
MULTIPLICITY OF SOLUTIONS TO THE MULTIPHASIC

ALLEN–CAHN–HILLIARD SYSTEM WITH A SMALL VOLUME

CONSTRAINT ON CLOSED PARALLELIZABLE MANIFOLDS
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Abstract. We prove the existence of multiple solutions to the Allen–Cahn–Hilliard (ACH)
vectorial equation (with two equations) involving a triple-well (triphasic) potential with a small
volume constraint on a closed parallelizable Riemannian manifold. More precisely, we find a lower
bound for the number of solutions depending on some topological invariants of the underlying
manifold. The phase transition potential is considered to have a finite set of global minima, where
it also vanishes, and a subcritical growth at infinity. Our strategy is to employ the Lusternik–
Schnirelmann and infinite-dimensional Morse theories for the vectorial energy functional. To this
end, we exploit that the associated ACH energy Γ-converges to the weighted multi-perimeter for
clusters, which combined with some deep theorems from isoperimetric theory yields the suitable
setup to apply the photography method. Along the way, the lack of a closed analytic expression
for the multi-isoperimetric function for clusters imposes a delicate issue. Furthermore, using a
transversality theorem, we also show the genericity of the set of metrics for which solutions to the
ACH system are nondegenerate.
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1. Introduction

It is well-known that any open bounded domain in the flat Euclidean space contains an
isoperimetric cluster enclosing fixed (sufficiently small) volumes [5]. Roughly speaking, an
isoperimetric cluster is a solution to a minimal partition problem, or more generally, a minimizing
critical point of the (vectorial) perimeter. A classical problem in differential geometry is to count
the number of isoperimetric clusters enclosing a small volume on a Riemannian manifold or more
generally the number of critical clusters for the perimeter (of clusters) under a vectorial volume
constraint. In the light of the Γ-convergence theory, our approach to attack the latter problem
consists of a first step in studying a problem with a relaxation parameter, which will be described
below and as a second step in sending this parameter to zero. In this paper, we study the relaxed
problem. The second step will be the subject of a forthcoming paper.

Let n,N,m ∈ N be such that n,N > 2 and m > 1 (otherwise explicitly mentioned this will
always be the case in this paper). Let (Mn, g) be a (smooth) closed (compact and without
boundary) Riemannian manifold. We study the existence and multiplicity of vectorial m-map
solutions u = (u1, . . . ,um) ∈ C∞g (M,Rm) to the following Allen–Cahn–Hilliard (ACH) system{

dEε,W (u) = Λ on M,

Vg(u) = v,
(ACHε,v,m,N,g)

where Λ = (Λ1, . . . ,Λm) ∈ Rm is a Lagrange multiplier, m ∈ N is the number of equations,
Vg : C∞g (M,Rm) → Rm is the volume functional given by Vg(u) = (

∫
M u1dLng , . . . ,

∫
M umdLng ),

and v = (v1, . . . , vm) ∈ Rm+ := {x ∈ Rm : xi > 0} with v = |v| :=
∑m

i=1 vi � 1. The functional

Eε,W : L1
g(M,Rm)→ R is called the vectorial ACH energy

Eε,W (u) :=

{∫
M

(
ε|∇gu|2 + ε−1W (u)

)
dLng , if u ∈Mv

∞, if u ∈ L1
g(M,Rm) \Mv,

(1)

where ∇gu = (∇gu1, . . . ,∇gum) is the gradient acting on m-maps, 0 < ε � 1 is the relaxation
(temperature) parameter, dLng is the volume measure induced by g (also denoted vg), W ∈
C∞(Rm) is a multi-well (multiphasic) potential vanishing at a finite set of (global) minima points
Z ⊂ Rm+ containing the origin and such that #Z = N (or H0

g(Z) = N)1 (see Definition 1), and

Mv =
{
u ∈ H1

g (M,Rm) : Vg(u) = v
}
. (2)

From now on, we simply denote Eε,W = Eε.
Here, for any 1 6 q < ∞, let us consider Lqg(M,Rm) the Banach space, completion of

C∞g (M,Rm) with respect to the norm ‖u‖Lqg(M,Rm) := (
∫
M |u|

qdLng )1/q. We can also define the

Sobolev space H1
g (M,Rm) = {u = (u1, . . . ,um) : |u| ∈ H1

g (M)} furnished with the inner product

〈u,v〉H1
g (M,Rm) = 〈∇g|u|,∇g|v|〉 and the metric ‖u‖H1

g (M,Rm) := (
∫
M |∇g|u||

qdLng )1/q. The higher

order Sobolev spaces W `,q
g (M,Rm) for 1 6 ` <∞ are defined similarly. We omit subscripts when

dealing with the standard Euclidean metric.
In this language, a simple computation shows that (ACHε,v,m,N,g) is the Euler–Lagrange

equation associated to the energy (1) with Fréchet derivative dEε : H1
g (M,Rm) → R ∪ {∞}

defined by
dEε(u) = −ε∆gu + ε−1∇W (u),

where ∆gu = (∆gu1, . . . ,∆gum) denotes the vectorial Laplace–Beltrami operator.
We restrict ourselves to the suitable class of subcritical multi-well (multiphasic) potentials

1The notation Hd
g for d = 0, . . . , n stands for the d-dimensional Hausdorff measure on M . Also, recall that

H0
g = # (the counting measure) and Hn

g = Lng (the Lebesgue measure)
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Definition 1. Let n,m,N ∈ N with n,N > 2 and m > 1. A nonnegative real function
W ∈ C2(Rm) is denoted by W ∈ W+. Also, we denote W ∈ W+

N , if it has a finite set of
vanishing global minima, denoted by Z = {p1, . . . ,pN} ⊂ Rm+ . In other terms, W (pi) = 0,
∇W (pi) = 0, and ∇2W (pi) > 0 for all i = 1, . . . , N . Also, it satisfies that

• m = N − 1, pN = 0 and {p1, . . . ,pN−1} is a linearly independent set such that

ωij(W ) < ωi`(W ) + ω`j(W ) for all i, j, ` ∈ {1, . . . , N} and ` /∈ {i, j}, (W0)

where ωij(W ) = dW (pi,pj) and the degenerate metric dW : Rm × Rm → R is defined by

dW (pi,pj) := inf
c∈C1([0,1],Rm)

{∫ 1

0
W 1/2(c(t))|c′(t)|dt :

c(t) ∈ Rm+ for all t ∈ [0, 1],

c(0) = pi and c(1) = pj

}
.

When W ∈ W+
N satisfies (W0), we denote W ∈ W+

N,0;
• there exists k1 > 0 such that

|∇W (z)| 6 k1(1 + |z|p−1) for all z ∈ Rm (W1)

and for any 1 < p < 2∗ if n > 3 (or p < ∞ if n = 2) with 2∗ := 2n
n−2 the critical Sobolev

exponent of the embedding H1(Rn) ↪→ Lq(Rn) for q > 1. When W ∈ W+
N satisfies (W1),

we denote W ∈ W+
N,1;

• there exists k2 > 0 such that

|∇2W (z)| 6 k2(1 + |z|p−2) for all z ∈ Rm (W2)

and for any 1 < p < 2∗ if n > 3 (or p <∞ if n = 2). When W ∈ W+
N satisfies (W2), we

denote W ∈ W+
N,2;

• there exist p1, p2, k3, k4, R > 0 such that

k3|z|p1 <W (z) < k4|z|p2 for all |z| > R, (W3)

where 2 < p1 < 2# with p1 6 p2 6 2(p1 − 1) and 2# := 2n−1
n−1 . When W ∈ W+

N satisfies

(W3), we denote W ∈ W+
N,3.

In this fashion, we define the admissible class of potentials W̃+
N = ∩3

i=0W
+
N,i.

Remark 2. It is not hard to check that W̃+
N 6= ∅. In fact, one can always find a nonnegative

polynomial with degree six and suitably chosen coefficients P ∈ C∞(RN−1) such that P (pi) = 0,
∇P (pi) = 0, and ∇2P (pi) > 0 for all i = 1, . . . , N . Next, we fix R� 1 and 0 < τ � 1 such that
W ∈ C(Rm), where

W (z) =

{
P (z), if 0 < |z| < R,

|z|2+τ , if |z| > R.

Finally, using an approximation theorem there exists W ∈ C2(Rm) such that W ∈ W̃+
N .

The assumption m = N − 1 is chosen suitably so that in the sharp interface limit, we have the
phase separation for a mixture of N − 1 immiscible fluids. Also, we highlight that since dW is a
metric it is always true that ωij(W ) 6 ωi`(W ) +ω`j(W ) for all i, j, ` ∈ {1, · · · , N} and ` /∈ {i, j},
which implies that (W0) is a generic condition. This can be regarded as a physical hypothesis
on the immiscibility of the fluids. In Section 3, we will explain a more geometric (isoperimetric)
reason to consider this assumption. We refer to this as the immiscibility condition.

Now, we introduce the notion of nondegeneracy of solutions
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Definition 3. Let (Mn, g) be a closed Riemannian manifold and W ∈ W+
N . We say that

a solution (u,Λ) ∈ H1
g (M,Rm) × Rm to (ACHε,v,m,N,g) is nondegenerate when the only pair

(w,Λ) ∈ H1
g (M,Rm)× Rm solving the linearized problem{

d2Eε(u)w = Λ in M

Vg(u) = v,
(3)

is the trivial one (w,Λ) = (0, 0), where d2Eε(u)w = −ε∆gw + ε−1∇2W (u)w.

Our main result proves the existence of multiple pairs (uε,v,Λε,v) ∈ H1
g (M,Rm)×Rm satisfying

(ACHε,v,m,N,g) for 0 < ε, |v| � 1. The strategy is to search for critical points of the vectorial ACH

functional in (1) restricted to the weakly closed set Mv in (2). Namely, for each pair (ε,v) ∈ Rm+1
+ ,

let us consider the associated moduli space,

Nε,v =
{

(uε,v,Λε,v) ∈ H1
g (M,Rm)× Rm : (uε,v,Λε,v) solves (ACHε,v,m,N,g) on Mv

}
,

and the counting function η(ε,v) : Nε,v → N ∪ {∞} defined by η(ε,v) := #Nε,v. We show the
existence of ε∗, v∗ > 0 such that for (ε,v) ∈ (0, ε∗) × (0, v∗)

m ⊂ (0, ε∗) × conv(Z) the function
η(ε,v) has a lower bound depending on the topology of the manifold, where conv(Z) is the convex
hull of the set Z. More accurately, this bound depends on the Lusternik–Schnirelman category of
M denoted by cat (M), and on P1 (M) :=

∑
k∈N βk (M), where βk (M) is the k-th Betti number

of M . Additionally, we prove that the set of metrics for which the nondegeneracy property holds
is large (in the topological sense) on the space of smooth metrics over M , denoted by Met∞(M).

Theorem 1. Let (Mn, g) be a closed parallelizable Riemannian manifold and W ∈ W̃+
N with

N = 3. There exists v∗ = v∗(M, g) > 0 such that for any v ∈ (0, v∗)
2 ⊂ conv(Z), one can find

ε∗(M, g,W , v) > 0 satisfying for every ε ∈ (0, ε∗),

(i) η(ε,v) > cat (M) + 1, if the solutions are counted without multiplicity;
(ii) η(ε,v) > 2P1 (M)− 1, if such solutions are nondegenerate.

Moreover, for any fixed g0 ∈ Met∞(M) the set

GW ,v =

{
(ε, g) ∈ (0,∞)×Met∞(M) :

any solution (u,Λ) ∈ H1
g0(M,Rm)× Rm to

(ACHε,v,m,N,g) is nondegenerate

}
is Baire generic with respect to the Gromov–Hausdorff topology.

Remark 4. When n = 3, the condition of being parallelizable can be interchanged by orientability,
by Stiefel’s theorem (see [50]). Also, Sn is parallelizable if, and only if, n = 1, 3, 7. Also, for N = 3,
thanks to the solution of the weighted double bubble conjecture in Rn (see [11]) this hypothesis can
be weakened to the existence of a smooth global section of the unit tangent bundle UTM .

Remark 5. About the assumption N = 3. It is worth to observe that the techniques that we use
to prove the preceding theorem only needs the following property: isoperimetric weighted cluster
with small volumes have small diameter in the tangent space. In fact, we use this property to
prove that the photography map is well-defined, continuous, and to prove the Γ-convergence in an
easy way. This property holds in the Euclidean space for N = 3 thanks to [11], therefore, if one
assume this property for N > 3, the preceding theorem holds true. Even if, it is not known whether
this property is always valid for N > 3 or not, we expect that it indeed holds for every N ∈ N,
due to several special cases where it holds (e.g. [11, 40]). However, the proof of this property for
N ∈ N goes beyond of the scope of this manuscript and it will be the subject of a forthcoming paper.
Furthermore, we emphasize that based on the recent classification results of [40], our techniques
apply for the case 2 6 N 6 min(5, n+ 1) when the potential is such that ωij(W ) = 1 for i 6= j and
ωij(W ) = 0 for i 6= j, where i, j ∈ {1, . . . , N}. In particular, Theorem 1 holds in this context.
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Let us now compare our main result with its scalar counterpart. More precisely, when m = 1
and N = 2, System (ACHε,v,m,N,g) becomes the classical ACH equation with a small volume
constraint, {

−ε∆gu + ε−1W ′(u) = Λ, on M,∫
M udLng = v,

(ACHε,v,g)

where 0 < ε, v � 1, Λ ∈ R is a Lagrange multiplier, and W ∈ W̃+
2 is a symmetric double-

well potential. The study of qualitative properties for (ACHε,v,g) was addressed in [18, 61]
(see also [19] for the Euclidean case). We consider Mv = {u ∈ H1

g (M) :
∫
M udLng = v},

Nε,v = {(uε,v,Λε,v) ∈ H1
g (M)×R : (uε,v,Λε,v) solves (ACHε,v,g) on Mv}, and the counting function

η(ε, v) := #Nε,v. In the same spirit of our main theorem, the following result is proved

Theorem A ( [18,61]). Let N = 2 and let (Mn, g) be a closed Riemannian manifold and W ∈ W̃+
2 .

There exists v∗ = v∗(M, g) > 0 such that for every v ∈ (0, v∗), one can find ε∗(M, g,W, v) > 0
satisfying for every ε ∈ (0, ε∗):

(i) η(ε, v) > cat (M) + 1, if the solutions are counted without multiplicity;
(ii) η(ε, v) > 2P1 (M)− 1, if such solutions are nondegenerate.

Moreover, for any fixed g0 ∈ Met∞(M), the moduli space of metrics

GW,v =

{
(ε, g) ∈ (0,∞)×Met∞(M) :

any solution (u,Λ) ∈ H1
g0(M)× R to (ACHε,v,g)

is nondegenerate

}
is Baire generic.

To explain the geometric idea behind the proof of our main theorem, we need to establish some
standard terminology.

Definition 6. Let u ∈ L1
g(M). We define its distributional derivative ∇gu ∈ Mg(M,Rn) as a

vector Radon measure with total variation measure given by

‖∇gu‖(A) = sup
x∈Xc(A)

{∫
U
udivg(X)dLng : ‖X‖ 6 1

}
,

whenever A ⊂ M is an open subset. We also consider the Borel measure extending ‖∇gu‖
and we denote it with the same symbol. Here Xc(U) is the set of smooth vector fields with
compact support and ‖X‖ := supx∈M |Xx|, where |Xx| is the norm of Xx ∈ TxM . Let us define
BVg(M) = {u ∈ L1

g(M) : ‖∇gu‖ < ∞}. In this case, we say that u is a function of bounded
variation. We define the perimeter Pg : Cg(M) → [0,∞), up to constant, by Pg(Ω) = ‖∇gχΩ‖,
where Cg(M) = {Ω : Pg(Ω) < ∞} are the Caccioppoli (or the finite perimeter) sets, that is,
measurable and finite perimeter subsets of M . The reduced boundary of a Caccioppoli set Ω ⊂ M
is denoted by ∂∗Ω and is the set whose a notion of measure-theoretic normal vector exists and has
a length equal to one. A deep theorem of E. De Giorgi states that Pg(Ω) = Hn−1

g (∂∗Ω), where

Hn−1
g is the (n − 1)-dimensional Hausdorff measure induced by g of the boundary. Here we fix

the convention that all the Caccioppoli sets Ω ∈ Cg(M) satisfies ∂Ω = clos(∂∗Ω), where ∂Ω is the
topological boundary of Ω.

A symmetric matrix α ∈ Sym(RN+ ) is said to be immiscible when

tr(α) = 0 and αij < αi` + α`j for all i, j, ` ∈ {1, . . . , N} and ` /∈ {i, j}. (α0)

Along this line, let us introduce the suitable notions of weighted multi-perimeter and weighted
clusters.
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Definition 7. Let (Mn, g) be a Riemannian manifold and α ∈ Sym(RN+ ) be a nonnegative
symmetric matrix. We define the set of α-weighted N -clusters (or simply weighted clusters) by

Cαg (M,RN ) =

{
Ω = (Ω1, . . . ,ΩN ) :

M = ∪̊Ni=1Ωi, vg(Ωi) <∞, vg(Ωi ∩ Ωj) = 0,

for all i, j = 1, . . . , N and Pα
g (Ω) <∞

}
,

where the α-multi-perimeter (or vectorial α-perimeter) functional Pα
g : Cαg (M,RN )→ [0,∞) is

Pα
g (Ω) =

N∑
i,j=1

αijHn−1
g (∂∗Ωi ∩ ∂∗Ωj).

