediately

that

Φ(ET ) =

∫
[0,T ]

Dt dX
c
t −

∫ T

0
Dth(Et) dt+

∑
0≤t≤T

[
Φ(Et)− Φ(Et−)

]
,

and (3.4) follows from (3.2).
Step 1. Using the integration by parts formula xF (x) =

∫
[0,x) ξ dF (ξ) +

∫ x
0 F (ξ) dξ, we

write

Φ(y) =

∫
[0,ψ(y))

ξ dF (ξ) + [y − F (ψ(y))]ψ(y)

=

∫ ψ(y)

0

(
y − F (ξ)

)
dξ

=

∫ ψ(y)

0

∫ y

F (ξ)
dη dξ

=

∫ y

0

∫ ψ(η)

0
dξdη,

where the last step follows from the fact that the symmetric difference of the sets {(η, ξ)|ξ ∈
[0, ψ(y)], η ∈ [F (ξ), y]} and {(η, ξ)|η ∈ [0, y], ξ ∈ [0, ψ(η)]} is an at most countable union of
line segments and thus has two-dimensional Lebesgue measure 0. Therefore,

(3.7) Φ(y) =

∫ y

0
ψ(η) dη,

and by Problem 3.6.20 on p. 213 of [17], with ψ and Φ extended to be 0 for the negative reals,
we conclude that Φ is convex and that ∂Φ(y) = [ψ(y), ψ(y+)], as desired.

Step 2. We mollify ψ, taking ρ to be a nonnegative C∞ function with support on [−1, 0]
and integral 1, defining ρn(η) = nρ(nη), and defining

ψn(y) =

∫
R

ψ(y + η)ρn(η) dη =

∫
R

ψ(ζ) ρn(ζ − y) dζ.

Then each ψn is a C∞ function satisfying 0 ≤ ψn(y) ≤ ψ(y) for all y ≥ 0. Furthermore,
ψ(y) = limn→∞ ψn(y) for every y ∈ R. We set Φn(y) =

∫ y
0 ψn(η) dη, so that each Φn is also a

C∞ function and limn→∞Φ′
n(y) = D−Φ(y).

Because Φn(E0−) = Φ(0) = 0, we have

(3.8) Φn(ET ) =

∫ T

0
Φ′
n(Et) dE

c
t +

∑
0≤t≤T

[Φn(Et)− Φn(Et−)];
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see, e.g., [11, p. 78]. The function Et, 0 ≤ t ≤ T , is bounded. Letting n → ∞ in (3.8) and
using the bounded convergence theorem, we obtain

(3.9) Φ(ET ) =

∫ T

0
D−Φ(Et) dEct + lim

n→∞
∑

0≤t≤T

[
Φn(Et)− Φn(Et−)

]
.

To conclude the proof of (3.6), we divide the sum in (3.9) into two parts. Given δ > 0, we
define Sδ = {t ∈ [0, T ] : 0 < ΔEt ≤ δ} and S′

δ = {t ∈ [0, T ] : ΔEt > δ}. The sum in (3.9) is
over t ∈ Sδ ∪ S′

δ, and because E has finite variation,
∑

t∈Sδ∪S′
δ
ΔEt <∞. Let ε > 0 be given.

We choose δ > 0 so small that
∑

t∈Sδ
ΔEt ≤ ε. Because ψ (and hence each ψn) is bounded on

[0, ET ], the function Φ and each Φn is Lipschitz continuous on [0, ET ] with the same Lipschitz
constant L = ψ(ET ). It follows that∑

t∈Sδ

[
Φ(Et)− Φ(Et−)

] ≤ L
∑
t∈Sδ

ΔEt ≤ Lε,

∑
t∈Sδ

[
Φn(Et)− Φn(Et−)

] ≤ L
∑
t∈Sδ

ΔEt ≤ Lε, n = 1, 2, . . . .

Hence the difference between
∑

t∈Sδ

[
Φ(Et) − Φ(Et−)

]
and any limit point as n → ∞ of∑

t∈Sδ

[
Φn(Et) − Φn(Et−)

]
is at most 2Lε. On the other hand, the set S′

δ contains only
finitely many elements, and thus

lim
n→∞

∑
t∈S′

δ

[
Φn(Et)− Φn(Et−)

]
=
∑
t∈S′

δ

[
Φ(Et)− Φ(Et−)

]
.

Since ε > 0 is arbitrary, (3.9) reduces to (3.6).

4. Solution of the optimization problem. In view of Theorem 3.2, we want to minimize
Φ(ET ) +

∫ T
0 Dth(Et) dt over the set of deterministic purchasing strategies. The main result

of this paper is that there exists an optimal strategy X under which the trader buys a lump
quantity X0 = E0 of shares at time 0, then buys at a constant rate dXt = h(E0) dt up to time
t0 (so as to keep Et = E0 for t ∈ [0, t0)), then buys another lump quantity of shares at time
t0, subsequently trades again at a constant rate dXt = h(Et0) dt until time T (so as to keep
Et = Et0 for t ∈ [t0, T )), and finally buys the remaining shares at time T . We shall call this
strategy a Type B strategy. We further show that if the nonnegative function

(4.1) g(y) � yψ
(
h−1(y)

)
is convex, then the purchase at time t0 consists of 0 shares (so X has jumps only at times 0
and T ). We call such a strategy a Type A strategy. Clearly the latter is a special case of the
former.

Although g is naturally defined on [0, h(∞)) by (4.1), we will want it to be defined on a
compact set. Therefore we set

(4.2) Y = max

{
h(X),

X

T

}
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and note that, because of assumption (2.2), h−1 is defined on [0, Y ]. We specify the domain
of the function g to be [0, Y ]. For future reference, we make three observations about the
function g. First,

(4.3) lim
y↓0

g(y) = g(0) = 0.

Second, using the definition (2.4) of Dt, we can rewrite the cost function formula (3.4) as

(4.4) C(X) = Φ(ET ) +

∫ T

0
g
(
h(Et)

)
dt.

Lemma A.1(iv) in Appendix A shows that 0 ≤ Et ≤ X , so the domain [0, Y ] of g is large
enough in order for (4.4) to make sense. Because h−1 is strictly increasing and continuous and
ψ is nondecreasing and left continuous, the function g is nondecreasing and left continuous
and hence lower semicontinuous. In particular,

(4.5) g
(
Y ) = lim

y↑Y
g(y).

