

This document will be used to keep track of our development of counting finite and infinite sets. I will update it as we go along.

1. FINITE SETS

Recall that $[0] = \emptyset$ and $[n] = \{1, 2, \dots, n\}$ for $n \geq 1$.

Theorem 1. *Let $m, n \in \mathbb{N}$. Then the following all hold:*

- (1) *If there is an injection $f : [m] \rightarrow [n]$ then $m \leq n$.*
- (2) *If there is a surjection $f : [m] \rightarrow [n]$ then $m \geq n$.*
- (3) *If there is a bijection $f : [m] \rightarrow [n]$, then $m = n$.*

Proof. We showed (1) in lecture. You will do (2) in Assignment 5. And (3) follows immediately from (1) and (2). \square

Definition 1. If X is a set and $n \in \mathbb{N}$, we say that X has cardinality n (denoted $|X| = n$) if there is a bijection $f : [n] \rightarrow X$. We say X is *finite* if $|X| = n$ for some $n \in \mathbb{N}$. We say X is *infinite* if it is not finite.

Theorem 2. *Let A be a set. Then the following are equivalent:*

- (1) *A is finite.*
- (2) *There is an injection $f : A \rightarrow [n]$ for some $n \in \mathbb{N}$.*
- (3) *There is a surjection $f : [n] \rightarrow A$ for some $n \in \mathbb{N}$.*

Proof. It is enough to prove (1) \Rightarrow (2), (2) \Rightarrow (3) and (3) \Rightarrow (1). You can accept this theorem with out proof, though by the end of the week you should make sure you know how to prove this. We will cover a proof of a very similar theorem which will give you the main ideas. \square

Theorem 3. *If X and Y are finite sets, and there exists a bijection $f : X \rightarrow Y$, then $|X| = |Y|$*

Proof. You will prove this in Assignment 5. \square

Theorem 4. *Let X be a nonempty set such that $x \in X$ and $y \notin X$. Suppose that $|X| = n$ for some natural number n . Then $|X \cup \{y\}| = n + 1$ and $|X \setminus \{x\}| = n - 1$.*

Proof. You will prove this in Assignment 5. \square

Theorem 5. *Every non-empty set of natural numbers has a least element.*

Proof. We proved this in lecture. \square

Theorem 6. *Every non-empty finite set of natural numbers has a greatest element.*

Proof. The proof of this is very similar to the proof of the last theorem. This problem will be in the discussion session on Friday. \square

Theorem 7. \mathbb{N} is infinite.

Proof. We proved this in lecture. □

Theorem 8. *If X and Y are sets, such that $X \subseteq Y$, and X is infinite, then so is Y .*

Proof. You should make sure you can prove this! □

Theorem 9. *Let X and Y be sets. Then the following hold:*

- (1) *If $f : X \rightarrow Y$ is an injection and X is infinite, then $f[X]$ is infinite.*
- (2) *If $f : X \rightarrow Y$ is a surjection and Y is infinite, then $f^{-1}[Y]$ is infinite.*

Proof. Proved in lecture. □

2. COUNTABILITY

Definition 2. A set X is *countably infinite* if there exists a bijection $f : \mathbb{N} \rightarrow X$. We say that X is *countable* if it is finite or countably infinite.

Theorem 10. \mathbb{N} and \mathbb{Z} are countably infinite.

Proof. Proved in class. □

Theorem 11. $\mathbb{N} \times \mathbb{N}$ is countably infinite.

Proof. Proved in class, using a result from your homework. □

Theorem 12. Let X be a non-empty set. Then the following are equivalent:

- (1) X is countable.
- (2) There exists a surjection $f : \mathbb{N} \rightarrow X$.
- (3) There exists an injection $f : X \rightarrow \mathbb{N}$.

Proof. (Laborously) proved in class. □

Theorem 13. Let X be a non-empty set. Then the following are equivalent:

- (1) X is countable.
- (2) There exists a surjection $f : C \rightarrow X$ for some countable set C .
- (3) There exists an injection $f : X \rightarrow C$ for some countable set C .

Theorem 14. If A and B are countable sets, then so is $A \times B$.

Proof. Proved in class. □

Theorem 15. \mathbb{Q} is countable.

Proof. Proved in class. □

3. UNCOUNTABILITY

Theorem 16. $\{0, 1\}^{\mathbb{N}}$ is uncountable.

Theorem 17. \mathbb{R} is uncountable.