Also, a weighted cluster Ω ∈ Cαg (M,RN ) and the associated perimeter functional Pα
g are said to be

immiscible if α ∈ Sym(RN+ ) is so. For any weighted cluster Ω ∈ Cαg (M,RN ), we fix the terminology

• αij are the weights;
• {Ωi}i∈{1,...,N} (or {Ω(i)}i∈{1,...,N}) are the chambers with Σi = ∂∗Ωi;
• Σij = Σi ∩ Σj are the interfaces;

• Ω̃ = ∪N−1
i=1 Ωi are the interior chambers and ΩN = M \ ∪N−1

i=1 Ωi is the exterior chamber;
• vg(Ω) = (vg(Ω1), . . . , vg(ΩN )) is the vectorial volume;

• diamg(Ω̃) = sup
x,y∈Ω̃

dg(x, y) is the diameter.

In this fashion, we can rewrite Pα
g (Ω) =

∑N
i,j=1 αijHn−1

g (Σij).

Remark 8. Notice that when W ∈ W+
N,0 the assumption (W0) implies that ω ∈ Sym(RN+ )

given by ωij(W ) = dW (pi,pj) for i, j ∈ {1, . . . , N} satisfies (α0). Hence, the multi-perimeter
Pω
g : Cωg (M,RN )→ [0,∞) (weighted by the potential) given by

Pω
g (Ω) =

N∑
i,j=1

ωij(W )Hn−1
g (∂∗Ωi ∩ ∂∗Ωj) (4)

is immiscible. In this case, we simply denote Cωg (M,RN ) = Cg(M,RN ) and Pω
g = Pg.

When the coefficient matrix is given by α = (αij) ∈ Sym(RN+ ), where αij = 1 − δij for
i, j ∈ {1, . . . , N} with δij the Kronecker’s delta, we recover the standard perimeter, which we denote
by P∗g. In this fashion, it is proved in [62, Proposition 1] that we can write the multi-perimeter

P∗g(Ω) =
N∑

i,j=1

Hn−1
g (Σij) =

1

2

N∑
i=1

Pg(Ωi).

Such a formula allows us to prove existence and compactness results simply by relying on the
theory for Caccioppoli sets, i.e., N = 2. Nevertheless, when we are in the weighted case, the
behavior of the multi-perimeter may change. This was first noticed by F. Almgren [5], which
considered a more general perimeter functional with an extra assumption on the weights, the so-
called partitioning regular condition to proceed with this theory. After that, B. White [66] showed
that the strict triangular inequality (α0) is enough to prove existence and regularity results, which
is an assumption weaker than Almgren’s partitioning regular condition.

A generalization with a complete rigorous proof of White’s results was given by G. P. Leonardi
[2]. Another weaker condition can be found in [6,22] which considers existence and regularity issues
and says that these coefficients shall satisfy the BV-ellipticity condition. All these hypotheses on
the weights αij are used to guarantee that the weighted multi-perimeter is lower semi-continuous
with respect to the flat convergence and enjoys nice regularity properties; this generally leads to the
existence of minimizers by the direct method of the calculus of variations.
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The isoperimetric problem asks to minimize the perimeter among all Caccioppoli sets subject
to a volume constraint. The regions attaining this minimal configuration are called isoperimetric
regions. It is well-known that isoperimetric regions in the Euclidean space are balls. In the vectorial
case, the analog problem of classifying isoperimetric weighted clusters is still not solved in its full
generality, even if we consider the standard (non-weighted) multi-perimeter. Nevertheless, one has
some partial answers, namely, for non-weighted double bubbles [29, 42] and triple-bubbles [43],
for weighted double-bubble [11], for multi-bubbles in the Gaussian measure case [49], and lastly
we mention the recent work [40], where the multi-bubble conjecture in Rn and Sn is proved
for N = 2, 3, 4. Roughly speaking, isoperimetric weighted clusters are minimal multi-perimeter
configurations for an enclosing region with a finite number of fixed volumes.

Definition 9. Let (Mn, g) be a Riemannian manifold.

(i) The isoperimetric profile is a function I(M,g) : (0, vg(M))→ (0,∞) given by

I(M,g)(v) := inf {Pg(Ω) : Ω ∈ Cg(M) and vg(Ω) = v} .
The Caccioppoli set Ω ∈ Cg(M) that attains this infimum is called an isoperimetric region.

(ii) The α-weighted multi-isoperimetric profile is a function Iα(M,g) : (0, vg(M))N → (0,∞)

given by

Iα(M,g)(v) := inf
{
Pα
g (Ω) : Ω ∈ Cαg (M,RN ) and vg(Ω) = v

}
.

The vectorial Caccioppoli set Ω ∈ Cαg (M,RN ) that attains this infimum is called an
isoperimetric α-weighted N -cluster. As before, we simply denote Iω(M,g) = I(M,g).

Next, we present the two abstract results that we will apply to prove our main theorem.
To prove the multiplicity part, we use Lusternik–Schnirelmann, and Morse’s theories. This

relates to the topology of the finite-dimensional ambient manifold and the number of critical
points of an energy functional defined on an infinite-dimensional Hilbert manifold. We are based
on the abstract theorem below

Theorem B ( [14,16,17]). Let X be a topological space, M be a C2-Hilbert manifold, E : M→ R
be a C1-functional, and Ec := {u ∈M : E(u) 6 c} be a sublevel set for some c ∈ R. Assume that

(E1) infu∈M E(u) > −∞;
(E2) E satisfies the Palais–Smale condition;
(E3) There exist c ∈ R and two continuous maps ΨR : X → Ec and ΨL : Ec → X such that

ΨL ◦ΨR is homotopic to the identity map of X.

Then, the number of critical points in Ec satisfies #Ec > cat(X), and if M is contractible and
cat(X) > 1, there is at least other critical point of E outside Ec. Moreover, there exists c0 ∈ (c,∞)
such that one of the two following conditions hold:

(i) Ec0 contains infinitely many critical points;
(ii) Ec contains P1(X) critical points and Ec0 \Ec, contains P1(X)−1 critical points if counted

with their multiplicity. More exactly, we have the following relation∑
u∈Crit(E)

it(u) = Pt(X) + t[Pt(X)− 1] + (1 + t)Q(t), (5)

where Q(t) is a polynomial with nonnegative integer coefficients, and Crit(Ec0) denotes the
set of critical points of E on Ec0. In particular, if all the critical points are nondegenerate,
there are at least P1(X) critical points with energy less or equal than c and P1(X) − 1
with energy between c and c0.

For the proof of the generic nondegeneracy part, we apply an abstract transversality theorem
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Theorem C ( [41]). Let X, Y, and Z be real Banach spaces, U ⊂ X, V ⊂ Y be open subsets,
F : V× U→ Z be a map of class C1 and z0 ∈ im(F). Suppose that

(F1) Given y ∈ V, it follows that F(y, ·) : x 7→ F(y, x) is a Fredholm map of index ` < 1, i.e.,
dF(y, ·)x : X→ Z is a Fredholm operator of index ` for any x ∈ U;

(F2) z0 is a regular value of F, i.e., dF(y0,x0) : Y×X→ Z is surjective for any (y0, x0) ∈ F−1(z0);

(F3) Let ι : F−1 (z0)→ Y×X be the canonical embedding and πY : Y×X→ Y be the projection
of the first coordinate. Then πY ◦ ι : F−1(z0)→ Y is σ− proper, i.e., F−1(z0) =

⋃∞
k=1Ck,

where Ck is a closed subset of F−1(z0) and πY ◦ ι|Ck is proper for all k ∈ N.

Then, the set {y ∈ V : z0 is a regular value of F(y, ·)} is an open dense subset of V.

We must verify the hypotheses in Theorem B for our vectorial energy. Namely, (E1) follows
directly from the definition, and (E2) is obtained using the subcritical growth condition (W1). The
most delicate part is to show (E3). For this, we need to use the geometric nature of the problem
for small values of the relaxation parameter and the volume. Also, condition (W2) is used to apply
Theorem C for the proof of the genericity part of our main theorem.

We now explain in detail how to construct the maps in (E3). Before, we need the following
definition

Definition 10. Associated to each potential W ∈ W+
N , let us consider the functions φi : Rm → R

and Φi : M → R given by φi = dW (pi, ·) and Φi = φi ◦ u for each i = 1, . . . , N . We define the
transformation

Φ : L1
g(M,Rm)→ L1

g(M,RN ) given by Φ(u) = (Φ1, . . . ,ΦN ). (6)

Let us denote u′ = Φ(u) and v′ = Vg(u
′). For the sake of simplicity, we fix the convention v = v′.

First, a result of S. Baldo [10] proves the Γ-convergence of (1) to the weighted multi-perimeter
(4) in a bounded subset of the Euclidean space with flat metric (Rn, δ). We need to extend this
result to the case of non-flat background metrics. Moreover, we use (W3) to further extend this for
the case of a sequence of functions with a bounded energy. Then, we will use the approximating
family given by the Γ-convergence as the map ΨL, the so-called photography map. We also need
to use the parallelizability to guarantee that this map is a one-to-one continuous bijection.

Proposition 11. Let (Mn, g) be a closed Riemannian manifold and W ∈ W+
N,3. For any family

{uε}ε>0 satisfying Eε(uε) 6 E for some E > 0, there exists u0 ∈ L1
g(M,Rm) such that, up to a

subsequence, it follows

lim
ε→0
‖uε − u0‖L1

g(M,Rm) = 0 and lim
ε→0

Eε(uε) = Pg(Ω0),

where Ω0 = ∪N−1
i=1 (Φ ◦ u0)−1(pi). Moreover, there exists Ω ∈ Cg(M,RN ) minimizing the multi-

perimeter with constraint
∑N

i=1 vg(Ωi)pi = vi, and such that ‖∇gu0‖(M) 6 E and

u0 =
N∑
i=1

piχΩi ∈ BVg(M,Rm), (7)

where BVg(M,Rm) =
{
u ∈ L1

g(M,Rm) : |u| ∈ BVg(M)
}

. Conversely, for any Ω ∈ Cg(M,RN ) and

u0,Ω ∈ L1
g(M,Rm) of the form (7), there exists a sequence {uε,Ω}ε>0 satisfying limε→0 ‖uε,Ω −

u0,Ω‖L1
g(M,Rm) = 0. In particular, it follows that Γ-limε→0 Eε = Pg in L1

g(M,Rm).

Second, we build the right-inverse homotopy ΨR to the photography map by composing the
barycenter map together with the projection provided by the Nash embedding theorem. To control
the range of the barycenter map, we need to use some deep results of the isoperimetric theory for
clusters.
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More precisely, we prove that from an isoperimetric weighted cluster enclosing a small volume we
can build another cluster with small diameter which almost the same volume and perimeter of the
original cluster. Such result is called selecting a large subdomain. Although we will apply this result
to the perimeter in (4), which is related to the potential W , this result holds for a broader class
of weighted perimeters, which we call immiscible (see Remark 8) and are of independent interest.
Indeed, we use (W0) to guarantee that Pg is immiscible. For results concerning properties of
isoperimetric clusters, see [2, 5, 45,56,62,66].

Proposition 12. Let (Mn, g) be a closed Riemannian manifold and {Ωk}k∈N ⊂ Cαg (M,R3)
be a sequence of isoperimetric immiscible weighted 3-clusters. There exists another sequence
{Ω′k}k∈N ⊂ Cαg (M,R3) such that

(i) limk→∞ vg(Ωk4Ω′k)vg(Ωk)
−1 = 0;

(ii) limk→∞ vg(Ω
′
k)vg(Ωk)

−1 = 1;

(iii) limk→∞Pα
g (Ω′k)P

α
g (Ωk)

−1 = 1;

(iv) limk→∞ diamg(Ω̃
′
k) = 0.

The proofs of Proposition 11 and Proposition 12 are independent of each other. However, in
the proof of Proposition 11, it is convenient to assume that the limiting weighted cluster has small
diameter, for N = 3, we use directly [11] which implies that if we are under the small volumes
regime then the small diameter property holds. There is an alternative strategy to prove our main
results without relying on the full strength of [11]. The price to pay is to extend Proposition 11
to the Riemannian setting without the small diameter property and to make a more complicated
definition of the photography map with a consequent more involved proof of its well posedness and
continuity.

Beyond its geometrical relevance, the study of the ACH equation dates back to the theory of
phase separation for binary fluids in an alloy [3, 21, 36], or more generally in the van der Walls
theory of phase transition [65]. Using this analogy, System (ACHε,v,m,N,g) is used to describe the
free energy of a multiphasic mixture of interacting fluids, where the coefficients ωij measure the
surface tension between two pure states of the system. To be more physically realistic, the energy
should have a non-local ferromagnetic Kac potential instead of the norm of the gradient [33, 34];
these models have applications in several areas like the Ising process, and dislocations in elastic
materials exhibiting microstructure [24].

Let us explain the connection of our result to differential geometry. An ancient problem in
this field is to determine the number of critical points of the perimeter functional Pg on a general
Riemannian manifold. Indeed, S.-T. Yau [68] conjectured that any closed Riemannian manifold
contains infinitely many critical points of the perimeter. This conjecture was recently solved
affirmatively for generic metrics [44, 46] and for the remaining cases when 3 6 n 6 7 [63]. Recall
that critical points of the perimeter are called minimal hypersurfaces and they must have zero
mean curvature. When there is a volume constraint, one has the equivalent problem of minimizing
Pg(Ω) under the condition vg(Ω) = v. In this case, the reduced boundary of Ω is called a CMC
(Constant Mean Curvature) hypersurface, or a CMC boundary. The convergence of the ACH
energy to the perimeter functional was recently used to construct minimal hypersurfaces in any
closed Riemannian manifold [31, 35] as an alternative approach to min-max methods [4, 60]. For
CMC boundaries, it is only known the min-max construction in [27, 28, 69, 70]. It is not known
whether Yau’s conjecture also holds true. In this context, let us consider a slightly more general
problem. We aim to study the asymptotic behavior of η(0,v) := limε→0 η(ε,v), which coincides
with the number of critical points of the multi-perimeter with volume constraint v, denoted by
N0,v. We aim to study the abundance of elements in this set. It is already known that N0,v 6= ∅,
then it is natural to ask if in any closed manifold one has η(0,v) =∞.
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If we can pass to the limit as ε → 0 in Theorem 1, we would obtain the first result in this
direction for the case of weighted clusters with two interior chambers under the small volume
condition. In the scalar case, by combining the results on [18] and [13], it follows that η(0,v) > 1,
that is, there exists at least one almost embedded CMC boundary in the small volume regime,
which is the pioneering existence result using phase transition methods.

At last, we compare our proof to the one in the scalar case. The strategy to prove Theorem A
relies also on the combination of several results from the realm of PDEs, algebraic topology,
isoperimetric problem, minimal surface theory, and phase transition approximations. First,
classical results [37, 51, 52, 64] (see also [58, 59] for the geometric case) state that the energy Eε
is a singular perturbation (relaxation) of the perimeter functional Pg. This analogy creates an
unexpected and surprising bridge between the theory of nonlinear PDEs from phase transition and
the study of qualitative properties for CMC boundaries (or minimal hypersurfaces). The heuristics
is that the action of the double-well potential induces the decomposition M = Ω1∪Ω2∪Σ12, where
Σ12 = ∂∗Ω1 = ∂∗Ω2 is the limit interface, known to be a critical point of the perimeter, that is,
the mean curvature of the interface HΣ12 is constant, and Ω1 := {x ∈ M : limε→0 uε(x) = 1}
and Ω2 := {x ∈ M : limε→0 uε(x) = 0}, where uε is a solution to (ACHε,v,g). In other terms, in
the singular limit, there is a relation between the nodal sets of solutions to (ACHε,v,g) and CMC
boundaries. In this proof, it is also used that isoperimetric regions of small volume have a small
diameter, and the asymptotic expansion of the isoperimetric profile function [8, 20,53–55].

The rest of the paper is divided as follows. In Section 2, we introduce some definitions and
results from the abstract Lusternik–Schnirelmann and infinite-dimensional Morse theories, which
we use to sketch the proof of Theorem B. In Section 3, we show that we can select a large
subdomain from isoperimetric weighted clusters in Proposition 12. In Section 4, we prove the
convergence and approximation results in Proposition 11. In Section 5, we apply Theorem B to
prove the multiplicity part of Theorem 1. In Section 6, based on Theorem C, we prove the generic
nondegeneracy part of Theorem 1.
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student and the third-named author was a visiting fellow in the Department of Mathematics
at Princeton University, whose hospitality they greatly acknowledge. This work was partially
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2. Abstract photography method

In this section, we present some standard results from Lusternik–Schnirelmann and infinite-
dimensional Morse theories which will be used in the abstract photography method [16, 17]. We
use the approach developed in [14,15,47], which is suitable for problems arising from PDEs.

Definition 2.1. Let X a topological space and Y ⊆ X be a closed subset. We define the Lusternik-
Schnirelmann category of Y in X as the extended natural number catX(Y ) obtained as the minimum
number k ∈ N ∪ {∞} such that there exist U1, . . . ,Uk ⊆ X, open contractible subsets satisfying

Y ⊆
⋃k
i=1 Ui. We also denote cat(X) := catX(X).
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Definition 2.2. Let X,Z be topological spaces. We say that X and Z are homotopically
superjacent if there exist continuous maps ΨL : X → Z and ΨR : Z → X such that ΨL ◦ ΨR

is homotopic to the identity of X.

Now, we present a standard result in Lusternik–Schnirelman’s theory.

Lemma 2.3. If X and Z are homotopically superjacent topological spaces, then cat(X) 6 cat(Z).

