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The model

Market with two securities:

• b(t) - bond without interest rate

• p(t) - stock, an Ito process⎧⎪⎨⎪⎩
db(t) = 0

dp(t) = p(t)(µdt + σdWt)

with some b(0) > 0 and p(0) > 0 ;

• µ > 0 - drift-mean rate of return

• σ > 0 -volatility

• Wt-standard Brownian motion defined on a

probability space (Ω,F ,P).



Denote

• B(s) - current holdings in bond account

• S(s) - current holdings in stocks

• X(s) = B(s) + S(s) - total wealth at time s

So the total wealth satisfy

dX(s) = S(s)(µdt + σdWs)

and of course

X(s) ≥ 0, for t ≤ s ≤ T

for some fixed terminal time T and initial t.



At any instance the investor may rebalance

his portfolio by moving capital from stocks to

bond and vice versa.

S(t) = S(t, X(t)) can be taken as control.

The aim is to maximize an expected utility at

some terminal time T , i.e. to find

w(x, t) = sup
A

E{U(XT ) | Xt = x}

where A - is the set of all admissible controls.

The control S(t) = S(t, X(t)) is Markovian -

the value we choose at time t depends only on

the state of the system at this time.

With such control the process X(t) is still a

Markov Process.



Merton model ( 70’s ).No transactions case.

The solution w(x, t) in this case is well known

and is given by the Stochastic Control Methods

- HJB equation:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

wt + sups [12σ2s(t, x)2wxx + µs(t, x)wx] = 0

w(0, t) = 0 for t ∈ [0, T )

w(x, T ) = xα

α

Such that:

w(x, t) =
xα

α
eλ(T−t) ,where λ =

µ2α

2σ2(1 − α)

And the optimal investment strategy is

S∗(t, Xt) =
µ

σ2(1 − α)
Xt

So the Merton optimal strategy dictates that

it is optimal to keep a fixed proportion of the

total wealth invested in stocks.



Proportional transaction costs

Norman and Davis (1990)

Shreve and Soner (1994)

• Models with consumption.

• The local time type of the strategy

The policy leads to instantaneous controls, where,

one trades ”continuously” and with infinitesi-

mal amounts when the risky proportion process

is at boundary.

This is not the case in the real world.



Fixed transactions costs.

At every intervention time τi (the time where

the investor rebalances his portfolio position)

the investor has to pay fixed transaction cost

K. Usually he pays the fee from the bond

account.

Now we have to choose a sequence of inter-

vention times and to trade only at these times

and NOT at every instant as it was before, be-

cause the fixed component in transaction fee

can lead such a policies to bankruptcy.



Definition of control

Impulse control for the process is a sequence

v = ((τ1, ζ1), (τ2, ζ2), ....)j≤N ; N ≤ ∞

• τ1 < τ2 < ... are Ft - stopping times

• ζj are Fτj - measurable random variables rep-

resenting the corresponding impulses.

τ1, τ2, ... are the intervention times - the times

when we decide to intervene and give the sys-

tem the impulses ζ1, ζ2, .. respectively.

• N ≤ ∞ is the number of interventions.

We are looking for

w(t, S, B) = max
v∈I

E(U(ST +BT )|St = S, Bt = B)

over all impulse control policies.



If v = ((τ1, ζ1), (τ2, ζ2), ....) is applied to the

process X(t) , it behaves according to :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX(t) = S(t)(µdt + σdWt), τj−1 ≤ t < τj ≤ T

X(τj) = X(τ−j ) − K, j = 1,2, ...; τj ≤ T

B(τj) = B(τ−j ) − K − ζj

S(τj) = S(τ−j ) + ζj

where we put τ0 = 0.



Define Intervention or maximum operator

Mw(t, B, S) = max
ζ

{w(t, B − ζ − K, S + ζ)}

It represents the value of the strategy, that

consists of doing the best immediate action

and to behave optimal afterwards.