4.1. Convexity and Type A strategies.

Remark 4.1. A Type A strategy XA can be characterized in terms of the terminal value
EAT of the process EA related to XA by (2.3), and the cost of using a Type A strategy can
be written as a function of EAT . It is this function of EAT we will minimize. To see that this is
possible, let XA be a Type A strategy and let EA be related to XA via (2.3), so that EAt = XA

0

for 0 ≤ t < T . Then

XA
T− = EAT− +

∫ T

0
h(EAt ) dt = XA

0 + h(XA
0 )T,(4.6)

ΔXA
T = X −XA

T− = X −XA
0 − h(XA

0 )T,(4.7)

EAT = EAT− +ΔXA
T = X − h(XA

0 )T.(4.8)

A Type A strategy is fully determined by its initial condition XA
0 , and from (4.8) we now see

that choosing XA
0 is equivalent to choosing EAT . According to (4.4) and (4.8), the cost of this

strategy

(4.9) C(XA) = Φ(EAT ) + Tg
(
h(XA

0 )
)
= Φ(EAT ) + Tg

(
X − EAT

T

)
can be written as a function of EAT .

We conclude this remark by determining the range of values that EAT can take for a Type
A strategy. We must choose XA

0 so that XA
0 ≥ 0 and XA

T− given by (4.6) does not exceed X .

The function k(x) � x+h(x)T is strictly increasing and continuous on [0,∞), and k(X) > X .
Therefore, there exists a unique e ∈ (0,X) such that k(e) = X, i.e.,

(4.10) e+ h(e)T = X.
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The constraint on the initial condition of Type A strategies that guarantees that the strategy
is feasible is 0 ≤ XA

0 ≤ e. From (4.8) and (4.10) we see that the corresponding feasibility
condition on EAT for Type A strategies is

(4.11) e ≤ EAT ≤ X.

Theorem 4.2. If g given by (4.1) is convex on [0, Y ], then there exists a Type A purchasing
strategy that minimizes C(X) over all purchasing strategies X. If g is strictly convex, this is
the unique optimal strategy.

Proof. Assume that g is convex, and let X be a purchasing strategy. Jensen’s inequality
applied to (4.4) yields the lower bound

C(X) = Φ(ET ) + T

∫ T

0
g
(
h(Et)

)dt
T

≥ Φ(ET ) + Tg

(∫ T

0
h(Et)

dt

T

)
.

From (2.3) we further have
∫ T
0 h(Et) dt = X−ET , and thus the lower bound can be rewritten

as

(4.12) C(X) ≥ Φ(ET ) + Tg

(
X − ET

T

)
.

Recall that 0 ≤ ET ≤ X, so the argument of g in (4.12) is in [0, Y ].
This leads us to consider minimization of the function

G(e) � Φ(e) + Tg

(
X − e

T

)
over e ∈ [0,X ]. By assumption, the function g is convex on [0, Y ] and hence continuous on
(0, Y ). Equations (4.3) and (4.5) show that g is also continuous at the endpoints of its domain.
Because Φ has the integral representation (3.7), it also is convex and continuous on [0,X ].
Therefore, G is a convex continuous function on [0,X ], and hence the minimum is attained.

We show next that the minimum of G over [0,X ] is attained in [e,X ]. For this, we first
observe that, because g is convex,

D+g(y) ≥ g(y) − g(0)

y
= ψ

(
h−1(y)

)
, 0 < y ≤ Y .

This inequality together with (3.5) and (4.10) implies that

(4.13) D−G(e) = ψ(e)−D+g(y)
∣∣∣
y=X−e

T

≤ ψ(e)− ψ

(
h−1

(
X − e

T

))
= 0.

Therefore, the minimum of the convex function G over [0,X ] is obtained in [e,X].
Let e∗ ∈ [e,X ] attain the minimum of G over [0,X ]. The Type A strategy XA with initial

condition XA
0 = h−1(X−e∗

T ) satisfies EAT = e∗ (see (4.8)), and hence the strategy is feasible
(see (4.11)). The cost associated with this strategy is less than or equal to the right-hand side
of (4.12) (see (4.9)). This strategy is therefore optimal.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

OPTIMAL EXECUTION 197

If g is strictly convex at the point X−e∗
T , where e∗ minimizes G, then G is strictly convex

at e∗, and this point is thus the unique minimizer of G. Therefore, every optimal strategy
strategy must satisfy ET = e∗. By strict convexity of g, a strategy that does not keep h(E)

equal to X−e∗
T almost everywhere in (0, T ) would result in strict inequality in (4.12). Since

h is strictly increasing, we conclude that the only optimal strategy is the Type A strategy
constructed above.

If g is not strictly convex at the point X−e∗
T found in the proof of Theorem 4.2, then G

might still be strictly convex at e∗, in which case there would be only one optimal strategy of
Type A, but there could be optimal strategies that are not of Type A. We demonstrate this
phenomenon with an example.

Example 4.3 (nonuniqueness of optimal purchasing strategy). Suppose

F (x) =

⎧⎨⎩
x, 0 ≤ x ≤ 2,
4

4−x , 2 ≤ x ≤ 3,

4 + 1
8 (x− 3), x ≥ 3.

This function is continuous and strictly increasing, and hence

ψ(y) =

⎧⎨⎩
y, 0 ≤ y ≤ 2,
4− 4

y , 2 ≤ y ≤ 4,

8y − 29, y ≥ 4,

is also continuous and strictly increasing. This implies that

Φ(y) =

∫ y

0
ψ(η)dη =

⎧⎨⎩
1
2y

2, 0 ≤ y ≤ 2,
4y − 6− 4 log y

2 , 2 ≤ y ≤ 4,
4y2 − 29y + 62− 4 log 2, y ≥ 4.

We take h(x) = x, so that

g(y) = yψ(y) =

⎧⎨⎩
y2, 0 ≤ y ≤ 2,
4y − 4, 2 ≤ y ≤ 4,
8y2 − 29y, y ≥ 4,

and

g′(y) =

⎧⎨⎩
2y, 0 ≤ y ≤ 2,
4, 2 ≤ y < 4,
16y − 29, y > 4.

Note that g′ is nondecreasing, so g is convex, but g is not strictly convex on the interval [2, 4].
Finally, we take X = 101

8 and T = 2.

In the notation of the proof of Theorem 4.2, we have e∗ = 41
8 and hence X−e∗

T = 3. Indeed,
G′ (41

8

)
= ψ

(
41
8

) − g′(3) = 0, and because ψ is strictly increasing, G is strictly convex, and
hence 41

8 is the unique minimizer of G.