Proof. Assume that cat(Z) = m, that is, there exist m closed contractible sets {Ũi}mi=0, such that

Z ⊆ ∪mi=1Ũi, wi ∈ Ũi, and Fi ∈ C([0, 1]× Ũi, Z) for i = 1, . . . ,m satisfying{
Fi(0, u) = u, if u ∈ Ũi
Fi(1, u) = wi, if u ∈ Ũi.

Now, setting Ui = ΨR(Ũi), notice that {Ui}mi=1 is such that X ⊆ ∪mi=1Ui, where the null-homotopic

retraction F̃i ∈ C([0, 1]× Ui, X) is given by F̃i := ΨR ◦ Fi. �

Let us fix the notation Crit(E) for the set of critical points of E , Ec := {u ∈M : E(u) 6 c} for
sublevel sets and Eab := {u ∈M : a 6 E(u) 6 b} for level regions.

Definition 2.4. Let M be a C2-Hilbert manifold, E : M → R be a C1-functional, and {uk}k∈N
be a sequence in M. We call {uk}k∈N a Palais–Smale sequence at level c ∈ R, if E(uk) → c, and
‖dE(uk)‖T ∗ukM → 0 as k →∞.

Definition 2.5. Let M be a C2-Hilbert manifold and E : M→ R be a C1-functional. We say that E
satisfies the Palais–Smale condition, if every Palais–Smale sequence has a convergent subsequence
in the strong topology of M.

Let X a topological space, Y ⊆ X be a closed subset, and k ∈ N. We denote Hk
AS(X,Y )

by the k-th relative Alexander–Spanier cohomology group of the pair X,Y . Here the k-th
Betti number is given by the number of generators of Hk

AS(X,Y ) seen as a Z2-modulo, that

is, βk(X,Y ) := rankZ2H
k
AS(X,Y ) (see [57, Chapter 2]). In the nondegenerate case, Theorem B

can be made more precise by means of Morse theory, which we describe as follows

Definition 2.6. Let X be a topological space and denote by Hk
AS(X) its k-th Alexander–Spanier

cohomology group with coefficients in Z2. The Poincaré polynomial Pt(X) of X is defined as the
following power series in the variable t,

Pt(X) :=
∞∑
k=0

βk(X)tk. (2.1)

We notice that if X is a compact manifold, then Hk(X) is a finite-dimensional vector space and
the formal series (2.1) is actually a polynomial. The next result is a Poincaré–Morse-type identity,
relating the Morse polynomials of two homotopically superjacent topological spaces.

Lemma 2.7. If X and Z are homotopically superjacent, then

Pt(Z) = Pt(X) + Z (t), (2.2)

where Z (t) is a polynomial with nonnegative coefficients.

Proof. Using the homotopy equivalence, we can construct an exact sequence

0−→Hk(X)
(ΨL)k−→ Hk(Z)

(ΨR)k−→ Hk(X)−→0,

where (ΨL)k, (ΨR)k is the induced homomorphisms on the k-th homology groups. Additionally,
since (ΨL)k ◦ (ΨR)k = idk we get that Hk(X) is homotopic equivalent to a subspace of Hk(Z),
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which gives us that rankZ2Hk(X) 6 rankZ2Hk(Z) for all k ∈ N. In terms of Poincaré polynomials,
this translates to (2.2). �

Lemma 2.8. Let M be a Hilbert manifold and let N ⊂ M be a closed oriented submanifold of
codimension d. If N0 is a closed subset of N, then

Pt(M,M \N0) = tdP(N,N \N0).

Proof. This follows from the Thom isomorphism theorem [39, Corollary 4D.9]. Moreover, it holds
even when dimM =∞. �

In the following definition, we give the notion of Morse index of a critical point of E , which
is necessary to establish a relation between the Poincaré polynomial Pt(X) and the number of
solutions to the Euler–Lagrange equation associated to the energy E .

Definition 2.9. Let u be a critical point of E at level c ∈ R, that is, E(u) = c and dE [u] = 0. We
call u an isolated critical point if there exists a neighborhood U of u in M such that the only critical
point of E contained in U is u. Equivalently, the self-adjoint operator induced by the quadratic
form d2E [u] is an isomorphism.

Definition 2.10. Let M be a C2-Hilbert manifold, E : M → R be a C1-functional and u ∈M be
an isolated critical point of E at level c ∈ R. We define the formal power series

it(u) :=
∞∑
k=0

βk(Ec, Ec \ {u})tk.

This is called the polynomial Morse index of u and the number i1(u) is called its multiplicity.

Definition 2.11. Let E : M → R be a C2-functional. We call u nondegenerate if the bilinear
form d2E [u] is nondegenerate. In this case, we have that it(u) = tµ(u), where µ(u) is the numerical
Morse index of u, that is, the dimension of the maximal subspace on which the bilinear form d2E [u]
is negative-definite.

Definition 2.12. Let M be a C2-Hilbert manifold, E : M→ R be a C1-functional and u ∈M be an
isolated critical point of E at level c. We say that u is topologically nondegenerate, if it(u) = tµ(u),
for some µ(u) ∈ N.

For the sake of completeness, we now present the strategy of proof of the first cornerstone
abstract result in this manuscript, namely the photography theorem.

Proof of Theorem B. Using (E1) and (E2), one can invoke the Lusternik–Schnirelman lemma [67,
Theorem 5.20] to obtain that #Ec > cat(Ec). Moreover, combining (E3) with the last inequality,
we have cat(Ec) > cat(X), which concludes the proof of the first part of the theorem.

For the remaining part, we set C0 := ΨL(X). Thus, C0 is non-contractible in Ec since cat(X) > 1.
Claim 1: There exists c∗ ∈ R such that c∗ > c and C0 is contractible in Ec∗ .
Indeed, let u0 ∈ Crit(E) \ C0 and define C1 := {tu0 + (1− t)u : t ∈ [0, 1] and u ∈ C0}. Notice that
C1 is compact, contractible, and 0 /∈ C1, which implies that the

C2 :=
{
t(w)w : w ∈ C1 and t(w) = ΨR

(
w‖w‖−1

)
‖w‖−1

}
is well-defined and satisfies C1 ⊆ C2 ⊆ Crit(E); thus, the result follows setting c∗ := maxC2 E .

The second part of the proof is divided into a sequence of steps, which connects the algebraic
structure of the Poincaré polynomial Pt(X) with the set of critical points Crit(E).
Step 1: For τ > 0 and c ∈ (τ,∞) a noncritical level of E , we have Pt(Ec, Eτ ) = tPt(Crit(Ec)).
This clearly follows from Lemma 2.8.
Step 2: For a, b ∈ R with no critical levels inside Eab , we have Pt(Eb, Ea) = tPt(Eab , Eab \Crit(E)).
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The strategy here is to use standard deformation theory generated by the gradient flow of E .
Step 3: For τ > 0 and c ∈ (τ,∞) a noncritical level of E , we have Pt(Ec, Eτ ) = tPt(X) + tZ (t).
In particular, Pt(M, Eτ ) = t.
This is a consequence of Steps 1 and 2. Furthermore, since M is contractible, one has
rankZ2H

k(M) = 1 if k = 0 and rankZ2H
k(M) = 0, otherwise.

Step 4: There exists τ0 > 0 such that for τ ∈ (0, τ0) and c ∈ (τ,∞) a noncritical level of E , we
have Pt(Ec, Eτ ) = tPt(X) + tZ (t).
Indeed, consider the long exact sequence

0−→Hk(M, Eτ )
jk−→ Hk(M, Ec) ∂k−→ Hk−1(Ec, Eτ )

ik−1−→ Hk−1(M, Eτ )−→0,

where ik, jk, ∂k are respectively the monomorphism, epimorphism, and boundary operator. Using
some standard techniques of homological algebra, we get that rankZ2Hk(M, Eτ ) = 0 for k = 0, 1
and rankZ2Hk(M, Eτ ) = rankZ2Hk(Ec, Eτ ), which by Step 1 finishes the proof.
Step 5: If Crit(E) is discrete, then∑

u∈C1

it(u) = tPt(X) + t [Z (t)− 1] + (1 + t)Q1(t) (2.3)

and ∑
u∈C2

it(u) = t2 [Pt(X) + Z (t)− 1] + (1 + t)Q2(t), (2.4)

where Z (t),Q1(t) and Q2(t) are polynomials with nonnegative integer coefficients, and

C1 := {u ∈ Crit(E) : u ∈ E−1((τ, c0])} and C2 := {u ∈ Crit(E) : u ∈ E−1((c0,∞))},

for some c0 ∈ (τ,∞).
In fact, by (E2) we know that E satisfies the (PS)-condition, thus using Morse theory, it follows∑

u∈C1

it(u) = Pt(Ec, Eτ ) + (1 + t)Q1(t),

which by Step 3 implies (2.3). The same holds for (2.4).
Finally, since E does not have any nonzero solution below the level τ > 0, by Step 5 we get

Crit(E) = C1∪̊C2. �

Remark 2.13. If we count the critical points with their multiplicity, then by Theorem B it follows
that there are at least 2P1(X) − 1. In fact, whenever the critical points are isolated the result
follows from Morse’s relation (5); otherwise there are infinitely many of them.

3. Riemannian isoperimetric theory for weighted clusters

In this section, we prove Proposition 12. Here we denote by Bgr (x) the geodesic ball of
radius r > 0 with center x ∈ M , and we omit the metric when necessary. Recall the notation
established in the introduction (see Definitions 7 and 9). Also, we denote f1 ∼ f2 as s → 0, if
lims→0 f1(s)/f2(s) = 1, or f1 = f2 +o(1) as s→ 0, where o(1) is the standard little-o notation from
Landau’s formalism. It is implicit that we assume the natural association between vectors v ∈ RN
and weighted clusters Ω ∈ Cαg (M,RN ) such that v = vg(Ω) and v = |v| = vg(Ω̃) =

∑N−1
i=1 vi,

where vi = vg(Ωi) for i = 1, . . . , N − 1.

Definition 3.1. We say that a Riemannian manifold (Mn, g) is of bounded geometry if, there
exist v0 > 0 and κ ∈ R such that Ricg > (n − 1)κ (in the sense of bilinear forms) and
infp∈M vg(Bg1(p)) > v0 > 0.
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Remark 3.2. If (Mn, g) is a closed Riemannian manifold, we have that its injectivity radius is
well-defined and it holds injg > 0. Also, there exist v0 > 0 and κ, b ∈ R such that Ricg > (n− 1)κ

(in the sense of bilinear forms), |Secg| 6 b and vg(Bg1(x)) > v0 for all x ∈ M , where Ricg and
Secg are the Ricci and scalar curvatures, respectively. In particular, closed manifolds are always
of bounded geometry.

We need to introduce some concepts and results from geometric measure theory, which will be
used in the proof of the main proposition and can be found at [1, 26].

Let us start with some notations and concepts relative to varifolds.

Definition 3.3. Let (Mn, g) be a Riemannian manifold. For any d ∈ N with 1 6 d 6 n−1, we say
that V is a d-dimensional varifold in M , if V is a nonnegative extended real valued Radon measure
on the Grassmannian manifold Gd(M). For every d = 1, . . . , n − 1, we denote by Vd(M) be the
space of all d-dimensional varifolds over M endowed with the weak topology induced by C0(Gd(M))
the space of continuous compactly supported functions on Gd(M) endowed with the compact open
topology.

Definition 3.4. Let (Mn, g) be a Riemannian manifold and V ∈ Vd(M). We say that the
nonnegative Radon measure on M , denoted by ‖V ‖, is the weight of V , if ‖V ‖ = π#(V ), where π
indicates the natural fiber bundle projection π : Gd(M) → M , that is, ‖V ‖(B) := V (π−1(B)) for
all B ⊂ Gd(M) Borel set.

We also present the concept of density for a measure.

Definition 3.5. Let (Mn, g) be a Riemannian manifold and ν be a Borel regular measure on M .
We define the d-lower density and d-upper density of ν at x ∈M , respectively by

Θd
∗(ν, x) := lim inf

r→0+

ν(Br(x))

ωdrd
and Θ∗d(ν, x) := lim sup

r→0+

ν(Br(x))

ωdrd
,

where ωd is the d-dimensional Hausdorff measure of the unit Euclidean ball. Also, when the d-lower
and d-upper densities coincide, we set

Θd(ν, x) := Θ∗d(ν, x) = Θd
∗(ν, x) = lim

r→0+

ν(Br(x))

ωdrd
.

We call Θd(ν, x) the d-density of ν at x ∈M .

We present the following definition for the first variation of a varifold.

Definition 3.6. Let (Mn, g) be a Riemannian manifold. For any V ∈ Vd(M) its first variation
in the direction of the smooth vector field X ∈ Xc(M) is the linear function δgV : Xc(M) → R
defined as

δgV (X) :=

∫
ξ∈Gd(M)

divSXdV (ξ),

where S ⊂ TxM is a d-dimensional subspace of TxM such that ξ = (x, S) ∈ Gd(M), πS : TxM → S
is the orthogonal projection with respect to the metric g, (e1, ..., en) is an orthonormal basis of

(Tπ(ξ)M, gπ(ξ)), and divSX =
∑d

i=1〈∇ẽiX, ẽi〉 with {ẽ1, . . . , ẽd} an orthonormal basis over S.

Definition 3.7. Let (Mn, g) be a Riemannian manifold. A Borel subset B ⊂ M is said to be d-
countably rectifiable, if dimH(B) = d, and there exist a countable collection {fk}k∈N ⊂ Lip(Rd,M)
of Lipschitz continuous such that Hd(B \ ∪∞k=0fk(Rd)) = 0.

Next, we give the definition of integral varifolds.
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Definition 3.8. Let (Mn, g) be a Riemannian manifold, 1 6 d 6 n − 1, B ⊆ M a d-countably
rectifiable Hdg-measurable subset, and θ : B → N a positive locally integrable Borel map. We define
a varifold V (B, θ, g) ∈ Vd(M) as follows

V (B, θ, g)(S) :=

∫
{x∈B:(x,TxB)∈S}

θ(x)dHdg(x) for all S ∈ Gd(M).

We say that V ∈ Vd(M) is a d-integral varifold, if there exists a d-countably rectifiable Hdg-
measurable subset B ⊆M and a Borel map θ : B → N \ {0} such that V = V (B, θ, g). The set of
all d-integral varifolds over M will be denoted by IVd(M).

Next, we have the definition of the pushforward of a varifold.

Definition 3.9. Let (Mn1
1 , g1) and (Mn2

2 , g2) be Riemannian manifolds and F : M1 → M2 be a
smooth map. If V ∈ Vd(M1), then F induces a natural Borel regular measure on Gd(M2) given by

F#(V )(B) :=

∫
{(x,S):(F (x),dFx(S))∈B}

d∑
i=1

〈dFx ◦ πS(ei), ei〉g2dV (x, S),

for any Borel subset B ⊂ Gd(M2), where {e1, ..., ed} is an orthonormal basis of S ⊂ TxM1. The
measure F#(V ) is a varifold when F is a proper map. In this case, F#(V ) is called the pushforward
varifold of V by F .

In this fashion, if V (B, θ, g1) is an integral varifold in M and F : M → N is a diffeomorphism,
then we have that (F (B), θ◦F−1, g2) is an integral varifold in N that coincides with F#(V ). Given
a vector field X ∈ Xc(M), the one-parameter family of diffeomorphisms generated by X is defined
by Φt(x) = Φ(t, x) where Φ : R×M →M is the unique solution of the ODE system below{

∂Φ
∂t = X(Φ),

Φ(0, x) = x.

With respect to the last definition, we have the following alternative formulation of the first
variation of a varifold.

Proposition 3.10. Let (Mn, g) be a Riemannian manifold. For any V ∈ IVd(M) and X ∈
Xc(M), then the first variation of V along X is given by the following formula

δgV (X) =
d

dt

∣∣∣
t=0
‖(Φt)#V ‖(M) =

∫
M

divTxBXd‖V ‖,

where B = supp ‖V ‖ and Φt is the one-parameter family generated by X.

It is possible to define a generalized version of the mean curvature for integral varifolds.

Definition 3.11. Let (Mn, g) be a Riemannian manifold. We say that V ∈ IVd(M) has bounded
generalized mean curvature vector, if there exists a constant C > 0 such that

|δgV (X)| 6 C
∫
M
|X|d‖V ‖ for all X ∈ Xc(M). (3.1)

Remark 3.12. Observe that with (3.1), by the Riesz representation theorem and Radon–Nikodym
decomposition theorem, it is straightforward to prove the existence of a measurable vector field
Hg ∈ L∞g (M,TM) such that

δgV (X) =

∫
M
〈X,Hg〉d‖V ‖ for all X ∈ Xc(M),

In this case, Hg is the generalized mean curvature and ‖Hg‖∞ denotes the L∞g (M,TM)-norm of
the generalized mean curvature.
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In the following, we present the notion of concentrated measure and relative perimeter.

Definition 3.13. Let (Mn, g) be a Riemannian manifold. For any A ⊂M , let us define the Borel
measure (Hn−1

g xA)(B) := Hn−1
g (A ∩ B) for every Borel set B ⊂ M . We also define the relative

perimeter of an N -cluster Ω as Pα
g (Ω, A) =

∑N
i,j=1 αijHn−1

g (Σij ∩A). As usual we will adopt the

following notational convention Pα
g (Ω) := Pα

g (Ω,M).

We can prove a version of the monotonicity formula for the reduced boundary of the interior
chambers of a cluster. For this, we will use the notations in Definition 7.

