Please follow the instructions and guidelines detailed at the beginning of the first assignment.

This homework is out of 100pts.

(1) [20 pts] Let \(f : X \to Y \) and \(g : Y \to Z \). For each of the following, prove your answer.
 (a) If \(f \) is injective, can we conclude that \(g \circ f \) is injective?
 (b) If \(g \) is surjective, can we conclude that \(g \circ f \) is surjective?
 (c) If \(f \) and \(g \) are both surjective, can we conclude that \(g \circ f \) is surjective?
 (d) If \(f \) and \(g \) are both injective, can we conclude that \(g \circ f \) is injective?

(2) [20 pts] Let \(f : A \to B \) be a function. Let \(S \) and \(T \) be subsets of \(A \). If \(f \) is injective, can we conclude that \(f[S \setminus T] = f[S] \setminus f[T] \)? Prove your answer.

(3) [10 pts] Let \(p : \mathbb{N} \times \mathbb{N} \to \mathbb{N} \) be the function \(p(x, y) = 2^x(2y + 1) - 1 \). Show that \(p \) is a bijection.

(4) [10 pts] Find the inverse of the function \(f : \mathbb{R} \to \mathbb{R} \) defined by \(f(C) = \frac{2}{3}C + 32 \). Prove your answer.

(5) [20 pts] Prove that if \(m, n \in \mathbb{N} \) and there is a surjection \(f : [m] \to [n] \), then \(m \geq n \).

(6) [10 pts] Let \(X \) be a finite set with \(|X| = n > 1 \). Let \(x \in X \) and \(y \notin X \). Prove that
 \[|X \setminus \{x\}| = n - 1 \]
 and
 \[|X \cup \{y\}| = n + 1. \]

(7) [10 pts] Prove that if \(X \) and \(Y \) are finite sets and there exists a bijection \(h : X \to Y \), then \(|X| = |Y| \).