The Type A strategy with EAT = 41
8 begins with an initial purchase of XA

0 = 3 and then
consumes at rate 3 over the interval [0, 2], so that EAt = 3 for 0 ≤ t < T . At the final time
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T = 2, there is an additional lump purchase of 11
8 , so that EAT = 41

8 . The total cost of this
strategy is

Φ(EAT ) +

∫ T

0
g(EAt ) dt = Φ

(
4
1

8

)
+

∫ 2

0

(
4EAt − 4

)
dt = Φ

(
4
1

8

)
+ 16.

In particular,
∫ 2
0 E

A
t dt = 6.

In fact, any policy that satisfies 2 ≤ Et ≤ 4, 0 ≤ t < 2, and
∫ 2
0 Et dt = 6 will result in the

same cost. Indeed, for such a policy, we will have

ET = XT −
∫ T

0
Et dt = 10

1

8
− 6 = 4

1

8
= EAT

and ∫ T

0
g(Et) dt =

∫ T

0
(4Et − 4) dt = 16 =

∫ T

0
g(EAt ) dt,

so Φ(ET ) +
∫ T
0 g(Et) dt = Φ(EAT ) +

∫ T
0 g(EAt ) dt. There are infinitely many policies like this.

One such policy is to make an initial lump purchase of size 2 and then purchase at rate 2 up
to time 1

2 so that Et = 2, 0 ≤ t < 1
2 , make a lump purchase of size 1 at time 1

2 and then
purchase at rate 3 up to time 3

2 so that Et = 3, 1
2 ≤ t < 3

2 , make a lump purchase of size 1
at time 3

2 and then purchase at rate 4 up to time 2 so that Et = 4, 3
2 ≤ t < 2, and conclude

with a lump purchase of size 1
8 at time 2 so that E2 = 41

8 .
Remark 4.4. Alfonsi, Fruth, and Schied [4] consider the case that the measure μ has a

strictly positive density f . In this case, the function F (x) =
∫ x
0 f(ξ) dξ is strictly increasing

and continuous with derivative F ′(x) = f(x), and its inverse ψ is likewise strictly increasing
and continuous with derivative ψ′(y) = 1/f(ψ(y)). Furthermore, in [4], the resilience function
is h(x) = ρx, where ρ is a positive constant. In this case,

g′(y) = ψ(y/ρ) +
y/ρ

f
(
ψ(y/ρ)

) ,
and Theorem 4.2 guarantees the existence of a Type A strategy under the assumption that g′

is nondecreasing. This is equivalent to the condition that

ψ(y) +
y

f
(
ψ(y)

)
is nondecreasing.

Alfonsi, Fruth, and Schied [4] obtain a discrete-time version of a Type A strategy under
the assumption that

h1(y) � ψ(y)− e−ρτψ(e−ρτ y)

is strictly increasing, where τ is the time between trading dates. In order to study the limit
of their model as τ ↓ 0, they observe that

lim
τ↓0

h1(y)

1− e−ρτ
= ψ(y) +

y

f
(
ψ(y)

) ,
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which is thus nondecreasing. Thus g given by (4.1) is convex in their model.
To find a simpler formulation of the hypothesis of Theorem 4.2 under the assumption that

μ has a strictly positive density f and h(x) = ρx for a positive constant ρ, we compute

d

dy

(
ψ(y) +

y

f
(
ψ(y)

)) =
2

f
(
ψ(y)

) − yf ′
(
ψ(y)

)
f3
(
ψ(y)

) .
This is nonnegative if and only if 2f2

(
ψ(y)

) ≥ yf ′
(
ψ(y)

)
. Replacing y by F (x), we obtain

the condition
2f2(x) ≥ F (x)f ′(x), x ≥ 0.

This is clearly satisfied under the assumption of [10] that f is a positive constant.
Example 2.1 (block order book, continued). In the case of the block order book with

h(x) = ρx, where ρ is a strictly positive constant,

g(y) =
yh−1(y)

q
=
y2

ρq
,

which is strictly convex. Theorem 4.2 implies that there is an optimal strategy of Type A,
and this is the unique optimal strategy. From the formula Φ(e) = 1

2qe
2, we have

G(e) =
e2

2q
+

(X − e)2

ρqT
.

The minimizer is e∗ = 2X
2+ρT , which lies between e = X

1+ρT and X, as expected. According to
Remark 4.1, the optimal strategy of Type A is to make an initial purchase of size

XA
0 = h−1

(
X − e∗

T

)
=

X

2 + ρT
,

then purchase continuously at rate dXA
t = h(XA

0 ) dt =
ρX

2+ρT dt over the time interval [0, T ],
and conclude with a lump purchase

e∗ −XA
0 =

X

2 + ρT

at the final time T . In particular, the initial and final lump purchases are of the same size,
and there is no intermediate lump purchase.

4.2. Type B strategies.

Theorem 4.5. In the absence of the assumption that g given by (4.1) is convex, there exists
a Type B purchasing strategy that minimizes C(X) over all purchasing strategies X.

The proof of Theorem 4.5 depends on the following lemma, whose proof is given in Ap-
pendix C.

Lemma 4.6. The convex hull of g, defined by

(4.14) ĝ(y) � sup
{
(y) :  is an affine function and (η) ≤ g(η) ∀η ∈ [0, Y ]

}
,
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is the largest convex function defined on [0, Y ] that is dominated by g there. It is continuous
and nondecreasing on [0, Y ], ĝ(0) = g(0) = 0, and ĝ(Y ) = g(Y ). If y∗ ∈ (0, Y ) satisfies
ĝ(y∗) < g(y∗), then there exists a unique affine function  lying below g on [0, Y ] and agreeing
with ĝ at y∗. In addition, there exist numbers α and β satisfying

0 ≤ α < y∗ < β ≤ Y ,(4.15)

(α) = ĝ(α) = g(α), (β) = ĝ(β) = g(β),(4.16)

(y) = ĝ(y) < g(y), α < y < β.(4.17)

Proof of Theorem 4.5. Using ĝ in place of g in (4.4), we define the modified cost function

Ĉ(X) � Φ(ET ) +

∫ T

0
ĝ
(
h(Et)

)
dt.

For any purchasing strategy X, we obviously have Ĉ(X) ≤ C(X). Analogously to (4.12), for
any purchasing strategy X, the lower bound

Ĉ(X) ≥ Φ(ET ) + T ĝ

(
X − ET

T

)
holds. This leads us to consider minimization of the function

(4.18) Ĝ(e) � Φ(e) + T ĝ

(
X − e

T

)
over e ∈ [0,X ]. As in the proof of Theorem 4.2, this function attains its minimum at some
e∗ ∈ [0,X ].