Lemma 3.14. Let (Mn, g) be a Riemannian manifold and Ω ∈ Cαg (M,RN ) be a weighted cluster.
Assume that there exists b ∈ R and 0 < r0 = r0(b) < injg(M) satisfying r0 cotb(r0) > 0, where
b > 0 is given in Remark 3.2. Then, for every x ∈ Σij , for some i, j ∈ {1, · · · , N}, there exists
0 < C1 = C1(b, r0, x) 6 1 such that the function Υg : [0, r0]→ R defined as

Υg(r) = Pα
g (Ω,Bgr (x))r−(n−1)e

‖Hg‖∞
C1

r

is monotone nondecreasing. Moreover, Θn−1(Hn−1
g x∂∗Ω̃, x) exists and the following inequality

holds

Pα
g (Ω,Bgr (x)) > ωn−1

N∑
i,j=1

αijΘ
n−1(Hn−1

g xΣij , x)rn−1e
− ‖Hg‖∞

C1
r
.

In particular, when injg(M) > 0, the constant C1 ∈ (0, 1] could be chosen to be independent of x
and depending just on b and injg.

Proof. It follows the same ideas in [55]. �

We can formulate the last lemma in terms of an inequality involving integral varifolds. Let us
fix the standard notation cotb(t) = cos(

√
bt)sin(

√
bt)−1.

Lemma A ( [55]). Let (Mn, g) be a Riemannian manifold and V ∈ IVd(M) be an integral varifold
with bounded generalized mean curvature vector Hg. Fix y ∈ M and 0 < r0 < injg satisfying
r0 cotb(r0) > 0. There exists a constant 0 < C2 = C2(b) 6 1 such that for 0 < r1 < r2 < r0, it
follows

‖V ‖(Br2(y))

rd2
− ‖V ‖(Br1(y))

rd1
>

1

C2

∫
Br2 (y)

〈Hg, u∇gu〉
d

(
1

m(r)d
− 1

rd2

)
d‖V ‖

+
1

C2

∫
Br2 (y)\Br1 (y)

|∇⊥g r|2

rd
d‖V ‖.

Here u(x) = dg(x, y), ∇⊥g r = πTxB⊥(∇gu(x)), and m(r) := max{u(x), r1}, where πTxB⊥ is the

standard orthogonal projection on TxB
⊥.

Remark 3.15. Notice that the optimal r0 in the preceding theorem is given by the first positive
zero of the function t 7→ t cotb(t), if b > 0, and r0 =∞, if b 6 0.

We present the definition of a varifold tangent, also called a tangent cone.

Definition 3.16. Let (Mn, g) be a Riemannian manifold. Let V ∈ IVd(M) and Σ = supp(‖V ‖).
Fix a point x ∈ Σ, and for every radius r > 0 consider the translated and rescaled pushforward
varifold Σx,r := Σ−x

r = {y : x + ry ∈ Σ}. Using the uniform boundedness on the mass and
the compactness theorem for integral varifolds [1], we can assume that Σx,r converges as r → 0
to an integral varifold, called the varifold tangent, which for convenience will be denoted by
VarTanx(V ) = Σx ∈ IVd(M). This is also called a tangent cone.
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Remark 3.17. At a regular point x ∈ Σ, that is, a point in a neighborhood of which Σ is smooth,
the tangent cone VarTanx(V ) is of course unique and it is given by the tangent space TxΣ in the
classical sense of differential geometry (counted with the appropriate multiplicity, depending upon
the chosen variational framework).

Next, we present the right notion of convergence of N -clusters which is usually called flat
convergence in the literature. The flat convergence is essentially the L1

loc convergence of the
characteristics functions of a sequence of Caccioppoli sets.

Definition 3.18. Let (Mn, g) be a Riemannian manifold, Ω1,Ω2 ∈ Cαg (M,RN ), and A ⊂ M
be an open subset. We define the relative flat distance between Ω1 and Ω2 in A given by
dF ,g,A (Ω1,Ω2;A) :=

∑N−1
i=1 vg(A ∩ (Ω1i4Ω2i)), where 4 stands for the symmetric difference

between two sets. When A = M , we denote dF ,g,A = dF ,g. We say that a sequence {Ωk}k∈N ⊂
Cαg (M,RN ) locally converges to Ω, and denote Ωk

loc→ Ω, if for every compact set K ⊂M , we have
dF ,g,K(Ωk,Ω)→ 0 as k →∞. If dF ,g(Ωk,Ω)→ 0 as k →∞, we say that Ωk converges to Ω and
we denote Ωk → Ω.

The main difference between the scalar and vectorial cases is captured below.

Remark 3.19. Recall that when N = 2, the formula for the isoperimetric profile is given by
I(Rn,δ)(v) = cnv(n−1)/n, where cn = n1/nπ1/2Γ(n/2 + 1)1/n, with Γ(z) =

∫∞
0 e−ttz−1dt the standard

Gamma function, is the best isoperimetric constant in the Euclidean space. In contrast with this
case, when N > 2, an explicit formula for the multi-isoperimetric profile function is not known;
this sets a substantial difficulty in our approach.

Nevertheless, it is not hard to check the validity of the following result, which will be enough
for our purposes here. Henceforth, we will use the following notations max(α) = max16i,j6N αij
and min(α) = min16i,j6N αij .

Lemma 3.20. Let (Mn, g) be a Riemannian manifold of bounded geometry. There exist v̄ =

v̄(n, κ, v0) > 0, C0 = C0(n,N, κ, v0, α) > 0 and C̃0 = C̃0(n,N, κ, v0, α) > 0 such that

C0

N∑
i=1

|vi|
n−1
n 6 Iα(M,g)(v) 6 C̃0

N∑
i=1

|vi|
n−1
n for all v ∈ (0, v̄)N .

Proof. Using (α0), the result is obtained as a consequence of the following direct computation

cn|v|
n−1
n ∼ I(M,g) (|v|)6Iα(M,g)(v)

6 max(α) inf


N∑

i,j=1

Hn−1
g (Σij) : Ω ∈ Cαg (M,RN ) and vg(Ω) = v


6 max(α) inf

{
N∑
i=1

Pg(Ωi) : Ω ∈ Cαg (M,RN ) and vg(Ω) = v

}

= max(α)
N∑
i=1

I(M,g)(vi) ∼ max(α)cn

N∑
i=1

|vi|
n−1
n .

The first inequality is derived by the same computations in [5, Chapter VI (7)]. �

Next, we prove some preliminary results. Firstly, let us present a comparison principle.
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Lemma 3.21. Let (Mn, g) be a Riemannian manifold of bounded geometry. There exist constants
C3 = C3(n, κ), C4 = C4(n, κ) > 0, and r1 = r1(n, κ) > 0 such that, for every 0 < r < r1, it follows

v0C3r
n6vg(Br(x))6C4r

n,

where v0, κ > 0 are defined in Definition 3.1. More explicitly, we have

r1(n, κ) := min

{
1, e

√
(n−1)|κ|
n

}
and C3(n, κ) = e−

√
(n−1)|κ|.

Proof. The proof is a consequence of the Bishop–Gromov volume comparison. �

We also have the following result about the boundedness of isoperimetric weighted clusters. In

particular, we will have that diam(Ω̃) <∞, which from now on we will use without mentioning.

Lemma 3.22. Let (Mn, g) be a Riemannian manifold of bounded geometry and Ω ∈ Cαg (M,RN )

be an isoperimetric weighted cluster. Then Ω̃ is bounded.

Proof. The proof is a line-by-line adaptation of the one in [62, Theorem 3]. �

We now provide an estimate of the generalized mean curvature of the reduced boundary of
the chambers of an isoperimetric immiscible weighted cluster, which is a direct consequence of
the Heintze–Karcher inequality. We notice that the fact that the fluids are immiscible, i.e., the
coefficients matrix α satisfies the strict triangle inequality (α0), plays a major role in this regularity
result.

Lemma 3.23. Let (Mn, g) be a Riemannian manifold of bounded geometry and Ω ∈ Cαg (M,RN )
be an isoperimetric weighted cluster.

(i) For Hn−1
g -almost every point x ∈ ∪Ni,j=1Σij, there exists a neighborhood U of x in M and

indexes ix, jx ∈ {1, · · · , N} such that Σixjx ∩ U is smooth.
(ii) The generalized mean curvature for regular points of the reduced boundary is piecewise

constant. Furthermore, there exists C5 = C5(n, κ) > 0 such that

‖Hg‖∞ 6 C5Pα
g (Ω)vg(Ω̃)−1. (3.2)

Proof. We start recalling the regularity results [2, Collorary 4.8], which can be stated in the
following

(1) For each i ∈ {1, · · · , N}, the set Ω
(1)
i is open in M ,

(2) For Hn−1
g -a.e. point p, there exists rp = rp(p,Ω) > 0 such that Bgrp(p) ∩ Ωi 6= ∅ holds for

only two different index ip, jp ∈ {1, · · · , N},
(3) For all i, j ∈ {1, · · · , N}, the set Σij is a smooth surface with constant mean curvature up

to a Hn−1
g -null set.

So (i) follows directly from (3). To prove the desired estimate on the generalized mean curvature
in (ii), we apply (3) and the classical Heintze–Karcher inequality [23, Theorem IX.3.2] to obtain
the estimate (3.2) and that the mean curvature is piecewise constant. �

It is well known that in Euclidean spaces the isoperimetric sets (N = 2) are round balls.
Although this property can be extended to some particular types of manifolds, this is not true
in a general context. In fact, even simpler properties such as the connectedness of isoperimetric
regions do not hold in any manifold. Indeed, in [38, Theorem 1.1], the author showed that there
are Cartan–Hadamard manifolds with n = 2, 3 that contain isoperimetric regions that are not
connected. Nonetheless, this property is true in the Euclidean space for immiscible clusters. This
fact is fundamental to proving the desired diameter estimate.
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Lemma 3.24. If Ω ∈ Cαδ (Rn,RN ) is an isoperimetric immiscible weighted cluster, then Ω̃ ⊂M is
connected.

Proof. The proof is a straightforward adaptation of [40, Lemma 9.3] which relies in the regularity
result [45, Corollary 30.3], we instead rely in Lemma 3.23. �

We now state a generalized abstract compactness result for a sequence of weighted clusters.
These results can be found in several forms in the literature, we have chosen to state it in the more
general fashion that we know, that is, in the context of RCD spaces. One interested reader can
consult [9] and the references therein to see the definition and properties of these spaces. For what
concern our work, we will always apply the theorem for manifolds of bounded geometry, which are
well-known examples of RCD spaces. In fact, the heuristics behind the RCD spaces is to define
a metric space of bounded geometry, which means that given the right notion of curvature and
measurability in the metric space we require that it satisfies the properties of Definition 3.1.

Before the statement of the theorem, we need to define a strong notion of convergence of weighted
clusters.

Definition 3.25. Let {(Mn
k , gk)}k∈N be a sequence of closed manifolds converging in the pmGH

sense to a closed manifold (Mn
∞, g∞). Assume that there exists a locally compact separable metric

space (Z, dZ) on which M∞ and Mk, for all k ∈ N, are isometrically embedded. We say that
a sequence of clusters {Ωk}k∈N ⊂ Cαgk(Mk,RN ) converges in the L1-strong sense to a cluster

Ω ∈ Cαg∞(M∞,RN ) when

(i) vg(Ωk)→ vg(Ω) as k →∞;
(ii) χΩkiHng ⇀ χΩiHndZ as k → ∞ for all i ∈ {1, · · ·N} with respect to the duality with

continuous bounded functions with bounded support on Z.

Proposition 3.26. Let {(Mn
k , gk)}k∈N be a sequence of Riemannian manifold of bounded geometry.

Assume that {Ωk}k∈N ⊂ Cαgk(Mk,RN ) is a sequence of bounded weighted clusters such that

supk∈N(Pα
gk

(Ωk) + vgk(Ω̃k)) <∞. Then, up to subsequence, there exists a nondecreasing, possibly

unbounded, sequence {Qk}k∈N ⊂ N and {xjk}k∈N ⊂ Mk with 1 6 j 6 Qk for any k ∈ N, and

pairwise disjoint subclusters Ωj
k ⊂ Ωk satisfying:

(i) limk→∞ dgk(xjk, x
`
k) =∞ for any j 6= ` < Q̄+ 1, where Q̄ := limk→∞Qk ∈ N ∪ {∞};

(ii) For every 1 6 j < Q̄+ 1, (Mk,dgk ,Lngk , x
j
k) converges to (M j

∞, d
j
∞,Ln

gj∞
, xj∞) as k →∞ in

the pmGH sense, where the limit is a pointed RCD(κ, n) space.

(iii) There exist subclusters Ωj
∞ ∈ Cα

gj∞
(M j
∞,RN ) such that Ωj

k converges to Ωj
∞ as k → ∞ in

the L1-strong sense, and

lim
k→∞

Ln
gj∞

(Ωik) =

Q̃∑
j=1

Ln
gj∞

(Ωj
∞i) and

Q̃∑
j=1

Pα
gj∞

(
Ωj
∞
)
6 lim inf

k→∞
Pα
gk

(Ωk) .

Moreover, if Ωk ∈ Cαgk(Mk,RN ) is an isoperimetric cluster in for any k, then Ωj
∞ ∈ Cα

gj∞
(M j
∞,RN )

is an isoperimetric clusters for any j < Q̃+1 and Pα
gj∞

(Ωj
∞) = limk→∞Pα

gk
(Ωj

k) for any j < Q̃+1.

Proof. The proof is carried out along the same lines as the proof of [9, Theorem 1.2], replacing
mutatis mutandis, finite perimeter sets by weighted clusters, and the standard perimeter by the
multi-perimeter for clusters, which satisfies the lower semicontinuity property with respect to the
usual L1

loc convergence of clusters chamber by chambers (see Remark 8). �
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In the light of the last result, our strategy consists in first studying the limit problem in (Rn, δ).
This is the L1-strong limit of the sequence of blow-up metrics or the infinitesimal problem at small
scales. The result below states that any isoperimetric sequence of clusters can be replaced, up to
volume and perimeter, by a new sequence whose diameter of its elements becomes small enough.
Due to the fact that we can choose one subcluster (which is the original cluster intersected with a
smartly chosen ball) that contributes to almost all volume and perimeter of the original cluster, this
result is usually called selecting a large subdomain. The proof of the following lemma relies crucially
on three properties of isoperimetric clusters, namely, existence, uniqueness up to isometries, and
connectedness.

Lemma 3.27. Let {Ωk}k∈N ⊂ Cαδ (Rn,RN ) be a sequence of isoperimetric weighted clusters. There

exists another sequence {Ω′k}k∈N ⊂ Cαδ (Rn,RN ) such that

(i) limk→∞ vδ(Ωk4Ω′k)vδ(Ωk)
−1 = 0;

(ii) limk→∞ vδ(Ω
′
k)vδ(Ωk)

−1 = 1;

(iii) limk→∞Pα
δ (Ω′k)P

α
δ (Ωk)

−1 = 1;

(iv) limk→∞ diamδ(Ω̃
′
k) = 0.

Proof. Let us fix vk := vδ(Ω̃k) and define the following sequence of manifolds of bounded geometry

(Mk, dgk ,L
n
gk

) := (Rn, v−1/n
k d,Ln) for all k ∈ N.

Hence, applying Proposition 3.26 to the last sequence, we find

(Mk,dgk ,L
n
gk

)→ (M j
∞,d

j
∞,Lngj∞) = (Rn,d,Ln) for all j ∈ [1, Q̃+ 1) ∩ N.

Also, there exists Ωj
∞ ∈ Cα

gj∞
(M j
∞,RN ) such that Ωj

k converges to Ωj
∞ as k →∞ in the L1-strong

sense, which allows us to define

Ω∞ ∈ Cαδ (Rn,RN ) given by Ω∞ :=
(
∪Q̃j=1Ωj

∞1, . . . ,∪
Q̃
j=1Ωj

∞N

)
.

Next, setting gk := v
−2/n
k δ and rescaling the multi-perimeter accordingly, we have the following

Pα
δ (Ω∞) 6 lim inf

k→∞
Pα
gk

(Ωk) = lim inf
k→∞

Pα
δ (Ωk)

v
n−1
n

k

= lim inf
k→∞

Iα(Rn,δ) (vg (Ωk))

v
n−1
n

k

,

where we have used that Ωk ∈ Cαδ (Rn,RN ) is isoperimetric for all k ∈ N.
We now recall that the Euclidean multi-isoperimetric profile is homogeneous and continuous.

The continuity is stated in [62, Theorem 5] and homogeneity is a direct consequence of the
uniqueness, up to isometries. Using these properties, we get

Pα
δ (Ω∞) 6 lim inf

k→∞
Iα(Rn,δ)

(
vg (Ωk)

vk

)
= Iα(Rn,δ)(λ1, . . . , λN−1), (3.3)

where λi := lim infk→∞ vδ (Ωki)v
−1
k > 0. Furthermore, it is straightforward to check the following

properties

N−1∑
i=1

λi = 1, λi = vδ(Ω∞i) =

Q̃∑
j=1

vδ(Ω
j
∞i), and lim

k→∞
vδ(Ω

j
ki) = vδ(Ω

j
∞i).