It’s clear that in general holds:

w(t, B, S) ≥ Mw(t, B, S),

because it’s not always optimal to trade at

time t.

But when it’s optimal, then

w(t, B, S) = Mw(t, B, S),



Recall the variational inequalities

for optimal stopping problem:

Suppose that, the process Y (t) ∈ V ⊂ Rk satis-

fies stochastic differential equation of the form

dY (t) = b(Y (t)) + σ(Y (t))dW (t) ; Y (0) = y

Define the differential operator L

Lφ =
k∑

i=1

bi(y)
∂φ

∂yi
+

1

2

k∑
i=1

(σσtr)ij(y)
∂2φ

∂yi∂yj

Find Φ(y) and a stopping time τ < T such that

Φ(y) = sup
τ<T

Ey[g(Yτ)]

for some continuous function g



The main ideas

Suppose we can find a sufficiently smooth func-

tion φ, such that

• φ ≥ g on V

• Define the continuation region

D = {x ∈ V : φ(x) > g(x)}
• Lφ ≤ 0 on V \ D̄

• Lφ = 0 on D

then τD = inf{t > 0 : Yt /∈ D}
is the optimal stopping time for this problem

and

φ(y) = Ey[g(YτD)] = Φ(y) = sup
τ<T

Ey[g(Yτ)]



The impulse control (main ideas)

We are looking for a function w, such that:

• w ≥ Mw on V

• The continuation region

D = {(t, B, S) : w > Mw}
• Lw ≤ 0 on V \ D̄

• Lw = 0 on D

The intervention times are exit times from D.



QVI verification theorem.

We say that a sufficiently smooth function
w = w(t, B, S) is a solution of
the quasi-variational inequalities (QVI) if⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lw ≤ 0

w ≥ Mw and w = Mw on Dc

(w − Mw)Lw = 0

w(T, B, S) = U(B, S) − Utility function

and the impulse control policy is defined as:

(τ0, ζ0) := (0,0)

τi := inf{t ≥ τi−1 : w(t, Bt−, St−) = Mw(t, Bt−, St−)}

ζi = argmax
ζ

{w(t, Bt− − ζ − K, St− + ζ)}

Theorem ( Eastham and Hastings (1988))
The impulse control, defined above is optimal.



”...QVI’s are typically very hard to solve

explicitly. This is especially the case

when there is a fixed finite time hori-

zon T.

...I do not know of any general solu-

tion method. You are quite right that

you have to do the same fantastic work

for every problem. In fact, it has been

said that these problems are so diffi-

cult that ”every explicit solution is a

triumph over nature”!

Good luck!

Best regards,

Bernt Oksendal”



works about fixed transaction costs

• Eastham and Hastings (1988) :

linear utility function, finite interval.

• Atkinson and Willmott (1997), Korn (1998)

approximation methods.

• Oksendal and Sulem(2002) :

the extension of Shreve and Soner work for

case when fixed component is added to trans-

action costs. Numerical methods

• Pliska (2002) :

has solved explicitly the problem of optimally

tracking a target mix of asset categories when

there are fixed transaction costs.

Infinite interval.



Approximation scheme

Assume that the transaction cost is small

K = Rε4, for some const R

Recall that in the no transaction case the op-

timal amount of money, invested in bond is

given as

B∗(t) = (1 − u)X(t), with u =
µ

σ2(1 − α)

Rescale our variables by introducing the new

variable Y = Y (Xt, t) :

B(t) = B∗(t) + εY (Xt, t) = (1 − u)X(t) + εY

S(t) = X(t) − B(t) = uX(t) − εY



assumptions

• the no-transaction region (NT) has the form

D = {(t, x, Y ) : Ŷ − < Y < Ŷ +}
• the upper and the lower boundaries of NT

are

B∗ + εŶ + and B∗ + εŶ −

• the upper and the lower optimal restarting

lines are:

B∗ + εŶ − and B∗ + εY −

(the signs of Ŷ −and Y − are negative).

