Math 21-325 - Probability

Homework Assignment 12 Due Dec 7

1. (a) Let N, X_1, X_2, \ldots be independent $\mathbb{Z}_{>0}$ valued random variables, with X_1, X_2, \ldots i.i.d. Show that the generating function of the random sum

$$S(\omega) := \sum_{k=1}^{N(\omega)} X_k(\omega)$$

is

$$G_S(s) = G_N(G_X(s)),$$

where $G_X = G_{X_i}$ for all *i*.

- (b) Let N be a Poisson random variable with rate λ . Let S be the number of successes in N Bernoulli trials, where the probability of success is $p \in (0, 1)$. What is the distribution of S?
- 2. Let Y_1, Y_2, \ldots be independent, identically distributed variables, each of which can take any value in $0, 1, 2, \ldots, 9$ with equal probability 1/10. Let $X_n = \sum_{i=1}^n Y_i 10^{-i}$. Show by the use of characteristic functions that X_n converges in distribution to the uniform distribution on [0, 1]. Independently, show that $X_n \xrightarrow{n \to \infty} Y$ almost surely, for some random variable Y. Now, deduce that Y is uniformly distributed in [0, 1].
- 3. (Chebyshev's inequality)

Let c > 0. Prove that $P(|X| \ge c) \le \frac{1}{c^p} E(|X|^p)$ for all $p \ge 1$. Note, that we have seen the case p = 2 in class.

4. We have seen three notions of convergence of random variables in class. Here is one more. A sequence of random variables X_1, X_2, \ldots converges to X in L^p if

$$\lim_{k=\infty} E(|X_k - X|^p) = 0.$$

When p = 2 this is also often called mean-square convergence. When p = 1 it is called convergence in mean.

Prove that if $X_n \to X$ in L^p for some $p \ge 1$, then $X_n \to X$ in probability.

5. (Law of large numbers) Let $X_1, X_2, d...$ be random variables with $E(X_k) = \mu \in \mathbb{R}$ and variance $Var(X_k) = \sigma^2 \in \mathbb{R}$. Prove, that if the random variables are uncorrelated (note, that this is weaker than independent), then

$$\frac{1}{n} \sum_{k=1}^{n} X_k \xrightarrow{n \to \infty} \mu \text{ in } L^2.$$

In class we prove convergence in probability under weaker assumptions.

- 6. Let $(B_t)_{t \in \mathbb{R}_+}$ be Brownian Motion. What is the correlation coefficient and joint distribution of B_t and B_s , where $0 \le t < s$? What is $P(B_t > 0, B_s > 0)$?
- 7. For what values of a and b is $aW_1 + bW_2$ a Wiener process (this is another name for Brownian motion), where W_1 and W_2 are independent Wiener processes?
- 8. Show, that the standard Brownian motion has finite quadratic variation, i.e. that

$$\sum_{j=0}^{n-1} (B_{(j+1)t/n} - B_{jt/n})^2 \xrightarrow{n \to \infty} t \quad \text{in } L^2.$$