Now, assume by contradiction that Q̃ > 1 then Ω∞ ∈ Cαδ (Rn,RN ) is an isoperimetric immiscible

weighted cluster such that Ω̃∞ is disconnected, which contradicts Lemma 3.24, if λi > 0 for all
i ∈ {1, · · · , N − 1}. When there exists Λ ⊂ {1, · · · , N − 1} such that λi = 0 for i ∈ Λ and #Λ ≥ 1,
we obtain the same contradiction with 3.24 for a immiscible weighted cluster having N − #Λ
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chambers. Hence, we obtain that Q̃ = 1 and there exists a small volume v∗ > 0 such that for every
isoperimetric cluster Ω ∈ Cαδ (Rn,RN ) satisfying vδ(Ω) ∈ (0, v∗)

N−1, there exists xΩ ∈ Rn, µ > 0

and r(v) = µv1/n such that

lim
v→0+

∑N−1
i=1 vg(Ωi ∩ Bδr(v)(xΩ))

vg(Ω̃)
= 1,

which proves (ii). To conclude the proof of (i), (iii), and (iv) we can do the same argument
of [55, Theorem 4.2]. �

In what follows, we prove the main result in the section. The ideas of the proof are similar in
spirit to the ones in Lemma 3.27. We emphasize that this is the only part where we need the
assumption N = 3.

Proof of Proposition 12. Let us fix vk := vg(Ω̃k) and define the following sequence of manifolds of
bounded geometry

(Mk, dgk ,L
n
gk

) := (Rn, v−1/n
k d,Ln) for all k ∈ N.

Hence, applying Proposition 3.26 to the last sequence, we find

(Mk,dgk ,L
n
gk

)→ (M j
∞,d

j
∞,Lngj∞) = (Rn,d,Ln) for all j ∈ [1, Q̃+ 1) ∩ N.

Also, there exists Ωj
∞ ∈ Cα

gj∞
(M j
∞,R3) such that Ωj

k converges to Ωj
∞ as k →∞ in the L1-strong

sense, which allows us to define

Ω∞ ∈ Cαδ (Rn,R3) given by Ω∞ :=
(
∪Q̃j=1Ωj

∞1,∪
Q̃
j=1Ωj

∞2,∪
Q̃
j=1Ωj

∞3

)
.

Next, setting gk := v
−2/n
k g and rescaling the multi-perimeter accordingly, we have the following

Pα
δ (Ω∞) 6 lim inf

k→∞
Pα
gk

(Ωk) = lim inf
k→∞

Pα
g (Ωk)

v
n−1
n

k

= lim inf
k→∞

Iα(M,g) (vg (Ωk))

v
n−1
n

k

, (3.4)

where we have used that Ωk ∈ Cαg (M,R3) is isoperimetric for all k ∈ N.
Notice that for small volumes, we can define

Ω̂k := expx∗k
(Ω′k) =

(
expx∗k

(Ω′k1), expx∗k
(Ω′k2),M \ expx∗k

(Ω̃′k)
)
∈ Cαg (M,R3),

where x∗k ∈M is fixed once at all and Ω′k ∈ Cαg (Rn,R3) are obtained in Lemma 3.27 when applied

to a sequence of Euclidean isoperimetric clusters Ω∗k ∈ Cαg (Rn,R3) satisfying vg(Ω
∗
k) ∼ vg(Ωk) as

k → ∞. Thus, combining (3.4) with by (i)–(iv) of Lemma 3.27 and the asymptotic expansion of
the metric g in exponential normal coordinates yields

lim inf
k→∞

Iα(M,g)(vg(Ωk))

v
n−1
n

k

6 lim inf
k→∞

Pα
g (Ω̂k)

v
n−1
n

k

= lim inf
k→∞

Iα(Rn,δ)(vg(Ωk))

v
n−1
n

k

. (3.5)

Whence, we straightforwardly get

Pα
δ (Ω∞) 6 lim inf

k→∞

Iα(Rn,δ) (vg (Ωk))

v
n−1
n

k

= Iα(Rn,δ) (λ1, · · · , λN−1) ,

where we used the same argument as in (3.3). As before, it is easy to verify the following properties

λ1 + λ2 = 1, λi = vδ(Ω∞i) =

Q̃∑
j=1

vδ(Ω
j
∞i), and lim

k→∞
vδ(Ω

j
ki) = vδ(Ω

j
∞i).
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Therefore, by the exact same argument as in Lemma 3.27, we get that Q̃ = 1. �

As a consequence, of Proposition 12, we finish this section with the asymptotic expansion for
the immiscible weighted multi-isoperimetric profile. Namely, we show that the weighted multi-
isoperimetric profile function for a manifold is asymptotic to the one in the Euclidean case for
small volumes.

Corollary 3.28. If (Mn, g) is a closed Riemannian manifold, then

Iα(M,g)(v1, v2, v3) ∼ Iα(Rn,δ)(v1, v2, v3) as |(v1, v2, v3)| → 0.

4. Convergence results for the vectorial energy

This section is devoted to providing the proof of Proposition 11. In particular, we show the
Γ-convergence of the vectorial energy to the perimeter functional and a compactness result for
solutions to (ACHε,v,m,N,g) with bounded energy. For this, our methods are similar in spirit to
the ones in [10]. However, we include some proofs for the sake of completeness.

Remark 4.1. Henceforth, we are under the small volume condition, that is, 0 < vg(Ω̃) � 1,

where Ω̃ = ∪Ni=1Ωi and whenever it is needed we assume that N = 3. Thus, for N = 2,

using [11, Theorem 1.1], we get that there exist x ∈ Ω̃ and 0 < r � 1 such that Ω̃ ⊂ Bgr (x) and
expx : Bgr (x)→ Br(0) ⊂ Rn is a bi-Lipschitz diffeomorphism, with Lipschitz constant independent
of the point. This allows us to consider the same definitions in the Euclidean space for the context
of manifolds, at least in a ball of a sufficiently small radius.

Let us fix some notation. We say that a family indexed on the positive real numbers {uε}ε>0

converges to u0, if for all {εk}k∈N such that εk → 0 as k →∞, it follows that {uεk}k∈N converges
to u0. We introduce the notion of Γ-convergence for operators.

Definition 4.2. Let {Bε}ε>0 ⊂ B0 be Banach spaces and Eε : Bε → R be a sequence of operators.
We say that {Eε}ε>0 Γ-converges to E0 : B0 → R as ε→ 0, if for all u0 ∈ B0, it follows

(i) For every sequence {uε}ε>0 converging to u0, we have that E0(u0) 6 lim infε→0 Eε (uε);
(ii) There exists a sequence {uε}ε>0 converging to u0 such that E0(u0) > lim supε→0 Eε (uε).

The operator E0 is called the Γ-limit of {Eε}ε>0. Here, we fix the notation Γ-limε→0 Eε = E0.

Before proving our main proposition, let us start with some preliminary results. First, we have
two lemmas concerning the vectorial transformation (see (6)).

Lemma 4.3. Let (Mn, g) be a closed Riemannian manifold and W ∈ W+
N,3. If u ∈ H1

g (M,Rm)∩
L∞g (M,Rm), then Φ◦u is locally Lipschitz continuous and Φ◦u ∈ W 1,1

g (M,Rm). Moreover, the
following inequality holds ∫

M
|∇g (Φ◦u)|dLng 6

∫
M
W 1/2(u)|∇gu|dLng .

Proof. It is a straightforward adaptation of [10, Proposition 2.1] to the Riemannian context. �

Lemma 4.4. Let (Mn, g) be a closed Riemannian manifold and W ∈ W+
N,3. Assume that

u ∈ BV g(M,Rm) and W (u(x)) = 0 almost everywhere. Then, there exists a weighted cluster
Ω ∈ Cg(M,RN ) such that

u(x) =

N∑
i=1

piχΩi(x).

Proof. Let us define Ωi := (Φ◦u)−1(pi) for i = 1, . . . , N and recall that pN = 0. �
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Next, we present the definition of the supremum of measures.

Definition 4.5. Let (Mn, g) be a closed manifold and ν1, . . . , νN be regular positive Borel measures

on M . Let us define its supremum
∨N
i=1 νi as the smallest regular positive measure which is greater

than or equal to ν1, . . . , νN−1 on all Borel subsets of M . In other words, we have(
N∨
i=1

νi

)
(A) = sup

{
N∑
i=1

νi (Ai) :
(A1, . . . ,AN ) is a partition of A

by open sets

}
.

We also have the measure-theoretic auxiliary result below.

Lemma 4.6. Let (M, g) be a closed manifold, ν be a regular positive Borel measure on M ,
B1, . . . , B` be disjoint Borel subsets of M of finite measure, and c`i , where i = 1, . . . , ` and ` =

1, . . . , N be positive coefficients. If ν`(A) =
∑k

i=1 c
`
iν(A∩Bi) and ν(A) =

∑k
i=1

(
max` c

`
i

)
ν(A∩Bi),

then ν =
∨N
i=1 ν

`.

Proof. The proof is easy and is left to the reader. �

In the following result, we compute the supremum of the measures induced by the functions
φi ◦ u. This explains the appearance of correcting term dWN

on the Γ-limit of the sequence of
relaxed energy functionals. For more details on this degenerate metric, we refer to [64].

Lemma 4.7. Let (Mn, g) be a closed Riemannian manifold and W ∈ W+
N,3. Assume that

Ω ∈ Cg(M,RN ) and νi are the Borel measures given by νi : A 7→
∫
A |∇g (φi◦u)|dLng for all

i = 1, . . . , N . Then, it follows that Hn−1
g (∂∗Ωi) <∞ and(

N∨
i=1

νi

)
(M) =

1

2

N∑
i,j=1

ωijHn−1
g (Σij).

Proof. It is a straightforward adaptation of [10, Proposition 2.2] to the Riemannian context. �

A polygonal domain is every set that is the closure of an open set and whose topological boundary
is contained in the union of a finite number of hyperplanes of M (in the sense of Remark 4.1). The
next lemma will allow us to consider a cluster such that each component is a polygonal domain.

Lemma 4.8. Let (Mn, g) be a closed Riemannian manifold and W ∈ W+
N,3. Assume that

Ω ∈ Cg(M,RN ) is such that 0 < vg(Ω̃)� 1. Then, there exists a sequence {Ωk}k∈N ⊂ Cg(M,RN )
converging to Ω such that

(i) Each chamber Ωki is a polygonal domain for any i = 1, · · · , N and k ∈ N;

(ii) If uk(x) =
∑N

i=1 piχΩki(x) and u(x) =
∑N

i=1 piχΩi(x), then uk → u in L1
g(M,Rm) as

k →∞;
(iii)

∫
M ukdLng =

∫
M udLng = v for any k ∈ N; and

(iv) limk→∞
∨N
i=1

∫
M |∇g(φi◦uk)|dL

n
g =

∨N
i=1

∫
M |∇g(φi◦u)|dLng .

Proof. Using Proposition 12, it is straightforward adaptation of [10, Appendix A] to Riemannian
context. �

The last lemma has to do with the tubular neighborhood of smooth boundaries on a Riemannian
manifold.
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Lemma 4.9. Let (Mn, g) be a closed Riemannian manifold and A ⊂ M be an open subset such
that ∂A is a polygonal domain with Hn−1

g (∂A) = 0. If we define

dA(x) =

{
dg(x, ∂A), if x /∈ A,
−dg(x, ∂A), if x ∈ A.

Then, there exists a constant η > 0 such that on the set Dη = {x ∈ M : |dA(x)| < η}, we
have dA is a Lipschitz continuous function and |∇gdA(x)| = 1 for almost all x ∈ Dτ . Finally, if
Σt = {x ∈M : dA(x) = t}, it follows limt→0Hn−1

g (Σt) = Hn−1
g (∂A).

Proof. See [10, Lemma 3.3]. �

Definition 4.10. Let (Mn, g) be a closed Riemannian manifold. We define d : M → RN−1 given
by d(x) = (d1(x), . . .dN−1(x)), where

di(x) =

{
dg (x, ∂Ωi) , if x /∈ Ωi

−dg (x, ∂Ωi) , if x ∈ Ωi.
(4.1)

are the signed distance functions for each i = 1, . . . , N − 1.

Since M is compact, by the Hopf–Rinow theorem, we may assume by simplicity that for
any i, j = {1, . . . , N} with i 6= j, there exists a distance-minimizing geodesic connecting pi
and pj , that is, one can find a smooth curve cij such that cij(0) = pi, cij(1) = pj and

dW (pi,pj) =
∫ 1

0 W
1/2(cij(t))|c′ij(t)|dt. Notice that it is also not restrictive to assume |c′ij(t)| 6= 0

for all t ∈ (0, 1). Our next result is concerned with the following system of ordinary differential
equations

(yijε )′2 =
τ +W (cij(y

ij
ε ))

ε2|c′ij(y
ij
ε )|2

in R, (4.2)

where i, j ∈ {1, . . . , N}, i 6= j, and τ > 0 are fixed.

Lemma 4.11. Let W ∈ W+
N,3. For every ε > 0, there exist a Lipschitz continuous function

qε : RN−1 → Rm and C1, C2, C3 > 0 constants depending only on τ such that

qε (t1, . . . , tN−2) =


p1, if t1 < 0;

pi, if t1 > C1ε, . . . , ti−1 > C1ε and ti < 0 for any i = 2, . . . , N − 2,

pN , if t1 > C1ε, . . . , tN−2 > C1ε,

(4.3)
and 0 < |qε| < C2 , |Dqε| < C3ε

−1 almost everywhere in RN−1. Moreover, if j > i on the set
{t ∈ RN−1 : 0 < ti < C1ε, tj < 0, and tk > C1ε for any k 6= i, j}, then qε depends only on ti, and

we can write qε(ti) = cij(y
ij
ε (ti)), where yijε solves (4.2) for any ti such that qε(ti) 6= pi) (Notice

that if j = N , one can ignore the condition tj < 0, which makes no sense).

Proof. First, we consider the solutions to (4.2) for i, j = 1, . . . , N−1, i 6= j and τ > 0 fixed. Notice
that the function ψε : [0, 1]→ [0, ηε] given by

ψε(t) =

∫ t

0

ε|c′ij(s)|

[τ +W (cij(s))]
1/2

ds

is obviously increasing, where ηε = ψε(1) satisfies ηε 6 ετ−1/2`(cij). Here ` denotes the length of
a curve. Now, the inverse function ỹε : [0, ηε]→ [0, 1] of ψε satisfies (4.2). We extend the function
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to the whole real line by putting

ỹε(t) =

 ỹε, if t 6 0
1, if 0 6 t 6 ηε
0, if t > ηε

Now ỹε is a Lipschitz-continuous function satisfying (4.2) in all the points where ỹε 6= 1. Let us
consider

C1 = max
i,j=1,...,N

{τ−1/2`(cij)},

Hence, we can define q̃ε(t) = cij(ỹ
ij
ε (ti)) on the set {t ∈ RN−1 : 0 < ti < C1ε, tj < 0, and tk >

C1ε for any k 6= i, j} with j > i. We choose

C2 > sup

|y| : y ∈
N−1⋃
i,j=1

cij([0, 1])

 .

Defining

C̃3 = sup
i,j=1,...,N
i 6=j, t∈[0,1]

 [τ +W (cij(t))]
1/2∣∣∣c′ij(t)∣∣∣
 ,

we have that |Dq̃ε| 6 C̃3ε
−1. Standard extension results for Lipschitz-continuous functions allow

one to define q̃ε on the whole RN−2, with C3 > C̃3 suitably chosen. �

Remark 4.12. Notice that the family {qε}ε>0 constructed above approximates the following map

q0 (t1, . . . , tN−1) =


p1, if t1 < 0;

pi, if t1 > 0, . . . , ti−1 > 0 and ti < 0 for any i = 2, . . . , N − 1,

pN , if t1 > 0, . . . , tN−1 > 0.

This approximation will be crucial in the construction of the recovery sequence.

To construct the recovery sequence in the Γ-convergence argument, we will work with the
truncation of a sequence of minima.

Remark 4.13. Using the assumption (W3), it is easy to verify that the truncation condition holds.
That is, there exists k5 > 0 such that

W (u) > sup
z∈[−k5,k5]m

W (z) for all u /∈ [−k5, k5]m. (4.4)

This will be important to localize the problem to a compact set in the proof of the next result.

The preliminary results stated above to allow us to define a candidate to Γ-limit of the sequence
Eε when ε→ 0. Namely, for any v ∈ Rm, let us denote

M′
v = {Φ ◦ u ∈ BVg(M,RN ) : W (u) = 0 a.e. and Vg(u) = v}.

We can define the following limit functional

E0(u) :=

{
2
∨N
i=1

∫
M |∇g(φi ◦ u)|dLng , if u ∈M′

v

∞, if u ∈ L1
g(M,Rm) \M′

v.

Notice the relationship between E0 and the perimeter functional in (4) is given by Lemma 4.7.
More accurately, based on the last preliminary results we have the Γ-convergence theorem for

the sequence of relaxed operators.
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Lemma 4.14. Let (Mn, g) be a closed Riemannian manifold and W ∈ W+
N,3. It follows that

Γ-limε→0 Eε = E0 in L1
g(M,Rm).

Proof. Let {εk}k∈N ⊂ R be a fixed sequence such that εk → 0 as k →∞. Without loss of generality,
we may assume limk→∞ Eεk(uεk) < ∞; otherwise the proof readily follows. Now, it is convenient
to divide the proof into two claims.

We first prove the lower continuity part in the definition of Γ-convergence.
Claim 1: For any {uεk}k∈N converging to u0, it holds E0(u0) 6 lim infk→∞ Eε(uεk).
Indeed, by choosing a subsequence {uεk}k∈N that converges to u0 pointwise almost everywhere in
M , the Fatou’s Lemma implies∫

M
W (u0)dLng 6 lim inf

k→∞

∫
M
W (uεk)dLng 6 lim inf

k→∞
εkEεk(uεk) = 0.

Thus, W (u0(x)) = 0 almost everywhere in M since W ∈ W+
N is a continuous nonnegative map.

