## Math 21-325 - Probability

## Homework Assignment 11 Due Nov 30

1. Find the probability that  $x^2 + 2ax + b$  has complex roots if the coefficients a and b are independent random variables with density

$$f(x) = 1_{x>0} \alpha e^{-\alpha x}.$$

2. Two grids of parallel lines are superimposed: the first grid contains lines distance a apart, the second contains lines distance b apart which are perpendicular to those of the first set. A needle of length  $r < \min(a, b)$  is dropped at random. Find the probability that it intersects a line.



Hint: Identify the needle by its midpoint and angle, which are independent and uniformly random.

- 3. Construct an example of two random variables X and Y for which  $\mathbb{E}(Y) = \infty$  but such that  $\mathbb{E}(Y|X) < \infty$  almost surely, i.e.  $P(\mathbb{E}(Y|X) < \infty) = 1$ .
- 4. Find the conditional density function and expectation of Y given X when they have joint density function

$$f(x,y) = xe^{-x(y+1)}1_{x\geq 0}1_{y\geq 0}.$$

5. Let X and Y have the bivariate normal density function  $N(0, 1, \rho)$ . Show that X and  $Z = (Y - \rho X)/\sqrt{1 - \rho^2}$  are independent standard normal random variables, and deduce that

$$P(X > 0, Y > 0) = \frac{1}{4} + \frac{1}{2\pi} \sin^{-1} \rho.$$

6. The random variable X has the gamma distribution with parameters  $\lambda, t > 0$ , denoted by  $\Gamma(\lambda, t)$ , if it has density

$$f(x) = \frac{1}{\Gamma(x)} \lambda^t x^{t-1} e^{-\lambda x}, \qquad x \ge 0,$$

where  $\Gamma(x)$  is the gamma function defined by

$$\Gamma(t) = \int_0^\infty x^{t-1} e^{-x} dx.$$

Let  $X_1, X_2, \ldots, X_n$  be exponential random variables (see Hwk 10) with parameter  $\lambda$ . Show by induction that  $S = X_1 + \ldots + X_n$  has the  $\Gamma(\lambda, n)$  distribution.

- 7. A random variable with distribution  $\Gamma\left(\frac{1}{2}, \frac{n}{2}\right)$  is said to have the chi-squared distribution  $\chi^2(n)$  with *n* degrees of freedom. Let  $X_1, X_2, \ldots, X_n$  be independent standard normal random variables.
  - (a) Show that  $X_1^2$  is  $\chi^2(1)$ .
  - (b) Show that  $X_1^2 + X_2^2$  is  $\chi^2(2)$  by expressing its distribution function as an integral and changing to polar coordinates.
  - (c) More generally, show that  $X_1^2 + X_2^2 + \ldots X_n^2$  is  $\chi^2(n)$ .

This is saying that if the coordinates of a vector  $\bar{x} \in \mathbb{R}^n$  are standard normals, then the square of the length of  $\bar{x}$  is  $\chi^2(n)$ .