For the remainder of the proof, we use the notation

(4.19) y∗ =
X − e∗

T
, x∗ = h−1(y∗),

where it is assumed without loss of generality that e∗ is the largest minimizer of Ĝ in [0,X ].
There are two cases. In both cases, we construct a strategy that satisfies EBT = e∗ and

(4.20) C(XB) = Ĝ(e∗).

In the first case, the strategy is a Type A strategy, and it is Type B in the second case. In
both cases, we exhibit the strategy explicitly.

Case I. ĝ(y∗) = g(y∗). It is tempting to claim that we are now in the situation of Theorem
4.2 with the convex function ĝ replacing g. However, the proof needed here that e∗ ≥ e, where
e is determined by (4.10), cannot follow the proof of Theorem 4.2. In the proof of Theorem
4.2, this inequality was a consequence of (4.13), which ultimately depended on the definition
(4.1) of g(e). But we have only ĝ(e) ≤ eψ(h−1(e)); we do not have an equation analogous to
(4.1) for ĝ. We thus provide a different proof, which depends on e∗ being the largest minimizer
of Ĝ in [0,X ].
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If x∗ = 0, then y∗ = 0, e∗ = X, and Ĝ(e∗) = G(e∗). The Type A strategy that waits until
the final time T and then purchases X is optimal. In particular, this strategy satisfies the
initial condition XA

0 = x∗.
If x∗ > 0, we must consider two subcases. It could be that 0 < x∗ ≤ F (0+). In this

subcase, ĝ(y∗) = g(y∗) = y∗ψ(x∗) = 0 because ψ ≡ 0 on [0, F (0+)]. But ĝ(0) = 0 and ĝ is
nondecreasing, so ĝ ≡ 0 on [0, y∗]. Furthermore, x∗ is positive, so e∗ < X . For e ∈ (e∗,X),

the number X−e
T is in (0, y∗), and by (3.5), D+Ĝ(e) = D+Φ(e) = ψ(e+). On the other hand,

e∗ is the largest minimizer of Ĝ in [0,X ], which implies that D+Ĝ(e) > 0. This shows that
ψ(e+) > 0 for every e ∈ (e∗,X), which implies that ψ(e) > 0 for every e ∈ (e∗,X) and further
implies that e > F (0+) for every e ∈ (e∗,X). We conclude that e∗ ≥ F (0+). Applying h to
this inequality and using the subcase assumption x∗ ≤ F (0+), we obtain

(4.21) h(e∗) ≥ h
(
F (0+)

) ≥ h(x∗) =
X − e∗

T
.

In other words, e∗ + h(e∗)T ≥ X, and by the defining equation (4.10) of e we conclude that
e∗ ≥ e. The corresponding optimal strategy, which is Type A, satisfies XA

0 = x∗ and EAT = e∗.
The proof of optimality of this strategy follows the proof of Theorem 4.2 with ĝ replacing g.

Finally, we consider the subcase x∗ > F (0+). Because y∗ = h(x∗) is positive, the left-hand
derivative of ĝ at y∗ is defined, and it satisfies

(4.22) D−ĝ(y∗) ≥ ĝ(y∗)− ĝ(0)

y∗
=
g(y∗)
y∗

= ψ(x∗).

In fact, the inequality in (4.22) is strict. It it were not, the affine function

(y) = ψ(x∗)
(
y − y∗

)
+ ĝ(y∗) = yψ(x∗)

would describe a tangent line to the graph of ĝ at (y∗, ĝ(y∗)) lying below ĝ(y), and hence
below g(y), for all y ∈ [0, Y ]. But the resulting inequality yψ(x∗) ≤ g(y) = yψ(h−1(y)) yields
ψ(x∗) ≤ ψ(h−1(y)) for all y ∈ (0, Y ], and letting y ↓ 0 we would conclude that ψ(x∗) = 0.
This violates the subcase assumption x∗ > F (0+). We conclude that D−ĝ(y∗) > ψ(x∗). The
strict inequality, the fact that e∗ minimizes Ĝ, and (3.5) further imply that

0 ≤ D+Ĝ(e∗) = D+Φ(e∗)−D−ĝ(y∗) < ψ(e∗+)− ψ(x∗).

But ψ(x∗) < ψ(e∗+) implies that x∗ ≤ e∗. Consequently, h(e∗) ≥ h(x∗) = X−e∗
T . This is the

essential part of inequality (4.21), and we conclude as above, constructing an optimal Type
A strategy with XA

0 = x∗ and EAT = e∗.
Case II. ĝ(y∗) < g(y∗). Recall from Lemma 4.6 that this case can occur only if 0 < y∗ < Y .

In particular, x∗ > 0. We let  be the affine function and α and β be numbers as described in
Lemma 4.6, and we construct a Type B strategy. To do this, we define t0 ∈ (0, T ) by

(4.23) t0 =

(
β − y∗

)
T

β − α
,
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so that αt0 + β(T − t0) = y∗T . Consider the Type B strategy that makes an initial purchase
XB

0 = h−1(α), then purchases at rate dXB
t = α dt for 0 ≤ t < t0 (so EBt = h−1(α) for

0 ≤ t < t0), then follows this with a purchase ΔXB
t0 = h−1(β)− h−1(α) at time t0, thereafter

purchases at rate dXB
t = β dt for t0 ≤ t < T (so EBt = h−1(β) for t0 ≤ t < T ), and makes a

final purchase X −XB
T− at time T . According to (2.3),

XB
t =

⎧⎨⎩
h−1(α) + αt, 0 ≤ t < t0,
h−1(β) + αt0 + β(t− t0), t0 ≤ t < T,

X, t = T.

In particular,

(4.24) ΔXB
T = X − h−1(β) − αt0 − β(T − t0) = X − h−1(β)− y∗T = e∗ − h−1(β).

We show at the end of this proof that

(4.25) h−1(β) ≤ e∗.

This will ensure that ΔXB
T is nonnegative, and since XB is obviously nondecreasing on [0, T ),

this will establish that XB is a feasible purchasing strategy.

Accepting (4.25) for the moment, we note that (4.24) implies that

(4.26) EBT = EBT− +ΔEBT = h−1(β) + ΔXB
T = e∗.