Because of Lemma 4.7, the next step is to prove that

2
N−1∨
i=1

∫
M
|∇g(φi◦u0)| dLng 6 lim

k→∞

∫
M

(
εk |∇guεk |

2 + εk
−1W (uεk)

)
dLng . (4.5)

Initially, by using the technical assumption (4.4), we can assume {uεk}k∈N to be equibounded.
Otherwise, we can replace each uεk by the ũεk obtained by truncating each scalar component over
a compact set, namely for each i = 1, . . . , N , we consider the component function (ũεk)i(x) :=
sgn((uεk)i(x)) min{|(uεk)i(x)|, k5}. Also, notice that ũεk → u0 in L1

g(M,Rm) and the integrals in
the right-hand side of (4.5) decrease, that is, Eεk(ũεk) 6 Eεk(uεk).

Next, we have that Φ(uεk) → Φ(u0) in L1
g(M,RN−1), which by the continuity and lower

semicontinuity, implies

|∇g (φi◦u0)| (A) 6 lim inf
k→∞

|∇g (φi◦uεk)| (A)

for any i = 1, . . . , N − 1 and A ⊂M an open set. Therefore, Lemma 4.3 yields that

lim inf
k→∞

N−1∨
i=1

|∇g(φi ◦ uεk)| (M) 6 lim inf
k→∞

∫
M
W 1/2 (uεk) |∇guεk(x)|dLng

6 lim
k→∞

∫
M

(
εk |∇guεk |

2 + εk
−1W (uεk)

)
dLng ,

which finishes the proof of the first claim.
Next, we construct the recovery sequence to conclude the proof.

Claim 2: There exists {uεk}k∈N converging to u0 such that E0(u0) > lim supk→∞ Eε (uεk).
First, if u0 ∈ L1

g(M,Rm) is such that E0(u0) = ∞, the construction of the recovery sequence

{uεk}k∈N is trivial. Hence, without loss of generality, we may assume u0(x) =
∑N

i=1 piχΩi(x) with
Ω ∈ Cg(M,RN ) a weighted cluster.

Fix τ > 0 as in (4.2). Using Lemma 4.9, for 0 < ε � 1 small enough, we have |∇gdi(x)| = 1
almost everywhere on the set {x ∈M : |di(x)| < C1ε} for all i = 1, . . . , N − 1. Let us consider the
map

ũε(x) = (qε ◦ d)(x), (4.6)

where qε : RN−1 → Rm is the ODE solution in (4.3) and d : M → RN−1 is the vectorial distance
function in (4.1). Denoting Σt

i = {x ∈ Ω : di(x) = t} for t > 0 and i = 1, . . . , N − 1, and using the
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coarea formula, we find∫
M
|ũε − u0| dLng 6

N−1∑
i=1

∫
{x∈M :0<di(x)<C2ε}

|ũε − u0|dLng 6 2C2

N−1∑
i=1

∫ C1ε

0
Hn−1
g (Σt

i)dt,

which, by using Lemma 4.11, yields ũε → u0 in L1
g(M,Rm). If

∫
M ũεdLng = v, then the proof

trivially follows. Otherwise, let us define

νε =

∫
M

ũεdLng −
∫
M

udLng . (4.7)

Notice that the absolute value of each scalar component νε is less than or equal to C1ε.
Now let us construct a suitable partition. We assume that Ω1 6= ∅, and let y1 ∈ Ω1 be a point

in the interior of the set Ω1. By definition of ũε, if 0 < ε � 1 is small enough, the open metric
ball Bgε := Bg

ε1/n
(y1) is contained in {x ∈M : ũε(x) = p1}. We define

uε(x) =

{
ũε(x) in M \ Bgε
p1 + ξε(1− ε1/n|x− y1|) in Bgε .

(4.8)

Here ũε is given by (4.6), ωn−1 is the volume of the (n − 1)-dimensional unit Euclidean ball and

ξε = nωn−1ε
(1−n)/nνε, where νε is defined by (4.7). In this fashion, it follows that

∫
M uεdLng = v

for 0 < ε� 1 small enough, and it converges in L1
g(M,Rm) to u0.

Finally, let us consider a partition of M given by

(i) Ωε
1 = Ω1 \ Bgε ;

(ii) Ωε
i = {x ∈ Ωi : dj(x) > C1ε for j = 1, . . . , i− 1} for i = 2, . . . , N − 1;

(iii) Ωε
ij = {x ∈ M : 0 < di(x) < C1ε, dj(x) < 0, d`(x) > C1ε for ` ∈ {1, . . . , N − 1} \ {i, j}}

for i, j ∈ {1, . . . , N − 1} and i 6= j;

(iv) Ωε
0 = M \

(
Bgε ∪ (∪N−1

i=1 Ωε
i ) ∪

(
∪N−1
i,j=1,i 6=jΩ

ε
ij

))
.

Thus, arguing as in the proof of [10, Theorem 2.5], we find that lim supε→0+ Eε(uε) 6 E0 (u0).
This completes the proof of Claim 2, and so the lemma holds true. �

From the proof of this result, we can extract the following corollary, which will be important in
the proof of the continuity of the photograph map

Corollary 4.15. Let (Mn, g) be a closed Riemannian manifold and W ∈ W+
N,3. For any

weighted cluster Ω ∈ Cg(M,RN ), let us define the limit profile function u0,Ω : M → Rm by

u0,Ω =
∑N−1

i=1 piχΩi. Then, there exists a family {uε,Ω}ε>0 of Lipschitz continuous function
on M such that uε,Ω converges to u0,Ω in L1

g(M,Rm) as ε → 0+, uε,Ω ∈ BVg(M,Z), where
Z = {p1, . . . ,pN}, for all ε > 0, and

(i)
∫
M |uε,Ω|dL

n
g =

∫
M |u0,Ω|dLng = v for all ε > 0,

(ii) lim supε→0+ Eε(uε,Ω) 6 Pg(Ω).

Proof. To verify (i) and (ii), it is enough to consider the recovery family {uε,Ω}ε>0 as in (4.8). In
addition, since for any t ∈ R and i = 1, . . . , N −1, each component satisfies (q̃ε)i(t) 6 (q̃0)i(t) and
(q̃ε)i(ti + ηε) > (q̃0)i(ti), there exists ζε := ζε,Ω ∈ [0, ηε]

N−1 such that the following identity holds∫
M
|q̃ε(d(y) + ζε)| dLng (y) =

∫
M
|q0(d(y))|dLng (x) =

∫
M
|u0,Ω(d(y))|dLng (y). (4.9)

Finally, we define

qε(t) = q̃ε(t+ ζε). (4.10)
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and so

uε,Ω(x) = qε(d(x)) = q̃ε(d(x) + ζε),

which concludes the proof. �

Definition 4.16. The approximating family {uε,Ω}ε>0 obtained in Corollary 4.15 is called a
Modica–Baldo approximation of the limit profile u0,Ω.

At last, we are ready to fulfill our objective in this section. Indeed, we need to extend the Γ-
convergence to result for the case of a general sequence of critical points with a uniformly bounded
energy. This result is new in the context of clusters even in the case of a domain of the Euclidean
space.

Proof of Proposition 11. We consider ϕ : R → R given by ϕ(t) =
∫
Bt
W 1/2(z)dz and set the

sequence

wεk(x) := ϕ(uεk(x)) = (ϕ(uεk,1(x)), . . . , ϕ(uεk,m(x))) for all k ∈ N.
Next, we divide the proof into several claims.

Claim 1: {wεk}k∈N is bounded in L1
g(M,Rm).

In fact, using assumption (W3) for |z| = t, it is not restrictive to assume that t0 > 1, which yields
the inequality below

ϕ(t) =

∫
Bt0

W 1/2(z)dz +

∫
Bt\Bt0

W 1/2(z)dz 6
∫
Bt0

W 1/2(z)dz +

√
2k4

p2 + 2
t
p2
2

+1 for all t > t0.

Moreover, since p2 6 2(p1 − 1), we have that p2
2 + 1 6 p1, which implies that there exists some

constant C4 > 0 satisfying |ϕ(t)| 6 C4(1 +W (z)) for all t ∈ R and z ∈ Rm. Thus, one can find
C5 > 0 such that∫

M
|wεk |dL

n
g 6 C5

(
vg(M) +

∫
M
W 1/2(uεk(x))dLng

)
6 C5 (vg(M) + εkEεk(uεk)) .

Since M is compact, the last inequality finishes the proof of the claim.
Claim 2: {wεk}k∈N is bounded in BVg(M,Rm).
Indeed, notice that by regularity uεk ∈ C3

g (M,Rm) for all k ∈ N. Also, since W ∈ C2(Rm), it

follows by the divergence theorem that ϕ ∈ C3(R); thus, by the chain rule, we get |∇gwεk | =

|ϕ′(uεk)∇guεk | = W 1/2(uεk)|∇guεk |. Hence, an elementary inequality yields∫
M
|∇gwεk | dL

n
g 6

∫
M

(
1

2
εk |∇guεk |

2 +
1

εk
W (uεk)

)
dLng 6 Eεk (uεk)6E.

Applying the compactness theorem in [7, Theorem 3.23], one finds a subsequence {wεk}k∈N and
an a.e. pointwise limit w0 ∈ BVg(M,Rm) such that limk→∞ ‖wεk −w0‖L1

g(M,Rm) = 0 and satisfies

‖∇gw0‖ (M) 6 lim inf
k→∞

∫
M
|∇gwεk |dL

n
g 6 E.

Claim 3: {uεk}k∈N is bounded in L1
g(M,Rm).

Noticing that ϕ ∈ C3(R) and monotone increasing, let ψ = ϕ−1 be the inverse function of
ϕ. We define u0(x) = ψ(w0(x)) as before, which by the chain rule for BV-functions (see [7,

Theorem 3.6]) also belongs to BVg(M,Rm). Again, using (W3), it follows φ′(t) >
√

2c3t
p1/2
0 for all

|t| > t0. This implies that ψ is Lipschitz-continuous on (−∞, φ(−t0)]∪ [φ(t0),∞) and so uniformly
continuous on R, which combined with [12, Theorem 2], says that the sequence {uεk}k∈N given
by uεk = ψ ◦ wεk converges in measure to w0 as εk → 0, that is, for every τ > 0 it holds



MULTIPLICITY OF SOLUTIONS TO THE ALLEN–CAHN–HILLIARD SYSTEM 29

limk→∞ vg({x ∈ M : ||uεk(x)| − |u0(x)|| > τ}) = 0. As well as, {uεk}k∈N converges pointwise a.e.
on M to u0 as εk → 0. In addition, since∫

M
|uεk |

p1dLng 6
∫
M
tp10 dLng +

1

k3

∫
M
W (uεk)dLng 6 t

p1
0 vg(M) +

εk
k3
E,

we find that {uεk}k∈N is bounded in Lp1g (M,Rm) with p1 > 2. This implies uniform integrability
of the sequence {uεk}k∈N, and so {uεk}k∈N converges in L1

g(M,Rm) to u0.
Claim 4: u0 ∈ BVg(M,Rm).
Indeed, by Fatou’s Lemma, we have 0 6

∫
MW (u0)dLng 6 lim infk→∞

∫
MW (uεk)dLng 6 0, which

shows that W (u0) = 0 a.e. on M . By Lemma 4.4, we get u0(x) =
∑N

i=1 piχΩi(x) a.e., and,
by [7, Theorem 3.96], the sets Ωi = (Φ ◦ u0)−1(pi) ∈ Cg(M) for all i = 1, . . . , N . More accurately,
by the same argument as in the proof of Lemma 4.7, it follows

Hn−1
g

(
∪N−1
i=1 ∂

∗Ωi

)
= ‖∇gu0‖ (M) =

∫
M
|∇gu0|dLng =

∫
M
|∇gw0| dLng6E,

which gives the proof of the last claim.
The proof of the proposition is concluded. �

5. Multiplicity

We prove the first part Theorem 1. The idea of the proof is to use Propositions 11 and
Proposition 12 (or the stronger result [11, Theorem 1.1] for N = 3) and verify the conditions
(E1), (E2) and (E3) of the abstract photography method from Theorem B for the vectorial energy.

Now we define the extrinsic barycenter map, which will be used in the construction of the
left-homotopy.

Definition 5.1. Let (Mn, g) be a closed Riemannian manifold. For some large S ∈ N, we consider
i : M ↪→ RS the isometric embedding obtained by the Nash embedding theorem. Let diamRS (M)
be the diameter of M as subset of RS and βext : H1

g (M,Rm) → RS be the vectorial (extrinsic)
barycenter map given by

βext(u) :=

∫
M x|u(x)|dLng∫
M |u(x)|dLng

. (5.1)

We also have the following definition of normal injectivity radius

Definition 5.2. Let (Mn, g) be a closed Riemannian manifold. Given an isometric embedding
i : (M, g1)→ (RS , δ). Let us define the normal injectivity radius inj⊥g to be the largest nonnegative

r > 0 such that the normal exponential expνM : νM → RS is a diffeomorphism of a neighborhood
of the zero section of νM into Mr, where Mr := {x ∈ RS : d(x,M) < r} ⊆ RS and νM is the
normal bundle induced by i on M . Let us denote by πnear : Minj⊥g

→ M the canonical projection

associated to π : νM →M .

Remark 5.3. Notice that by compactness M is a retract of Minj⊥g
, thus inj⊥g > 0.

5.1. Framework. We establish the framework to apply Theorem B. Let (Mn, g) be a closed
Riemannian manifold. For any v ∈ Rm, let v′ ∈ RN−1 be given by v′ = Vg (Φ ◦ u) as in
Definition 10. Here, to simplify our notation, we keep the convection v = v′. From now on, we fix

0 < ε, |v| � 1 and c = c(v,W ) = I(M,g)(v)+τ , where W ∈ W̃+
N (see Definition 1), for 0 < τ � 1,

which will be chosen later.
In this fashion, we consider

(a) The underlying normed (topological) space is X := (M,dg) and M := Mv ⊂ H1
g (M,Rm)

is the abstract Hilbert manifold as in (2).
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(b) The photography map 2 ΨR : M → Ecε ∩Mv := Mc
ε,v is given by ΨR(x) := uε,v,x where

uε,v,x : M → R is equal to the Modica–Baldo approximation (see Definition 4.16) of the

limit profile u0,v,x =
∑N−1

i=1 piχΩx,vi
for a unique weighted cluster x ∈ Ωx,v ∈ Cg(M,RN )

such that v(Ωx,v) = v ∈ RN (see Lemma 5.7), and Ecε is the sublevel set of the vectorial
ACH energy given by (1).

(c) The right-inverse homotopy is defined as the map ΨL := π̂ ◦ βext : Mc
ε,v → M , where

βext : H1
g (M,Rm) \ {0} → RS is the extrinsic barycenter map (see Definition 5.1) and

π̂ : RS →M is the nearest point projection with S > n.

Let us now prove that all the above objects are well-defined, and that, using this framework,
the assumptions (E1), (E2) and (E3) of Theorem B are satisfied. Namely, we need to show the
lower boundedness of the vectorial energy, the Palais–Smale condition, and the continuity of the
photography and barycenter maps. We will divide the structure of the proof into a sequence of
auxiliary results.

5.2. Lower boundedness. We need to check that the vectorial energy functional Eε is well-
defined and bounded below when restricted to Mv. As consequence, we will see that (E1) holds
in our context.

Lemma 5.4. Let (Mn, g) be a closed Riemannian manifold and W ∈ W+
N . For every (ε,v) ∈

Rm+1, it follows that the vectorial energy functional Eε : Mv → R is C1 and bounded below.

Proof. It is a direct consequence of the nonnegativeness of the potential. �

5.3. Palais–Smale condition. To apply the abstract photography theorem, it is essential to
show that Eε satisfies the Palais–Smale condition, that is, the validity of (E2). In what follows,
the notation ok(1) means a sequence converging to zero as k →∞.

Lemma 5.5. Let (Mn, g) be a closed Riemannian manifold and W ∈ W+
N,1. For any (ε,v) ∈ Rm+1

and c ∈ R, the vectorial energy Eε : Mv → R satisfies the Palais–Smale condition at level c ∈ R.

Proof. Assume that {uk}k∈N ⊂Mv is a Palais–Smale sequence for Eε. By density, we may suppose

that {uk}k∈N ⊂ C2(M,Rm). Also, by definition, we get

ε

2

∫
M
|∇guk|2 dLng +

1

ε

∫
M
W (uk(x)) dLng = c+ ok(1)

and

− ε∆guk +
1

ε
∇W (uk) = Λk + Tk, (5.2)

where {Λk}k∈N ⊂ Rm is a sequence and Tk = ok(1) strongly in H−1(M,Rm). The proof will be
divided into two claims
Claim 1: There exists u ∈ L1

g(M,Rm) such that ‖uk − u‖L1
g(M,Rm) = ok(1), up to subsequence.

Indeed, since the potential is nonnegative there exists c > 0 such that

c+ 1 >
ε

2

∫
M
|∇guk|2 dLng +

1

ε

∫
M
W (uk(x)) dLng >

ε

2

∫
M
|∇guk|2 dLng .

Thus, {|∇guk|}k∈N ⊂ L2
g(M,Rm) is bounded. By the Poincaré inequality on closed manifolds, there

exists C1 = C1(M, g) > 0 such that ‖uk − ūk‖L2
g(M,Rm) = ‖uk −v‖L2

g(M,Rm) 6 C1‖∇guk‖L2
g(M,Rm),

where ūk the spherical average of uk. Thus, {uk}k∈N is bounded in H1
g (M,Rm), and the proof of

the claim follows by compactness.

