

Please follow the instructions and guidelines detailed at the beginning of the first assignment.

This homework is out of 100pts.

- (1) **[10 pts]** Let $n \in \mathbb{N}$ such that $n \geq 2$. Define relation R on \mathbb{Z} by xRy iff x and y have the same remainder when divided by n . Show that R is an equivalence relation. What is the corresponding partition of \mathbb{N} ? What is $[3]_R$?
- (2) **[10 pts]** Define a relation E on $\mathcal{P}(\mathbb{R})$ by $X E Y$ iff $X \cap \mathbb{Z} = Y \cap \mathbb{Z}$. Is E an equivalence relation? Prove your answer. What is the corresponding partition of $\mathcal{P}(\mathbb{R})$? What is $[\{2n \mid n \in \mathbb{Z}\}]_E$?
- (3) **[10 pts]** We say that x and y are *relatively prime* if their greatest common divisor is 1. Define a relation S on $\mathbb{Z} \setminus \{0\}$ by xSy iff x and y are relatively prime. Is R an equivalence relation? Prove your answer.
- (4) **[10 pts]** We define a relation F on \mathbb{R} by xFy iff $x - y \in \mathbb{Q}$. Is F an equivalence relation? Prove your answer.
- (5) **[10 pts]** Let a and b be integers. Show that if d and d' are greatest common divisors of a and b , then either $d = d'$ or $d = -d'$.

This problem explains why we can refer to *the* greatest common denominator of a and b .

- (6) **[10 pts]** Use the Euclidean Algorithm to compute the gcd of -72 and 252. Show your work.
- (7) **[20 pts]** For each of the following linear diophantine equations, determine if it has an integer solution or not. If it has an integer solution, specify *all* of them. If it does not have an integer solution, prove it.
 - (a) $630x + 385y = 4340$
 - (b) $453x + 48y = 20$
 - (c) $104x + 598y = 0$
- (8) **[10 pts]** Let a and b be integers, both not zero, and let $d = \gcd(a, b)$. Show that $\frac{a}{d}$ and $\frac{b}{d}$ are relatively prime.
- (9) **[10 pts]** Let $a, b \in \mathbb{Z}$. Prove that if $\gcd(ab, a + b) = 1$ then $\gcd(a, b) = 1$.