• all Y ′s can depend on X(t)

Also holds

Ŷ − ≤ Y − ≤ 0 ≤ Y + ≤ Ŷ +



The optimal policy is:

1. Don’t do anything in the NT region

2. If (X, Y ) reaches either upper or
lower boundary (X, Ŷ +) or (X, Ŷ −) the
investor has to make a transaction and
to move it back to NT
i.e. to corresponding restarting lines
(X, Y +) or (X, Y −).

So in what follows we find all the boundaries

and restarting lines.



So actually now we have a different process

(t, B, S) → (t, X, Y )

with another characteristic operator L

Lϕ = ϕt + µ(uX − εY )[ϕX +
u − 1

ε
ϕY ]+

1

2
σ2(uX−εY )2[ϕXX+2

u − 1

ε
ϕXY +

(u − 1)2

ε2
ϕY Y ]

and the value function has changed as well

w(t, B, S) → Q(t, X, Y )

More generalized version of QVI is needed

Oksendal lecture notes (2002)



In the NT we expand Q as:

Q(t, x, Y ) = H0(t, x)+ε2H2(t, x)+ε4G(t, x, Y )+..

Substitute it into LQ = 0 then order the terms

by the powers of ε.

Taking only O(1) and O(ε2) equations

and using smoothness conditions (t < T ) :⎧⎪⎨⎪⎩
Q(t, x, Y ) = Q(t, x − k, Y +) ∀ Y ≥ Ŷ +

QY (t, x, Y ) = QY (t, x − k, Y +) ∀ Y ≥ Ŷ +

as well as optimality of transaction condition

d

d(∆y)
Q(t, x − k, Ŷ + − ∆y)|

∆y=Ŷ +−Y + = 0

we are able to obtain Ŷ + and Y +.

Just the same work is done for the lower bound.



We are free to choose some comfortable form

of the Q-function, for instance -the power form

Q(t, x, Y ) =

1

α
(x + ε2H(t, x) + ε4G(t, x, Y ) + ...)αeλ(T−t)

with λ = µ2α
2σ2(1−α)

Results :

Y + = 0, Y − = 0 and

Ŷ + =
4

√√√√√12Ru2(u − 1)2

1 − α
x

3
4

also Ŷ − = −Ŷ +



Maximizing logarithmic utility.

The new value function is

w(x, t) = sup
A

E[ logXT | Xt = x]

The optimal solution is always to keep the

same proportion of the whole wealth in stocks.

u =
b

σ2

and the value function is given as

w(t, B, S) = w(t, x) = lnx+λ(T−t), where λ =
b2

2σ2

The solution of this problem in the no-transactions

case makes us able to approach it now. We get

Ŷ + =
4
√

12Ru2(1 − u)2 x
3
4

Notice that this policy can be derived as the

limit power utility policy taking α ↓ 0.



Goal function

Another kind of problems, arising in portfolio
optimization context are so called
optimal goal problems.

w(t, x) = sup
A

P (XT = 1 | Xt = x)

The no transaction case solution was first de-
rived by martingale methods by Heath (1993),
Kulldorff (1993) and is as follows:

the optimal amount of money held in stock at
time s is

S∗
s =

1√
T − s

ϕ(Φ−1(Xs)), t ≤ s ≤ T

where Φ(·) is the standard normal distribution
function and ϕ(·) is the density of the standard
normal distribution.

And the value function in this case is given by

w(t, x) = Φ(Φ−1(x) + µ
√

T − t).



Try to apply the above approximation method

to the goal function problem.

Rescale our variables by introducing the new

variable Y = Y (t, Xt):

St = S∗
t +

εY (Xt, t)√
T − t

=

1√
T − t

[ϕ(Φ−1(Xt)) + εY (t, Xt)]

As a result we get

Ŷ +(Xt, t) =

4

√
12R

µ
ϕ3(Φ−1(Xt))[

√
T − t + Φ−1(Xt)]

2 8√T − t