2This terminology means that ΨR(M) is a picture of the finite-dimensional Riemannian manifold M on the
infinite-dimensional Hilbert manifold Mc

ε,v, which relates their topologies.



MULTIPLICITY OF SOLUTIONS TO THE ALLEN–CAHN–HILLIARD SYSTEM 31

Claim 2: It holds that uk = u + ok(1) in Mc
ε,v.

In fact, because of (W1), for some 1 < p < 2∗ the vectorial Nemytskii map N : Lpg(M,Rm) →
Lp
′
g (M,Rm) given by N (u) = ∇W (u) is a bounded nonlinear operator, where p′ = p

p−1 and

p′ > 2n
n+2 > 2. By the Sobolev embedding theorem, the inclusion H1

g (M,Rm) ↪→ Lpg(M,Rm)

is compact, and so is the nonlinear operator N , which yields ∇W (uk) → ∇W (u) strongly in

Lp
′
g (M,Rm) ⊂ H−1

g (M,Rm), up to subsequence. Finally, taking the inner product of (5.2) with
uk, integrating by parts the corresponding vectorial identity, and using the volume constraint∫

ukdx = v, we get that Λk ⊂ Rm is a bounded sequence. Therefore, up to a subsequence, we may
assume Λk = Λ + ok(1). Now, notice that ∆−1

g : H−1
g (M,Rm) → H1

g (M,Rm) is an isomorphism
onto its image when restricted to the subspace of functions orthogonal to the constants. Also,
by taking c = −vg(M)−1v we get that wk := uk + c is orthogonal to the space of constant
functions and ∆gwk = ∆guk for all k ∈ N. Thus, {wk}k∈N is H−1

g (M,Rm) convergent, and so

it is also strongly convergent in H1
g (M,Rm), which implies that {uk}k∈N is strongly convergent

H1
g (M,Rm). �

5.4. Photography map. We prove that the photography map is well-defined and continuous.
Here we are based on Proposition 11 and on some properties of the signed distance function.
The next result states that for any x ∈ M , v ∈ Rm, there exists a unique cluster containing a
fixed point and enclosing a small volume on Riemannian manifold. For this, the last identification
needs to be one-to-one and continuous. This requires the manifold to be parallelizable. When
N = 3, the clusters constructed below coincides with the geodesic double-bubble introduced
in [29, Definition 3.2].

Remark 5.6. For the next result, we need to introduce the principal O(n)-bundle over M , denoted
by O(M). Namely, this frame bundle is such that each fiber is isomorphic to the orthogonal group,

that is, π−1
sub({x}) ' O(n), where πsub : M̂ → M is the standard submersion and M̂ is the total

space associated to O(M). Notice that since M is parallelizable, there exists a global section

Γ(O(M)) ∈ M̂ . In other words, from any global smooth section φ̃ ∈ Γ(O(M)), one can construct
a continuous map defined on M given by x 7→ φx : (TxM, gx)→ (Rn, δ), where φx is an isometry.
In this fashion, we identify TxM = φ−1

x (Rn).

Lemma 5.7. Let (Mn, g) be a closed parallelizable Riemannian manifold and W ∈ W+
N,0 with

N = 3. For each x ∈M and v ∈ Rm, there exists a unique a 3-cluster Ωx,v ∈ Cg(M,R3) enclosing

small volume vg(Ω
x,v) = v ∈ R3 such that x ∈ Ω̃x,v ⊂ Bginjg/2

(x) and I(Rn,δ)(v) ∼ Pg(Ω
x,v) as

v→ 0.

Proof. First, by the existence result in [45, Theorem 7.29], one can find an isoperimetric weighted
3-cluster Ωx,v

∗ ∈ Cδ(Rn,R3) such that 0 ∈ TxM ≡ (Rn, δ) is the barycenter of the cluster Ωx,v
∗ . Now

we consider the cluster φ−1
x (Ωx,v

∗ ) whose chambers are φ−1
x (Ωx,v

i,∗ ) which since M is parallelizable is

uniquely determined once fixed an orthonormal frame field (see Remark 5.6). By [11, Theorem 1.1]

(see Remark 4.1), such a cluster satisfies Ω̃x,v
∗ ⊂ Br∗(0) ⊂ Rn for some 0 < r∗ <

1
2 injg sufficiently

small, where Ω̃x,v
∗ = ∪2

i=1Ω̃x,v
∗,i are its interior chambers. Finally, we construct Ωx,v ∈ Cg(M,RN )

by setting Ωx,v
i = expx(φ−1

x (Ωx,v
i,∗ )) for all i = 1, 2 such that Ωx

i ⊂ Br∗(x) := expx(Br∗(0)). Now

we can choose v∗ = v(Ω̃x,v
∗ ) in such a way that the weighted 3-cluster Ωx,v encloses small volume

v = v(Ωx,v), which satisfies v ∈ (0, vg(Binjg/2
(x)))m. This is always possible thanks to the fact

that the exponential map is almost-isometry at small scales ) < r∗(v) � 1 so v∗ ∼ v, that is,
v∗i ∼ vi for every i ∈ {1, 2}. This finishes the proof of the lemma. �
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Next, we prove the continuity of the photography map.

Lemma 5.8. Let (Mn, g) be a closed parallelizable Riemannian manifold and W ∈ W+
N,0 with

N = 3. For every v ∈ Rm and τ > 0, one can find ε1(v,W , τ) > 0 such that ΨR : M →Mc
ε,v

carries M into the sublevel Mc
ε,v, where c = I(M,g)(v) + τ . Moreover, ΨR : M → Mc

ε,v is a
continuous map for every ε ∈ (0, ε1).

Proof. The photography map ΨR at x ∈M is defined in terms of the Modica–Baldo approximation
family uε,v,x for the sums of weighted characteristic functions of the interior chambers of a cluster
containing x with vectorial volume equals v as in Definition 4.16. In addition, by Proposition 11
and the asymptotic expansion in Corollary 3.28, it follows that Eε (uε,v,x) . I(M,g)(v) as ε → 0,
uniformly with respect to x and v.

Then, using the compactness of M , we are left to prove the continuity of the photography map.
To this aim, we will first prove the following estimate:
Claim 1: For any (ε,v) ∈ Rm+1 and x1, x2 ∈M , we have

‖uε,v,x1 − uε,v,x2‖H1
g (M,Rm) = o(1) as |x1 − x2| → 0. (5.3)

To prove (5.3), we use (4.10) to see that the recovery sequence is given by

uε,v,x(y) = q̃ε(d
x,v(y) + ζε,v,x).

In this fashion, it follows

‖uε,v,x1 − uε,v,x2‖
2
H1
g (M,Rm) =

∫
M

(
|uε,v,x1 − uε,v,x2 |

2 + |∇g(uε,v,x1 − uε,v,x2)|2
)

dLng (5.4)

:=

∫
M
Iε,v(x1, x2)dLng

Now, it suffices to estimate both terms on the right-hand side of (5.4). First, we have∫
M
Iε,v(x1, x2)dLng =

∫
M

(
|uε,v,x1 − uε,v,x2 |

2 + |∇g(uε,v,x1 − uε,v,x2)|2
)

dLng

=

∫
M\Bgε

∣∣q̃ε(dx1,v(y) + ζε,v,x1)− q̃ε(d
x2,v(y) + ζε,v,x2)

∣∣2 dLng (y)

+

∫
M\Bgε

∣∣∇g(q̃ε(dx1,v(y) + ζε,v,x1)−∇g(q̃ε(dx2,v(y) + ζε,v,x2))
∣∣2 dLng (y).

6 2‖∇gq̃ε‖L∞(M,Rm)

[∫
M\Bgε

(
|dx1,v(y)− dx2,v(y)|2 +

∣∣ζε,v,x1 − ζε,v,x2∣∣2)dLng (y)

]

+ 2‖∇gq̃ε‖L∞g (M,Rm)

∫
M\Bgε

|∇gdx1,v(y)−∇gdx2,v(y)|2 dLng (y).

6 C2

[(
‖dx1,v(y)− dx2,v(y)‖2

W 1,∞
g (M,Rm)

+
∣∣ζε,v,x1 − ζε,v,x2∣∣2)] ,

where C2 = C2(ε,v,M, g,W ) > 0. Hence, applying the implicit function theorem in (4.9), we
observe |ζε,v,x1 − ζε,v,x2 | = o(1) as |x1 − x2| → 0. As well as, a simple geometric argument as
in [18, Proposition 4.13] yields ‖dx1,v − dx2,v‖W 1,∞(M,Rm) = o(1) as |x1 − x2| → 0. Thus, we find∫

M\Bgε
I1
ε,v(x1, x2)dLng = o(1) as |x1 − x2| → 0. (5.5)

Therefore, (5.3) follows by combining (5.4) and (5.5). This in turn readily implies the continuity
of the photography map and finishes the proof of the lemma. �
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5.5. Quasi-minima sublevel sets. We analyze the concentration properties of maps on a
sublevel of the energy that is close to its minimum. More precisely, we show that for small
0 < ε, |v| � 1 solutions to (ACHε,v,m,N,g) with energy almost I(Rn,δ)(v) are close in the L1-norm
to maps like (7).

First, we prove that for 0 < ε � 1 small these almost minimizing maps are close to (7); this
will be called an approximation lemma.

Lemma 5.9. Let (Mn, g) be a closed Riemannian manifold and W ∈ W+
N,3. For any η ∈ (0, 1),

v ∈ (0, vg(M))m, and τ > 0, there exists ε0 = ε0(M, g,v,W , τ, η) > 0 such that for any
ε ∈ (0, ε0) and u ∈ Mc

ε,v with c = I(M,g)(v) + τ > 0, one can find a weighted cluster

Ωv,u = (Ωv,u
1 , . . . ,Ωv,u

N ) ∈ Cg(M,RN ) with prescribed vectorial volume vg(Ω
v,u) = v ∈ RN such

that ∥∥∥∥∥u−
N∑
i=1

piχΩv,u
i

∥∥∥∥∥
L1
g(M,Rm)

6 η.

Proof. Suppose by contradiction that the conclusion does not hold. Then, there exist η0 ∈ (0, 1),
v ∈ (0, vg(M))m, τ > 0, {εk}k∈N ⊂ R with εk → 0, and {uεk}k∈N ⊂Mc

εk,v
such that for every

weighted cluster Ωv,u = (Ωv,u
1 , . . . ,Ωv,u

N ) ∈ Cg(M,RN ) with vectorial volume vg(Ω
v,u) = v ∈

RN−1, it follows ∥∥∥∥∥uεk −
N∑
i=1

piχΩv,u
i

∥∥∥∥∥
L1
g(M,Rm)

> η0 > 0. (5.6)

Also, we can apply Proposition 11 with E := c to construct a subsequence denoted {εk}k∈N ⊂ R,

and a weighted cluster Ωv,u = (Ωv,u
1 , . . . ,Ωv,u

N ) ∈ Cg(M,RN ) with vectorial volume vg(Ω
v,u) =

v ∈ RN such that Pg(Ω
v,u) 6 c and∥∥∥∥∥uεk −

N∑
i=1

piχΩv,u
i

∥∥∥∥∥
L1
g(M,Rm)

= ok(1),

which contradicts (5.6) and finishes the proof of the lemma. �

Now, we prove that 0 < τ � 1 can be chosen small enough such that the cluster produced by
the preceding lemma is in fact isoperimetric.

Lemma 5.10. Let (Mn, g) be a closed Riemannian manifold and W ∈ W+
N,3. For any η ∈ (0, 1),

v ∈ (0, vg(M))m, and τ > 0, there exists ε0 = ε0(M, g,v,W , τ, η) > 0 such that for any ε ∈ (0, ε0)
and u ∈ Mc

ε,v with c = I(M,g)(v) + τ > 0, one can find an isoperimetric weighted cluster

Ωv,u = (Ωv,u
1 , . . . ,Ωv,u

N ) ∈ Cg(M,RN ) with prescribed vectorial volume vg(Ω
v,u) = v ∈ RN , such

that ∥∥∥∥∥u−
N∑
i=1

piχΩv,u
i

∥∥∥∥∥
L1
g(M,Rm)

6 η.

Proof. Again, let us suppose by contradiction that the conclusion does not hold. Then, there
exist 0 < η0 < 1, v ∈ (0, vg(M))m, two sequences {τk}k∈N, {εk}k∈N ⊂ R with τk, εk → 0 as
k → 0, and {uεk}k∈N ⊂Mck

εk,v
, where ck = I(M,g)(v) + τk, such that for every weighted cluster

Ωv,u ∈ Cg(M,RN ) with vectorial volume vg(Ω
v,u) = v ∈ RN , it follows∥∥∥∥∥uεk −

N∑
i=1

piχΩv,u
i

∥∥∥∥∥
L1
g(M,Rm)

> η0 > 0. (5.7)
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Then, we can apply Proposition 11 with E := c1 to construct a subsequence still denoted by
{εk}k∈N ⊂ R and a cluster Ωv,u

1 ∈ Cg(M,RN ) with vectorial volume vg(Ω
v,u
1 ) = v ∈ RN and such

that ∥∥∥∥∥uεk −
N∑
i=1

piχΩv,u
1i

∥∥∥∥∥
L1
g(M,Rm)

= ok(1).

To this subsequence, we apply Proposition 11 again with E := c2, producing a subsequence denoted
by {εk}k∈N ⊂ R and a cluster Ωv,u

2 ∈ Cg(M,RN ) with vectorial volume vg(Ω
v,u
2 ) = v ∈ RN such

that ∥∥∥∥∥uεk −
N∑
i=1

piχΩv,u
2i

∥∥∥∥∥
L1
g(M,Rm)

= ok(1).

Notice that, by the uniqueness of the limit of any subsequence, we get Ωv,u
2 = Ωv,u

1 .
At last, using a standard diagonal argument, we find {εk}k∈N ⊂ R and {Ωv,u

` }`∈N ⊂ Cg(M,RN )

satisfying Ωv,u = Ωv,u
1 = · · · = Ωv,u

` with vectorial volume vg(Ω
v,u
` ) = v ∈ RN such that

Pg(Ω
v,u) 6 c` (5.8)

and ∥∥∥∥∥uεk −
N∑
i=1

piχΩv,u
i

∥∥∥∥∥
L1
g(M,Rm)

= ok(1). (5.9)

Now, using (5.8), it is straightforward to conclude that Pg(Ω
v,u) 6 I(M,g)(v), which asserts

that Ωv,u ∈ Cg(M,RN ) is an isoperimetric weighted cluster with vectorial volume v ∈ RN . This
combined with (5.9) contradicts (5.7), and so the proof of the lemma is completed. �

To prove that the barycenter map is well-defined, we need the concentration lemma below

Lemma 5.11. Let (Mn, g) be a closed Riemannian manifold and W ∈ W+
N,0 ∩W

+
N,3 with N = 3.

For any 0 < η � 1 (close to 0 ) and 0 < r < injg/2, there exists v1 = v1(M, g, η, r) such
that for every v ∈ (0, v1)m, one can find τ1 = τ1(M, g,v,W , η) > 0 satisfying that for every
τ ∈ (0, τ1), there exists ε1 = ε1(M, g,v,W , τ, η) > 0 such that for any ε ∈ (0, ε1) and u ∈Mc

ε,v

with c = I(M,g)(v) + τ , one can find an weighted cluster Ωv,u
∗ = (Ωv,u

∗1 ,Ω
v,u
∗2 ,Ω

v,u
∗3 ) ∈ Cg(M,R3)

with prescribed vectorial volume vg(Ω
v,u) = v ∈ R3 satisfying (i)–(iv) of Proposition 12 such that∥∥∥∥∥u−

3∑
i=1

piχΩv,u
∗i

∥∥∥∥∥
L1
g(M,R2)

6 η.

In particular, for any 0� η̃ < 1 (close to 1), one can find xv,u ∈M such that∫
Bg
r/2

(xv,u)
|u|dLng > η̃|v|. (5.10)

Proof. Initially, given v ∈ R2 and u ∈ Mc
ε,v, by Proposition 12, we can infer the existence of

v∗0 := v∗0(n, inj⊥g , r) > 0 such that for every isoperimetric weighted cluster Ωv,u ∈ Cg(M,R3)

with vectorial volume vg(Ωv,u) = v ∈ R3 satisfying |v| ∈ (0, v∗0) there exists Ωv,u
∗ ∈ Cg(M,R3)

satisfying (i)–(iv) of Proposition 12. Furthermore, by Lemma 5.10 and Proposition 12, we get for
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v small enough (depending on η)∥∥∥∥∥u−
3∑
i=1

piχΩv,u
∗i

∥∥∥∥∥
L1
g(M,R2)

6

∥∥∥∥∥u−
3∑
i=1

piχΩv,u
i

∥∥∥∥∥
L1
g(M,R2)

+

∥∥∥∥∥
3∑
i=1

piχΩv,u
∗i
− piχΩv,u

i

∥∥∥∥∥
L1
g(M,R2)

6 η,

(5.11)
which straightforwardly implies the first part of the lemma. In particular, one can find µ > 0 such

that diam(Ω̃v,u
∗ ) 6 µvg(Ω̃

v,u
∗ )1/n 6 µv1/n, for 0 < |v| � 1, we can find xv,u ∈ M and 0 < r � 1

such that Ω̃v,u
∗ ⊂ Bgr/2(xv,u). This last piece of information will be crucial to prove what follows.