Using (4.4), (4.26), (4.16), the affine property of , and (4.17) in that order, we compute

C(XB) = Φ(EBT ) +

∫ T

0
g
(
h(EBt )

)
dt

= Φ(e∗) + g(α)t0 + g(β)(T − t0)

= Φ(e∗) + (α)t0 + (β)(T − t0)

= Φ(e∗) + T

(
αt0 + β(T − t0)

T

)
= Φ(e∗) + T(y∗)
= Φ(e∗) + T ĝ(y∗)
= Ĝ(e∗).

This is (4.20).

Finally, we turn to the proof of (4.25). Because e∗ is the largest minimizer of the convex
function Ĝ in [0,X ] and e∗ < X (because x∗ > 0), the right-hand derivative of Ĝ at e∗ must
be nonnegative. Indeed, for all e ∈ (e∗,X), this right-hand derivative must in fact be strictly

positive. For e greater than but sufficiently close to e∗, X−e
T is in (α, y∗), where ĝ is linear
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with slope g(β)−g(α)
β−α . For such e,

0 < D+Ĝ(e)

= D+Φ(e)−D−ĝ(y)
∣∣∣
y=X−e

T

= ψ(e+) − g(β) − g(α)

β − α

= ψ(e+) − βψ
(
h−1(β)

) − αψ
(
h−1(α)

)
β − α

≤ ψ(e+) − βψ
(
h−1(β)

) − αψ
(
h−1(β)

)
β − α

= ψ(e+) − ψ
(
h−1(β)

)
.

This inequality ψ
(
h−1(β)

)
< ψ(e+) for all e greater than but sufficiently close to e∗ implies

(4.25).
Remark 4.7 (uniqueness). In Case I of the proof of Theorem 4.5, when ĝ(y∗) = g(y∗), strict

convexity of ĝ at y∗ implies uniqueness of the optimal purchasing strategy. The proof is similar
to the uniqueness proof in Theorem 4.2.

However, in Case II, ĝ is not strictly convex at y∗. In this case, if ψ is strictly increasing
at e∗ and if the affine function  of Lemma 4.6 agrees with g only at α and β, then the optimal
purchasing strategy is unique. Indeed, if ψ is strictly increasing at e∗, then Φ (and hence Ĝ)
is strictly convex at e∗, which implies that e∗ is the unique minimizer of Ĝ. In order to be
optimal, a purchasing strategy must satisfy the two inequalities

(4.27)

∫ T

0
g
(
h(Et)

)
dt ≥

∫ T

0
ĝ
(
h(Et)

)
dt ≥ T ĝ

(∫ T

0
h(Et)

dt

T

)
with equality, as we explain below, and must also satisfy ET = e∗. When the inequalities
(4.27) hold, we can use (2.3) to obtain a lower bound on the cost of an arbitrary purchasing
strategy X by the relations

C(X) = Φ(ET ) +

∫ T

0
g(h(Et))dt

≥ Φ(ET ) + T ĝ

(∫ T

0
h(Et)

dt

T

)
= Φ(ET ) + T ĝ

(
X − ET

T

)
= Ĝ(ET ).

The minimal cost is Ĝ(e∗) = Φ(e∗) + T ĝ(X−e∗
T ) = Φ(e∗) + T ĝ(y∗), and hence optimality of a

strategy requires that equality hold in both parts of (4.27). The second inequality in (4.27)
is Jensen’s inequality, and equality holds if and only if h(Et), 0 ≤ t < T , stays in the region

in which ĝ is affine. But the average value of h(Et),
1
T

∫ T
0 h(Et)dt, is equal to y∗, and hence
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Figure 6. Function g for the modified block order book with parameters a = 4 and b = 14. The convex
hull ĝ is constructed by replacing a part {g(y) , y ∈ (a, β)} by a straight line connecting g(a) and g(β). Here
β = 10.3246.

we cannot have h(Et) < y∗ for all t ∈ [0, T ), nor can we have h(Et) > y∗ for all t ∈ [0, T ).
Hence the region in which h(Et) stays must be the region in which ĝ agrees with . To get an
equality in the first inequality in (4.27), h(Et), 0 ≤ t < T , must stay in the region where ĝ
agrees with g. If  agrees with g only at the two points α and β, then h(Et), 0 ≤ t < T , must
stay in the two-point set {α, β}. Because ΔEt = ΔXt ≥ 0 for all t, there must be some initial
time interval [0, t0) on which h(Et) = α and there must be some final time interval [t0, T ) on

which h(Et) = β. In order to achieve this and to also have 1
T

∫ T
0 h(Et) = y∗, t0 must be given

by (4.23).

4.3. Examples of Type B optimal strategies.

Example 2.2 (modified block order book, continued). We continue Example 2.2 under the
simplifying assumptions T = 1 and h(x) = x for all x ≥ 0, so h−1(y) = y for all y ≥ 0 and
Y = X. Recalling (2.6) and (4.1), we see that

g(y) =

{
y2, 0 ≤ y ≤ a,
y2 + (b− a)y, a < y <∞.

The convex hull of g over [0,∞), given by (4.14), is

ĝ(y) =

⎧⎨⎩
y2, 0 ≤ y ≤ a,
(2β + b− a)(y − a) + a2, a ≤ y ≤ β,
y2 + (b− a)y, β ≤ y <∞,

where

(4.28) β = a+
√
a(b− a)

(see Figure 6). We take X = Y > β, so that this is also the convex hull of g over [0, Y ].
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For a < y∗ < β, we have ĝ(y∗) < g(y). For constants α and β from the statement of
Lemma 4.6 (see (C.1)–(C.2) in Appendix C), we have that α of (C.1) is a, and β of (C.2) is
given by (4.28). In order to illustrate a case in which a Type B purchasing strategy is optimal,
we assume

(4.29) a+ 2β < X < 3β.

The function Ĝ of (4.18) is minimized over [0,X ] at e∗ if and only if

0 ∈ ∂Ĝ(e∗) = ∂Φ(e∗)− ∂ĝ(X − e∗),

which is equivalent to ∂Φ(e∗) ∩ ∂ĝ(X − e∗) �= ∅. We show below that the largest value of
e∗ satisfying this condition is e∗ = 2β. According to (4.29), e∗ = 2β is in (X − β,X − a).
Because β > a, e∗ is also in (a,∞). We compute (recall (2.12))

∂Φ(e) =

⎧⎨⎩
{e}, 0 ≤ e < a,
[a, b], e = a,
{e+ b− a}, a < e <∞,

∂ĝ(X − e) =

⎧⎪⎪⎨⎪⎪⎩
{
2(X − e) + b− a

}
, 0 ≤ e ≤ X − β,{

2β + b− a
}
, X − β ≤ e < X − a,

[2a, 2β + b− a], e = X − a,{
2(X − e)

}
, X − a < e ≤ X,

and then evaluate

∂Φ(e∗) = {e∗ + b− a} = {2β + b− a} = ∂ĝ(X − e∗).

