
PRACTICE MIDTERM 2 SOLUTIONS

Note: This practice midterm doesn’t have the format of the midterm. It is simply
a collection of problems you should know how to solve. Some of them could have
been on the midterm, as I was considering them, but for one reason or another,
didn’t include.

Problem 1. Does the following define an inner product on M22?

(A,B) = trace(A)trace(B).

(The trace of a square matrix is the sum of its diagonal entries)

Solution 1. To see whether this defines an inner product, we need to check if
it satisfies the properties an inner product should have. In this problem all the
properties hold, except the one that says

(u, u) = 0⇔ u = 0.

For example if we take

u =
(

0 1
1 0

)
,

then we have (u, u) = tr(u)tr(u) = 0 · 0 = 0 but u 6= 0. So (A,B) = tr(A)tr(B)
doesn’t define an inner product on M22.

If you needed to check that for example the property

(A+B,C) = (A,C) + (B,C)

is satisfied, this is how you would do it.

(A+B,C) = tr(A+B)tr(C) = ((A+B)11 + . . .+ (A+B)nn)(C11 + . . .+ Cnn) =

(A11 +B11 + . . .+Ann +Bnn)(C11 + . . .+ Cnn) =

((A11 + . . .+Ann) + (B11 + . . .+Bnn))(C11 + . . .+ Cnn) =

(A11 + . . .+Ann)(C11 + . . .+ Cnn) + (B11 + . . .+Bnn)(C11 + . . .+ Cnn) =

tr(A)tr(C) + tr(B)tr(C) = (A,C) + (B,C).

Problem 2. Let T : M22 → R2 be the linear transformation given by

A 7→ (trace(A), sum of the elements of A).

Find the matrix that gives this linear transformation if we choose the standard bases
for M22 and R2.

Solution 2. The matrix of a linear transformation with respect to bases B =
{b1, . . . , bp} for the domain and C for the codomain is given by

M =
(

[T (b1)]C
... . . .

...[T (bp)]C

)
.

In our case [T (b1)]E =
[
T

((
1 0
0 0

))]
E

= (1, 1)E =
(

1
1

)
,

[T (b2)]E =
[
T

((
0 1
0 0

))]
E

= (0, 1)E =
(

0
1

)
,

1
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[T (b3)]E =
[
T

((
0 0
1 0

))]
E

= (0, 1)E =
(

0
1

)
,

[T (b4)]E =
[
T

((
0 0
0 1

))]
E

= (1, 1)E =
(

1
1

)
,

so the matrix M is

M =
[

1 0 0 1
1 1 1 1

]
.

Problem 3. Find the equation of the line that best fits the given points
(−2,−2), (−1, 0), (0,−2), (1, 0) in the least-squares sense.

Solution 3. Suppose y = ax+b is the equation of the line that best fits these points.
Then we have

−2 = −2a+ b
0 = −a+ b
−2 = 0a+ b

0 = a+ b

. If there was a line fitting these points, a, b would be solutions of
−2 1
−1 1

0 1
1 1

[ a
b

]
=


−2

0
−2

0

 .
The least squares solution of this equation is given by

[
a
b

]
=



−2 1
−1 1

0 1
1 1


T 
−2 1
−1 1

0 1
1 1



−1 

−2 1
−1 1

0 1
1 1


T 
−2

0
−2

0

 =

=
([

6 −2
−2 4

])−1


−2 1
−1 1

0 1
1 1


T 
−2

0
−2

0

 =
1

6 · 4− (−2)(−2)

[
4 2
2 6

] [
4
−4

]
=

=
1
20

[
8

−16

]
=
[

2/5
−4/5

]
.

So, the line is y = 2/5x− 4/5.

Problem 4. Find the projection of the vector (1, 2, 3) and the zx plane in R3.
What is the distance from (1, 2, 3) to the zx plane?

Solution 4. Since

u1 =

 1
0
0

 , u2 =

 0
0
1

 is an orthonormal basis of the

zx plane, the projection of v =

 1
2
3

 on the zx plane is given by

proj v = (v · u1)u1 + (v · u2)u2 = 1u1 + 3u2 =

 1
0
3

 .
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The distance from v to the zx plane is the same as the length of v− proj v so it is∣∣∣∣∣∣
∣∣∣∣∣∣
 0

2
0

∣∣∣∣∣∣
∣∣∣∣∣∣ =

√
02 + 22 + 02 = 2.

