Practice Midterm 2

July 23, 2008

Note: This practice midterm doesn't have the format of the midterm. It is simply a collection of problems you should know how to solve. Some of them could have been on the midterm, as I was considering them, but for one reason or another, didn't include.

Problem 1 Does the following define an inner product on M_{22} ?

 $A \cdot B = trace(A)trace(B).$

(The trace of a square matrix is the sum of its diagonal entries)

Problem 2 Let $T: M_{22} \to \mathbb{R}_2$ be the linear transformation given by

 $A \mapsto (trace(A), sum of the elements of A).$

Find the matrix that gives this linear transformation if we choose the standard bases for M_{22} and \mathbb{R}^2 .

Problem 3 Find the equation of the line that best fits the given points (-2, -2), (-1, 0), (0, -2), (1, 0) in the least-squares sense.

Problem 4 Find the projection of the vector (1,2,3) and the *zx* plane in \mathbb{R}^3 . What is the distance from (1,2,3) to the *zx* plane?

Problem 5 Show that $S = \{u_1, u_2, u_3\}$ is an orthonormal basis for \mathbb{R}^3 , where $u_1 = (2/3, 2/3, 1/3), u_2 = (\sqrt{2}/2, -\sqrt{2}/2, 0), u_3 = (\sqrt{2}/6, \sqrt{2}/6, -2\sqrt{2}/3)$. Using the fact that S is an orthonormal basis, find the coordinates of v = (1, 1, 1) in this basis.

Problem 6 Apply the Gram-Schmidt process to the vectors

$$\left(\begin{array}{rrr}1&1\\1&1\end{array}\right),\left(\begin{array}{rrr}-2&1\\1&0\end{array}\right),\left(\begin{array}{rrr}1&1\\0&0\end{array}\right).$$

The inner product is $A \cdot B = a_{11}b_{11} + a_{12}b_{12} + a_{21}b_{21} + a_{22}b_{22}$.

Problem 7 Let $A = \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix}$. Find A^{25} .

Problem 8 Find an orthonormal basis of \mathbb{R}^3 consisting of eigenvectors of $A = \begin{pmatrix} 0 & 2 & 2 \\ 2 & 0 & 2 & 2 \end{pmatrix}$

 $\left(\begin{array}{rrrr} 0 & 2 & 2\\ 2 & 0 & -2\\ 2 & -2 & 0 \end{array}\right).$

Problem 9 Find the eigenvalues and eigenvectors of the linear transformation $T: M_{22} \to M_{22}$ given by $A \mapsto A^T$.

Problem 10 Let A be a 4×4 matrix, u_1, u_2 linearly independent vectors in \mathbb{R}^3 . Suppose $Au_1 = Au_2 = 0$. Which of the following are true?

- 1. A can not be invertible.
- 2. dim(CS(A)) = 2.
- 3. $rk(A) \le 2$.
- 4. A has at most 3 distinct eigenvalues.
- 5. A is not diagonalizable.

Problem 11 The characteristic polynomial of A is $-\lambda^3 - \lambda$. Which of the following is true?

- 1. A is definitely diagonalizable?
- 2. A is definitely not diagonalizable?
- 3. A may or may not be diagonalizable?

Problem 12 (True or False) If $x \cdot y = 0$ for all $y \in \mathbb{R}^3$ then x must be $\overline{0}$.

Problem 13 Let $T: C[-1,1] \to C[-1,1]$ be the linear transformation given by $(T(f))(x) = f(-x) \forall x \in [-1,1]$. Find the eigenvectors and eigenvalues of T.