Therefore, Ĝ attains its minimum at e∗.
To see that there is no e ∈ (2β,X ] where Ĝ attains its minimum, we observe that for

e ∈ (2β,X − a), ∂Φ(e) ∩ ∂ĝ(X − e) = {e + b − a} ∩ {2β + b − a} = ∅. For e ∈ [X − a,X ],
all points in ∂ĝ(X − e) lie in the interval [0, 2a], whereas the only point in ∂Φ(e), which is
e+b−a, lies in the interval [X+b−2a,X+b−a]. Because of (4.29), we have 2a < X+b−2a,
and hence ∂Φ(e) ∩ ∂ĝ(X − e) = ∅ for e ∈ [X − a,X ].

As in the proof of Theorem 4.5, we set y∗ = X − e∗ = X − 2β, x∗ = h−1(y∗) = X − 2β.
Condition (4.29) is equivalent to a < y∗ < β, which in turn is equivalent to ĝ(y∗) < g(y∗).
The first inequality in (4.29) shows that x∗ > 0, and we are thus in Case II of the proof of
Theorem 4.5. In this case, we define

t0 =
β − y∗

β − a
=

3β −X

β − a
.

The optimal purchasing strategy is

XB
t =

⎧⎨⎩
a(t+ 1), 0 ≤ t < t0,
at0 + β(t+ 1− t0), t0 ≤ t < 1,

X, t = 1.
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In particular, ΔX0 = a, ΔXt0 = β − a, ΔX1 = β (see (4.24) for the last equality). The
corresponding EB process is

EBt =

⎧⎨⎩
a, 0 ≤ t < t0,
β, t0 ≤ t < 1,
2β, t = 1.

The initial lump purchase moves the ask price to the left endpoint a of the gap in the
order book. Purchasing is done to keep the ask price at a until time t0, when another lump
purchase moves the ask price to β beyond the right endpoint b of the gap in the order book.
Purchasing is done to keep the ask price at β until the final time, when another lump purchase
is executed.

Example 2.3 (discrete order book, continued). We continue Example 2.3 under the sim-
plifying assumptions that T = 1 and h(x) = x for all x ≥ 0, so that h−1(y) = y for all
y ≥ 0 and Y = X . From (2.8) and (4.1) we see that g(0) = 0, and g(y) = ky for integers
k ≥ 0 and k < y ≤ k + 1. In particular, g(k) = (k − 1)k for nonnegative integers k. The
convex hull of g interpolates linearly between the points (k, (k − 1)k) and (k + 1, k(k + 1)),
i.e., ĝ(y) = k(2y − (k + 1)) for k ≤ y ≤ k + 1, where k ranges over the nonnegative integers
(see Figure 7).

Figure 7. Function g for the discrete order book. The convex hull ĝ interpolates linearly between the points
(k, (k − 1)k) and (k + 1, k(k + 1)).

Therefore,

∂ĝ(y) =

⎧⎨⎩
{0}, y = 0,
[2(k − 1), 2k], y = k and k is a positive integer,
{2k}, k < y < k + 1 and k is a nonnegative integer.

Recall from the discussion following (2.13) that

∂Φ(y) =

⎧⎨⎩
{0}, y = 0,
[k − 1, k], y = k and k is a positive integer,
{k}, k < y < k + 1 and k is a nonnegative integer.
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We seek the largest number e∗ ∈ [0,X ] for which ∂Φ(e∗) ∩ ∂ĝ(X − e∗) �= ∅. This is the
largest minimizer of Ĝ(e) = Φ(e) + ĝ(X − e) in [0,X ]. We define k∗ to be the largest integer

less than or equal to X
3 , so that

3k∗ ≤ X < 3k∗ + 3.

We divide the analysis into three cases:

Case A. 3k∗ ≤ X ≤ 3k∗ + 1.

Case B. 3k∗ + 1 < X < 3k∗ + 2.

Case C. 3k∗ + 2 ≤ X < 3k∗ + 3.

We show below that in Cases A and B the optimal strategy makes an initial lump purchase
of size k∗, which executes the orders at prices 0, 1, . . . , k∗−1. In Case A, the optimal strategy
then purchases at rate k∗ over the interval (0, 1) and at time 1 makes a final lump purchase
of size X − 2k∗, which is in the interval [k∗, k∗ + 1]. This is a Type A strategy. In Case B,
there is an intermediate lump purchase of size 1 at time 3k∗+2−X . Before this intermediate
purchase, the rate of purchase is k∗, and after this purchase the rate of purchase is k∗ + 1.
In Case B, at time 1, there is a final lump purchase of size k∗. In Case B, we have a Type
B strategy. In Case C, the optimal strategy makes a lump purchase of size k∗ + 1 at time 0,
which executes the orders at prices 0, 1, . . . , k∗ − 1, k∗. The optimal strategy then purchases
continuously at rate k∗ +1 over the interval (0, 1) and at time 1 makes a final lump purchase
of size X − 2k∗ − 2, which is in the interval [k∗, k∗ + 1). This is a Type A strategy.

Case A. 3k∗ ≤ X ≤ 3k∗ + 1. We define e∗ = X − k∗, so that 2k∗ ≤ e∗ ≤ 2k∗ + 1 and
k∗ = X−e∗. Then 2k∗ ∈ ∂Φ(e∗) and ∂ĝ(X−e∗) = [2(k∗−1), 2k∗], so the intersection of ∂Φ(e∗)
and ∂ĝ(X − e∗) is nonempty, as desired. On the other hand, if e > e∗, then ∂Φ(e) ⊂ [2k∗,X ]
and ∂ĝ(X − e) ⊂ [0, 2(k∗ − 1)], so the intersection of these two sets is empty.

In this case, y∗ and x∗ defined by (4.19) are both equal to k∗, and hence ĝ(y∗) = g(y∗).
If k∗ = 0, we are in the first subcase of Case I of the proof of Theorem 4.5. The optimal
purchasing strategy is to do nothing until time 1 and then make a lump purchase of size X .
If k∗ = 1, which is equal to F (0+), we are in the second subcase of Case I of the proof of
Theorem 4.5. We should make an initial purchase of size x∗ = 1, purchase continuously over
the time interval (0, 1) at rate 1 so that Et ≡ 1 and Dt ≡ 0, and make a final purchase of
size X − 2. If k∗ ≥ 2, we are in the third subcase of Case I of the proof of Theorem 4.5. We
should make an initial purchase of size k∗, purchase continuously over the time interval (0, 1)
at rate k∗ so that Et ≡ k∗ and Dt ≡ k∗ − 1, and make a final purchase of size X − 2k∗.