Problem 5. Show that S = {u1, u2, u3} is an orthonormal basis for R3, where
u1 = (2/3, 2/3, 1/3), u2 = (

√
2/2,−

√
2/2, 0), u3 = (

√
2/6,
√

2/6,−2
√

2/3). Using
the fact that S is an orthonormal basis, find the coordinates of v = (1, 1, 1) in this
basis.

Solution 5. Hint. Check that (u1, u2) = (u1, u3) = (u2, u3) = 0 and that (u1, u1) =
(u2, u2) = (u3, u3). These imply that the coordinates of v in this basis are (v, u1), (v, u2), (v, u3).
Calculate these.

Problem 6. Apply the Gram-Schmidt process to the vectors(
1 1
1 1

)
,

(
−2 1

1 0

)
,

(
1 1
0 0

)
.

The inner product is A ·B = a11b11 + a12b12 + a21b21 + a22b22.

Solution 6. Call these vectors x1, x2, x3. Take v1 = x1 =
(

1 1
1 1

)
. By the

Gram-Schmidt process

v2 = x2 −
x2 · v1
v1 · v1

v1 = x2 −
0
6
v1 = x2 =

(
−2 1

1 0

)
.

v3 = x3−
x3 · v1
v1 · v1

v1−
x3 · v2
v2 · v2

v2 =
(

1 1
0 0

)
−2

4

(
1 1
1 1

)
−−1

6

(
−2 1

1 0

)
=
(

1/6 2/3
−1/3 −1/2

)
.

Now, we can normalize these vectors to get

u1 =
v1
||v1||

=
(

1/2 1/2
1/2 1/2

)
,

u2 =
v2
||v2||

=
(
−2/
√

6 1/
√

6
1/
√

6 0

)
,

u3 =
v3
||v3||

=
(

1/(6
√

5/6) 2/(3
√

5/6)
−1/(3

√
5/6) −1/(2

√
5/6)

)
.

Problem 7. Let A =
(

2 1
3 4

)
. Find A25.

Solution 7. Hint. Find the eigenvalues of A and a basis of eigenvectors. Using
these diagonalize A. If A = PDP−1 then A25 = PD25P−1.

Problem 8. Find an orthonormal basis of R3 consisting of eigenvectors of A = 0 2 2
2 0 −2
2 −2 0

 .

Solution 8. First, let’s find the eigenvalues. To do that, we can find the character-

istic polynomial of A and find its roots. det(A − λI) = det

 −λ 2 2
2 −λ −2
2 −2 −λ

 =
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−λ3 + 12λ − 16 = −(λ + 4)(λ − 2)2, so the eigenvalues are −4, 2. Now, let’s find
the eigenvectors. For λ = −4 we need to find the nullspace of A+ 4I. 4 2 2 0

2 4 −2 0
2 −2 4 0

 
 2 1 1 0

1 2 −1 0
1 −1 2 0

 
 1 2 −1 0

2 1 1 0
1 −1 2 0

 
 1 2 −1 0

0 −3 3 0
0 −3 3 0

 
 1 2 −1 0

0 −3 3 0
0 0 0 0

 .

You can calculate the solutions to be

 −tt
t

. So, a basis for this eigenspace is

given by

 −1
1
1

. For λ = 2 we get

 −2 2 2 0
2 −2 −2 0
2 −2 −2 0

 
 −2 2 2 0

0 0 0 0
0 0 0 0

 ,

so the eigenvectors will be

 s+ t
s
t

, and a basis for the 2-eigenspace is


 1

1
0

 ,

 1
0
1

.

So, B =


 1

1
0

 ,

 1
0
1

 ,

 −1
1
1

 is a basis of R3 consisting of eigenvectors

of A. Now, let’s find an orthonormal basis of eigenvectors. Note, that if you
just apply the Gram-Schmidt process to B the resulting vectors although orthonor-
mal, might not be eigenvectors anymore. Instead, let’s apply the process to each
eigenspace separately. For the eigenspace for eigenvalue −4, an orthonormal basis

is u1 =

 −1/
√

3
1/
√

3
1/
√

3

. For the eigenvalue 2 we get

v1 =

 1
1
0

 , v2 =

 1
0
1

−
 1

0
1

 ·
 1

1
0


 1

1
0

 ·
 1

1
0


 1

1
0

 =

 1/2
−1/2

1

 .