Case B. 3k∗ + 1 < X < 3k∗ + 2. We define e∗ = 2k∗ + 1, so that k∗ < X − e∗ < k∗ + 1.
Then ∂Φ(e∗) = [2k∗, 2k∗ + 1] and ∂ĝ(X − e∗) = {2k∗}, so the intersection of ∂Φ(e∗) and
∂ĝ(X − e∗) is nonempty, as desired. On the other hand, if e > e∗, then ∂Φ(e) ⊂ [2k∗ + 1,X ]
and ∂ĝ(X − e) ⊂ [0, 2k∗], so the intersection of these two sets is empty.

In this case, y∗ and x∗ defined by (4.19) are both equal to X−e∗. Hence k∗ < y∗ < k∗+1,
ĝ(y∗) < g(y∗), and we are in Case II of the proof of Theorem 4.5 with α = k∗ and β = k∗ + 1
(see (4.14)–(4.17) and (C.1)–(C.2)). The optimal purchasing strategy is Type B. In particular,
with t0 = β−y∗ = k∗+1−x∗ = 3k∗+2−X , the optimal purchasing strategy makes an initial
lump purchase α = k∗, which executes the orders at prices 0, 1, . . . ,k∗ − 1, then purchases
continuously over the interval (0, t0) at rate k∗ so that Et ≡ k∗ and Dt ≡ k∗ − 1, at time t0
makes a lump purchase of size β−α = 1, which consumes the order at price k∗, then purchases
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continuously over the interval (t0, 1) at rate k∗ + 1 so that Et ≡ k∗ + 1 and Dt ≡ k∗, and
finally executes a lump purchase of size e∗ −β = k∗ (see (4.24)) at time 1. The total quantity
purchased is

k∗ + k∗t0 + 1 + (k∗ + 1)(1 − t0) + k∗ = X,

as required.

Case C. 3k∗+2 ≤ X < 3k∗+3. We define e∗ = X−k∗−1, so that 2k∗+1 ≤ e∗ < 2k∗+2
and X − e∗ = k∗ + 1. Then 2k∗ + 1 ∈ ∂Φ(e∗) and ĝ(X − e∗) = [2k∗, 2k∗ + 2], and the
intersection of ∂Φ(e∗) and ∂ĝ(X − e∗) is nonempty, as desired. On the other hand, if e > e∗,
then ∂Φ(e) ⊂ [2k∗ + 1,X ] and ∂ĝ(X − e) ⊂ [0, 2k∗], so the intersection of these two sets is
empty. In this case, y∗ and x∗ are both equal to k∗ + 1. The optimal purchasing strategy
falls into either the second (if k∗ = 0) or third (if k∗ ≥ 1) subcase of Case I of the proof of
Theorem 4.5.

Appendix A. The process E. In this appendix we prove that there exists a unique adapted
process E satisfying (2.3) pathwise, and we provide a list of its properties.

Lemma A.1. Let h be a nondecreasing, real-valued, locally Lipschitz function defined on
[0,∞) such that h(0) = 0. Let X be a purchasing strategy. Then there exists a unique bounded
adapted process E depending pathwise on X such that (2.3) is satisfied. Furthermore, the
following hold:

(i) E is right continuous with left limits;
(ii) ΔEt = ΔXt for all t;
(iii) E has finite variation on [0, T ];
(iv) E takes values in [0,X ].

Proof. Because we do not know a priori that E is nonnegative, we extend h to all of R by
defining h(x) = 0 for x < 0. This extended h is nondecreasing and locally Lipschitz.

In section 2 we introduced the filtration {Ft}0≤t≤T . The purchasing strategy X is right
continuous and adapted to this filtration and hence is an optional process; i.e., (t, ω) �→ Xt(ω)
is measurable with respect to the optional σ-algebra, the σ-algebra generated by the right-
continuous adapted processes. For any bounded optional process Y , h(Y ) and

∫ ·
0 h(Ys) ds are

also bounded optional processes. Optional processes are adapted, and hence
∫ t
0 h(Ys) ds is

Ft-measurable for each t ∈ [0, T ].

We first prove uniqueness. If E and Ê are bounded processes satisfying (2.3), then there
is a local Lipschitz constant K, chosen taking the bounds on E and Ê into account, such that

|Et − Êt| =
∣∣∣∣∫ t

0

(
h(Es)− h(Ês)

)
ds

∣∣∣∣ ≤ K

∫ t

0
|Es − Ês| ds.

Gronwall’s inequality implies E = Ê.

For the existence part of the proof, we assume for the moment that h is globally Lipschitz
with Lipschitz constant K, and we construct E as a limit of a recursion. Let E0

t ≡ X0. For
n = 1, 2, . . . , define recursively

Ent = Xt −
∫ t

0
h(En−1

s ) ds, 0 ≤ t ≤ T.
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Since X is bounded and optional, each En is bounded and optional. For n = 1, 2, . . . , let
Znt = sup0≤s≤t |Ens − En−1

s |. A proof by induction shows that

Znt ≤ Kn−1tn−1

(n− 1)!
max

{
X,Th(X0) +X0

}
.

Because this sequence of nonrandom bounds is summable, En converges uniformly in t ∈ [0, T ]
and ω to a bounded optional process E that satisfies (2.3). In particular, Et is Ft-measurable
for each t, and since X is nondecreasing and right continuous with left limits and the integral
in (2.3) is continuous, (i), (ii), and (iii) hold.

It remains to prove (iv). For ε > 0, letXε
t = Xt+εt and define tε0 = inf{t ∈ [0, T ] : Eεt < 0}.

Assume this set is not empty. Then the right continuity of Eε combined with the fact that Eε

has no negative jumps implies that Eεtε0
= 0. Let tεn ↓ tε0 be such that Eεtεn < 0 for all n. Then

∫ tεn

tε0

h(Eεs) ds = Xε
tεn

−Xε
tε0
− (Eεtεn − Eεtε0) > Xε

tεn
−Xε

tε0
≥ ε(tεn − tε0).

But, since ∫ tεn

tε0

h(Eεs) ds ≤ K

(
max

tε0≤s≤tεn
Eεs

)
(tεn − tε0),

there must exist sεn ∈ (tε0, t
ε
n) such that Eεsεn ≥ ε

K . This contradicts the right continuity of Eε

at tε0. Consequently, the set {t ∈ [0, T ] : Eεt < 0} must be empty. We conclude that Eεt ≥ 0
for all t ∈ [0, T ].

Now notice that for 0 ≤ t ≤ T ,

Eεt − Et = εt−
∫ t

0
(h(Eεs)− h(Es)) ds,

and hence

|Eεt − Et| ≤ εt+K

∫ t

0
|Eεs − Es| ds.

Gronwall’s inequality implies that Eε → E as ε ↓ 0. Since Eεt ≥ 0, we must have Et ≥ 0 for
all t. Equation (2.3) now implies that Et ≤ Xt, and therefore Et ≤ X . The proof of (iv) is
complete.

When h is locally but not globally Lipschitz, we let h̃ be equal to h on [0,X ], h̃(x) = 0 for
x < 0, and h̃(x) = h(X) for x > X . We apply the previous arguments to h̃, and we observe
that the resulting Ẽ satisfies the equation corresponding to h.

Remark A.2. The pathwise construction of E in the proof of Lemma A.1 shows that if X
is deterministic, then so is E.

Appendix B. E
∫ T
0 Xt dAt = 0.

Lemma B.1. Under the assumptions that 0 ≤ Xt ≤ X, 0 ≤ t ≤ T , and that the continuous
nonnegative martingale A satisfies (2.1), we have E

∫ T
0 Xt dAt = 0.
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Proof. The Burkholder–Davis–Gundy inequality implies that the continuous local martin-
gale Mt =

∫ t
0 Xs dAs satisfies

E

[
max
0≤t≤T

|Mt|
]
≤ CE

[〈M〉1/2T

]
= CE

[(∫ T

0
X2
t d〈A〉t

)1/2
]

≤ CXE
[〈A〉1/2T

]
≤ C ′XE

[
max
0≤t≤T

At

]
,

where C and C ′ are positive constants. By virtue of being a local martingale, M has the
property that EMτn = 0 for a sequence of stopping times τn ↑ T . The dominated convergence
theorem implies that EMT = 0.

Appendix C. Convex hull of g.
Proof of Lemma 4.6. Recall the definition

(4.14) ĝ(y) � sup
{
(y) :  is an affine function and (η) ≤ g(η) ∀η ∈ [0, Y ]

}
of the convex hull of g, defined for y ∈ [0, Y ]. The function ĝ is the largest convex function
defined on [0, Y ] that is dominated by g there.

For each 0 ≤ y < Y , the supremum in (4.14) is obtained by the support line of ĝ at y. For
y = 0, the zero function is such a support line, and hence 0 ≤ ĝ(0) ≤ g(0) = 0 (recall (4.3)).
At y = Y the only support line might be vertical, in which case the supremum in (4.14) is
not attained. Because ĝ(0) = 0, ĝ is nonnegative, and ĝ is convex, we know that ĝ is also
nondecreasing. Being convex, ĝ is continuous on (0, Y ) and upper semicontinuous on [0, Y ],
and we have continuity at 0 because of (4.3). We also have continuity of ĝ at Y , as we now
show. Given ε > 0, the definition of ĝ implies that there exists an affine function  ≤ g such
that (Y ) ≥ ĝ(Y ) − ε. But ĝ ≥ , and thus lim infy↑Y ĝ(y) ≥ limy↑Y (y) = (Y ) ≥ ĝ(Y )− ε.

Since ε > 0 is arbitrary, we must in fact have lim infy↑Y ĝ(y) ≥ ĝ(Y ). Coupled with the upper

semicontinuity of ĝ at Y , this gives us continuity.

We next argue that ĝ(Y ) = g(Y ). Suppose, on the contrary, we had ĝ(Y ) < g(Y ). The
function g is continuous at Y (see (4.5)), and ĝ is upper semicontinuous. Therefore, there is a
one-sided neighborhood [γ, Y ] of Y (with γ < Y ) on which g − ĝ is bounded away from zero
by a positive number ε. The function

ĝ(y) +
ε(y − γ)

Y − γ
, 0 ≤ y ≤ Y ,

is convex, lies strictly above ĝ at Y , and lies below g everywhere. This contradicts the fact
that ĝ is the largest convex function dominated by g. We must therefore have ĝ(Y ) = g(Y ).

Finally, we describe the situation when for some y∗ ∈ [0, Y ] we have ĝ(y∗) < g(y∗). We
have shown that this can happen only if 0 < y∗ < Y . Let  be a support line of ĝ at y∗,
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which is an affine function that attains the maximum in (4.14) at the point y∗. In particular,
 ≤ ĝ ≤ g and (y∗) = ĝ(y∗). Define

α = sup{η ∈ [0, y∗] : g(η) − (η) = 0},(C.1)

β = inf{η ∈ [y∗, Y ] : g(η) − (η) = 0}.(C.2)

Because g is lower semicontinuous, the minimum of g− over [0, Y ] is attained. This minimum
cannot be a positive number ε, for then  + ε would be an affine function lying below g.
Therefore, either the supremum in (C.1) or the infimum in (C.2) is taken over a nonempty
set. In the former case, we must have g(α) = (α), whereas in the latter case g(β) = (β).

Let us consider first the case that g(α) = (α). Define γ = 1
2(α+ y∗). Like α, γ is strictly

less than y∗. The function g −  attains its minimum over [γ, Y ]. If this minimum were a
positive number ε, then the affine function

(y) +
ε
(
y − γ

)
Y − γ

, 0 ≤ y ≤ Y ,

would lie below g but have a larger value at y∗ than , violating the choice of . It follows that
g −  attains the minimum value zero on [γ, Y ], and since this function is strictly positive on
[γ, y∗], the minimum is attained to the right of y∗. This implies that g(β) = (β). Similarly,
if we begin with the assumption that g(β) = (β), we can argue that g(α) = (α).

In conclusion, α and β defined by (C.1) and (C.2) satisfy (4.15) and (4.16). Finally, (4.16)
shows that  restricted to [α, β] is the largest affine function lying below g on this interval,
and hence (4.17) holds.

Because of (4.16), every affine function lying below g on [0, Y ] must lie below  on [α, β].
If such an affine function agrees with ĝ and hence with  at y∗, it must in fact agree with
 everywhere. Hence,  is the only function lying below g on [0, Y ] and agreeing with ĝ at
y∗.
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