Normalizing these we get w1 =

 1/
√

2
1/
√

2
0

 ,

 1/(2
√

3/2)
−1/(2

√
3/2)

1/
√

3/2

. So, we have that

{u1} is an orthonormal basis for the −4-eigenspace, and {w1, w2} is an orthonormal
basis for the 2-eigenspace. Since A is symmetric, u1 is automatically orthogonal to
w1 and w2 (this can also be checked directly), so {u1, w1, w2} will be an orthonormal
basis of R consisting of eigenvectors of A.



PRACTICE MIDTERM 2 SOLUTIONS 5

Problem 9. Find the eigenvalues and eigenvectors of the linear transformation
T : M22 →M22 given by A 7→ AT .

Solution 9. A matrix A would be an eigenvector, if T (A) = λA for some λ. I.e.
AT = λA. By taking transpose of both side, we see that A = (λA)T = λAT = λ2A.
Since A is assumed to be an eigenvector, it is not 0, so λ2 = 1, i.e. only ±1 could
be eigenvalues. Let’s try to find the eigenvectors. When λ = 1, A is an eigenvector,

if AT = λA = A. Writing A =
(
a b
c d

)
we can see that saying AT = A is

exactly the same as saying b = c, so all the matrices
(
a b
b d

)
are eigenvectors

with eigenvalue 1. Similarly, for λ = −1, we see that all the matrices
(

0 b
−b 0

)
satisfy AT = −A, so they are eigenvectors with eigenvalue −1.

Problem 10. Let A be a 4 × 4 matrix, u1, u2 linearly independent vectors in R3.
Suppose Au1 = Au2 = 0. Which of the following are true?

(1) A can not be invertible.
(2) dim(CS(A)) = 2.
(3) rk(A) ≤ 2.
(4) A has at most 3 distinct eigenvalues.
(5) A is not diagonalizable.

Solution 10. .

(1) True. If A were invertible, Ax = 0 would have only the solution x = 0 but
here we know that u1, u2 are solutions. They are not 0 because they form a
linearly independent set.

(2) False u1, u2 ∈ Null(A), so dimNull(A) ≥ 2. By the rank nullity theorem
dim(CS(A)) ≤ 4− 2 = 2. So it doesn’t have to be 2, it can be less.

(3) True rk(A) = dim(CS(A)), so the above calculation shows this is true.
(4) True. The sum of the dimensions of the eigenspaces can be at most 4.

We see that u1, u2 are eigenvectors with eigenvalue 0, so we know that the
dimension of the 0 eigenspace is at least 2. If there were more than 2 other
eigenvalues, the sum of dimensions of eigenvectors would be more than 4,
so there are at most 2 other eigenvalues.

(5) False. For example take A to be the zero matrix.

Problem 11. The characteristic polynomial of A is −λ3−λ. Which of the following
is true?

(1) A is definitely diagonalizable?
(2) A is definitely not diagonalizable?
(3) A may or may not be diagonalizable?

Solution 11. The answer is (2), since if A were diagonalizable, it would have 3
eigenvalues (counting with multiplicities) but from the characteristic polynomial we
can see that that’s not the case.

Problem 12. (True or False) If x · y = 0 for all y ∈ R3 then x must be 0̄.

Solution 12. True. x · y = 0 for all y ∈ R3, so in particular this is true when
y = x. I.e. x · x = 0, which implies x = 0.
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Problem 13. Let T : C[−1, 1] → C[−1, 1] be the linear transformation given by
(T (f))(x) = f(−x)∀x ∈ [−1, 1]. Find the eigenvectors and eigenvalues of T .

Solution 13. A function f would be an eigenvector, if T (f) = λf for some λ.
I.e. f(−x) = λf(x),∀x ∈ [−1, 1]. Using this we see that if f is an eigenvector
with eigenvalue λ, then f(x) = λf(−x) = λ2f(x). Since f(x) is assumed to be an
eigenvector, it is not 0, so λ2 = 1, i.e. only ±1 could be eigenvalues. Let’s try to find
the eigenvectors. When λ = 1, f(x) is an eigenvector, if f(−x) = λf(x) = f(x).
This is exactly the same as saying f is an even function. Similarly, for λ = −1,
we see that exactly all the odd functions satisfy f(−x) = λf(x) = −f(x), so they
are the eigenvectors with eigenvalue −1.