In fact it holds ∥∥∥∥∥u−
3∑
i=1

piχΩv,u
∗i

∥∥∥∥∥
L1
g(Bg

r/2
(xv,u),R2)

6 η,

which, by using Proposition 12 (i), implies

vg(Ω̃
v,u
∗ )− η = v − o(v)− η 6

∫
Bg
r/2

(xv,u)
|u|dLng as v→ 0.

Taking 0 < v, η � 1 small enough in the preceding inequality we conclude immediately the proof
of the lemma. �

5.6. Barycenter map. We study the properties of the barycenter map. Notice that
Proposition 12 implies that solutions to (ACHε,v,m,N,g) shall concentrate around isoperimetric
weighted clusters of small volume. This yields a uniform control on the distance of the image of
the barycenter map to the underlying manifold.

Lemma 5.12. Let (Mn, g) be a closed Riemannian manifold and W ∈ W+
N . The vectorial extrinsic

barycenter map βext : H1
g (M,Rm) → RS is continuous in the norm topology. In particular,

for any v ∈ Rm and ε > 0 its restriction to Mc
ε,v is also continuous. The same holds for

πnear ◦ βext : H1
g (M,Rm)→M .

Proof. For any u1,u2 ∈ H1(M,Rm), we have the following estimate∣∣∣∣∣
∫
M x|u1(x)|dLng (x)∫
M |u1(x)|dLng (x)

−
∫
M x|u2(x)|dLng (x)∫
M |u2(x)|dLng (x)

∣∣∣∣∣ 6 ‖x‖∞νu1

∫
M

∣∣∣∣|u1| −
νu1

νu2

|u2|
∣∣∣∣ dLng , (5.12)

where νuj =
∫
M |uj |dL

n
g for j = 1, 2 and ‖x‖∞ := supx∈M {|x|RS} = C(i) < ∞, because M is

compact. Also, using Lebesgue’s dominated convergence and Hölder’s inequality, we get

‖x‖∞
νu1

∫
M

∣∣∣∣|u1| −
νu1

νu2

|u2|
∣∣∣∣ dLng → 0 as ‖u1 − u2‖H1

g (M,Rm) → 0,

which together with (5.12) finishes the proof of the lemma. �

To apply the photography method, we need to control the range of the barycenter map.

Lemma 5.13. Let (Mn, g) be a closed Riemannian manifold and W ∈ W+
N,0 ∩ W

+
N,3. For any

r ∈ (0, inj⊥g /2), there exists v2 = v2(M, g, r,diamRS (M)) > 0 such that for every v ∈ (0, v2)m, there
exists ε2 = ε2(v) > 0 such that for any ε ∈ (0, ε2) and u ∈Mc

ε,v, it follows that βext(u) ∈ Mr,

where Mr is a tubular neighborhood of M ⊂ RS with small thickness 0 < r � 1 on which the
nearest point projection πnear is well-defined.
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Proof. Initially, let us define ρ(u(x)) := |u(x)|(
∫
M |u(x)|dLng (x))−1. Hence, we can rewrite the

barycenter map as βext(u) =
∫
M xρ(u(x))dLng (x). Now, using (5.10), for every v ∈ (0, v2)m, it

holds ∫
Bg
r/2

(xv,u)
ρ(u)dLng > η|v|,

where η ∈ (0, 1) will be chosen later. The last inequality implies

|βext(u)− xv,u| =
∣∣∣∣∫
M

(x− xv,u) ρ(u(x))dLng (x)

∣∣∣∣
6

∣∣∣∣∣
∫
Bg
r/2

(xv,u)
(x− xv,u) ρ(u(x))dLng (x)

∣∣∣∣∣+

∣∣∣∣∣
∫
M\Bg

r/2
(xv,u)

(x− xv,u) ρ(u(x))dLng (x)

∣∣∣∣∣
6
r

2
+ diamRS (M)(1− η).

Therefore, by choosing 0 < η � 1 such that diamRS (M)(1 − η) < r/2, the proof follows as an
application of Lemma 5.11. �

5.7. Homotopy equivalence. In our next step, we prove that the photography map composed of
the barycenter map is continuous and homotopic to the identity. This in turn says that (E3) holds
in our context. For more details on this standard argument of extrinsic Riemannian geometry, we
refer the reader to [55, Lemma 2.1].

Remark 5.14. Observe that, for N = 3, by [11, Theorem 1.1] and Corollary 4.15, it follows that
ΨR(M) ⊂Mc

ε,v for 0 < ε, |v| � 1, where c = I(M,g)(v) + τ(ε) such that τ(ε)→ 0 as ε→ 0.

Lemma 5.15. Let (Mn, g) be a closed parallelizable Riemannian manifold and W ∈ W+
N,0∩W

+
N,3

with N =. There exists r0 = r0(M, g) > 0 such that for any r ∈ (0, r0), one can find
v3 = v3(M, g, r) > 0 such that for every v ∈ (0, v3)m, there exists ε3 = ε3(M, g,v, r) > 0 such that
for every ε ∈ (0, ε3), we have dg((πnear ◦ βext ◦ uε,v,x) , x) < r. In particular, πnear ◦ βext ◦ uε,v,x is
homotopic to idM .

Proof. Initially, since 0 < ε � 1 and v ∈ Rm, by Proposition 11, there exists u0,v,x ∈ L1
g(M,Rm)

such that ‖uε,v,x−u0,v,x‖L1
g(M,Rm) = o(1), where u0,v,x =

∑N
i=1 piχΩxi

. Then, a direct computation

implies

βext

(
N∑
i=1

piχΩxi

)
=

N∑
i=1

σiβext

(
χΩxi

)
, where σi =

|pi|vg(Ωx
i )∑N

j=1 |pj |vg(Ωx
j )
.

Thus, using that 0 < vg(Ω̃) � 1 and [11, Theorem 1.1], we can find 0 < r1 � 1 such that

Ωx
i ⊂ B

g
r1(x) ⊂ M ∩ Bδr1(x), where Bgr1(x) is a totally convex neighborhood of x. This together

with
∑N

i=1 σi = 1 implies

|βext(u0,v,x)− x|RS =

∣∣∣∣∣βext

(
N∑
i=1

piχΩxi

)
− x

∣∣∣∣∣
RS

< r1, (5.13)

Also, we can rewrite the last equality as βext

(∑N
i=1 piχΩxi

)
∈ Bδr1(x).

Next, by continuity of the barycenter map with respect to the L1-norm, there exists 0 < r2 � 1,
such that

|βext(uε,v,x)− βext(u0,v,x)|RS < r2. (5.14)
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Consequently, taking r̃0 = min{r1, r2}, and using (5.13) and (5.14), it holds

|βext(uε,v,x)− x|RS 6 |βext(uε,v,x)− βext(u0,v,x)|RS + |βext(u0,v,x)− x|RS < 2r̃0.

Now, since M is compact, we can choose 0 < r0 < r̃0 � 1 small enough depending only on
the second fundamental form of the isometric immersion of i : M ↪→ RS (denoted by IIM )
and on the injectivity radius of M such that there exists C3 = C3(‖IIM‖∞) > 0 satisfying
dg ((πnear ◦ βext) (uε,v,x), x) 6 C3r0 < injg. Finally, we define the homotopy F : [0, 1] ×M → M

by F (t, x) := expx(t exp−1
x (πnear ◦ βext ◦ uε,v,x)), which by definition satisfies F (0, x) = x and

F (1, x) = πnear ◦ βext ◦ uε,v,x for every x ∈M . Also, the continuity of F with respect to x follows
from the standard properties of the exponential map. �

5.8. Proof of Theorem 1: Multiplicity. Finally, putting all these last results together, we can
prove one of the main theorems of this paper.

Proof of Theorem 1 (first part). Let (Mn, g) be a closed parallelizable Riemannian manifold and
W ∈ W+

3,0∩W
+
3,1∩W

+
3,3. We set v∗ := min {v1, v2, v3} > 0. We also fix τ ∈ (0, τ1) with 0 < τ1 � 1

defined in Lemma 5.11. Hence, we set ε∗ = min {ε0, ε1, ε2, ε3} and c = I(M,g)(v) + τ . Therefore,
as a consequence of Lemmas 5.4, 5.5, 5.8, 5.12 and 5.15, for any v ∈ (0, v∗)

m and ε ∈ (0, ε∗),
we consider X = (M,dg), E = Eε, M = Mv, ΨL(u) = (πnear ◦ βext)(u) and ΨR(x) = uε,v,x to
verify (E1), (E2), and (E3). As a consequence, we apply Theorem B to prove the first item of the
theorem.

The proof of the second item follows directly using the nondegeneracy assumption, and the
argument is concluded. �

6. Generic nondegeneracy

This section contains the proof of the second part of Theorem 1, namely the generic degeneracy
part. Our strategy is to verify the hypothesis (F1), (F2) and (F3) of the abstract transversality
result in Theorem C. In this fashion, we use some ideas from [32, 48, 61]. Let us set up some
terminology. Denote by Sym∞(M) the Banach space of smooth symmetric 2-covectors on M .
Thus, Met∞(M) is an open convex cone in Sym∞(M), where Met∞(M) stands for the space of
smooth metrics over M .

Remark 6.1. Notice that in H1
g (M,Rm) the vectorial Sobolev norm of m-map coincides with

the standard Sobolev norm of the norm of this m-map. More precisely, we have the identity
‖u‖H1

g (M,Rm) = ‖|u|‖H1
g (M), or, in other terms,∫

M
|∇gu|2gdLng =

∫
M
|∇g|u||2dLng .

This equivalence holds for vectorial functional spaces in general.

6.1. Framework. For any (ε, g) ∈ (0,∞) × Met∞(M), let us define two inner products on
C∞g (M,Rm) by

〈u1,u2〉g =

∫
M

(〈∇g|u1|,∇g|u2|〉+ |u1||u2|) dLng (6.1)

and

J ε,g(u1,u2) =

∫
M

(
ε2〈∇g|u1|,∇g|u2|〉+ |u1||u2|

)
dLng . (6.2)

Hence, H1
g (M,Rm) and H1

ε,g(M,Rm) are, respectively, the Hilbert spaces endowed with these inner
products obtained as completions of C∞g (M,Rm). Initially, one may check that the norms induced
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by (6.1) and (6.2) are equivalent. In particular, this implies H1
g (M,Rm) = H1

ε,g(M,Rm) as sets

and the canonical inclusion H1
g (M,Rm)→ H1

ε,g(M,Rm) is an isomorphism of Banach spaces. The

same holds for H1
g1(M,Rm)→ H1

g2(M,Rm) for any g1, g2 ∈ Met∞(M). Fixing g0 ∈ Met∞(M) and
considering any (ε, g) ∈ (0,∞)×Met∞(M), due to the Rellich–Kondrakov compactness theorem,
the canonical inclusion iε,g : H1

ε,g(M,Rm) → Lqg(M,Rm) is a compact operator. We define Aε,g

as the adjoint of iε,g under the canonical Banach space isomorphisms (Lqg(M,Rm))′ ' Lq
′
g (M,Rm)

and H1
ε,g(M,Rm) ' (H1

ε,g(M,Rm))′, where q′ := q/(q − 1).
We prove some preliminary results. First, we show that the adjoint of the inclusion operator is

well-behaved.

Lemma 6.2. Let (Mn, g) be a closed Riemannian manifold. The inclusion operator Aε,g =

i∗ε,g : Lq
′
g (M,Rm) → H1

ε,g(M,Rm), is compact and self-adjoint. Moreover, J ε,g(Aε,gu1,u2) =∫
M |u1||u2|dLng for any u1,u2 ∈ H1

g (M,Rm).

Proof. The proof is a simple computation. �

Now, we compute the first variation of the bilinear operator J and of its adjoint.

Lemma 6.3. Let (Mn, g) be a closed Riemannian manifold. The map J : (0,∞)×Met∞(M)→
Bil(H1

g0(M,Rm)) is of class C1, where J (ε, g) := J ε,g and Bil(H1
g0(M,Rm)) denotes the space of

bilinear forms over H1
g0(M,Rm). In particular, we have

dJ ε,g[ε̂, ĝ](u1,u2) = 2εε̂

∫
M

[
〈∇g|u1|,∇g|u2|〉+ ε2bg,ĝ(∇g|u1|,∇g|u2|) +

1

2
(trg ĝ) |u1||u2|

]
dLng ,

where bg,ĝ is a smooth symmetric 2-covector on M given by
(
bg,ĝ
)
ij

= (trg h)gij/2− gimhmlglj.

Proof. See [48, Lemma 2.3] �

Lemma 6.4. Let (Mn, g) be a closed Riemannian manifold. The map A : (0,∞)×Met∞(M)→
B(Lp

′
g0(M,Rm), H1

g0(M,Rm)) is of class C1, where A(ε, g) and B(Lp
′
g0(M,Rm), H1

g0(M,Rm))

denotes the space of bounded operators from Lp
′
g0(M,Rm) to H1

g0(M,Rm). In particular, we have

dJ (ε,g)[ε̂, ĝ](Aε,gu1,u2) + J ε,g(dA(ε,g)[ε̂, ĝ]u1,u2) =
1

2

∫
M

(trg ĝ) |u1||u2|dLng .

Proof. See [48, Lemma 2.4] �

Finally, we will use that if ∇W : Rm → R is a function of class C1 with suitable growth
conditions as in (W1), then u 7→ ∇W (u) is a Nemytskii operator of class C1.

Lemma 6.5. Let (Mn, g) be a closed Riemannian manifold and W ∈ W+
N,1. The nonlinear

Nemytskii map NW : H1
g0(M,Rm)× Rm → Lp

′
g0(M,Rm) given by NW (u,Λ) = Λ + u−∇W (u)

is of class C1. In particular, we have

d (NW )(u,Λ) [û, Λ̂] = Λ̂ + û− û∇W (u).

Proof. See [25, Section 2]. �

6.2. The case of nonconstant solutions. The first step to prove our main result is the lemma
that follows, in which we restrict ourselves to nonconstant solutions. We identify the set of constant
solutions to (ACHε,v,m,N,g) with Rm, and consider H1,∗

g0 (M,Rm) := H1
g0(M,Rm) \ Rm. We set

G∗W ,v =

{
(ε, g) ∈ (0,∞)×Met∞(M) :

any nonconstant solution (u,Λ) ∈ H1,∗
g0 (M,Rm)× Rm

to (ACHε,v,m,N,g) is nondegenerate

}
,
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The idea consists in defining a suitable transversality map such that the set of solutions to
(ACHε,v,m,N,g) is the level set of this map.

Definition 6.6. Let (Mn, g) be a closed Riemannian manifold and W ∈ W+
N . We define the

so-called transversality map

FW : (0,∞)×Met∞(M)×H1,∗
g0 (M,Rm)× Rm → H1

g0(M,Rm)× Rm

given by

FW (ε, g,u,Λ) =

(
u− (Aε,g ◦NW ) (u,Λ),

∫
M

udLng
)
.

Lemma 6.7. Let (Mn, g) be a closed Riemannian manifold and W ∈ W+
N,1 ∩ W

+
N,2. The set of

solutions (u,Λ) ∈ H1,∗
g0 (M,Rm) × Rm to (ACHε,v,m,N,g) is a level set of FW . More precisely,

(u,Λ) ∈ H1,∗
g0 (M,Rm)×Rm is a solution to (ACHε,v,m,N,g) if, and only if FW (ε, g,u,Λ) = (0,v).

Proof. It follows by Lemma 6.2. �

Now, we are left to analyze the differentiability of the transversality map.

Lemma 6.8. Let (Mn, g) be a closed Riemannian manifold and W ∈ W+
N,1 ∩ W

+
N,2. The map

FW : (0,∞)×Met∞(M)×H1,∗
g0 (M,Rm)×Rm → H1

g0(M,Rm)×Rm is of class C1. In particular,
we nave

d (FW )(ε,g,u,Λ) [ε̂, ĝ, û, Λ̂]

=

(
û−Aε,g ◦ d (NW )(u,Λ) [û, Λ̂]− dA(ε,g)[ε̂, ĝ] ◦NW (u,Λ),

∫
M

(
1

2
(trg ĝ) u + û

)
dLng

)
.

Proof. Using (W1) and (W2), it is a simple computation based on Lemmas 6.3, 6.4, and 6.5. �

Lemma 6.9. Let (Mn, g) be a closed Riemannian manifold and W ∈ W+
N,1 ∩ W

+
N,2. The set

G∗W ,v ⊂ (0,∞)×Met∞(M) is open and dense with respect to the Gromov–Hausdorff topology.

Proof. The proof consists of a direct application of Theorem C. More accurately, let us set
X = Z = H1

g0(M,Rm) × Rm, Y = V = (0,∞) × Sym∞(M), U = H1,∗
g0 (M,Rm), F = FW and

z0 = (0,v). The proof that the hypothesis (F1), (F2) and (F3) in Theorem C hold in this context
is technical and based on Lemma 6.8. �

6.3. Proof of Theorem 1: Generic nondegeneracy. We examine the case in which constant
solutions to (ACHε,v,m,N,g) are considered.

Proof of Theorem 1 (second part). Let (Mn, g) be a closed Riemannian manifold and W ∈ W+
N,1∩

W+
N,2. For any g ∈ Met∞(M), we denote the set of nonzero eigenvalues of the Laplace–Beltrami

operator by σ(−∆g)
∗ = {αj(g) : j ∈ N}. We have two claims.

Claim 1: The set GW ,v is open.
Indeed, let (ε, g) ∈ (0,∞) × Met∞(M) and (ε̂, ĝ) ∈ GW ,v. We have two cases to analyze. If
(ACHε,v,m,N,g) for ε = ε̂ and g = ĝ does not admit constant solutions, the result is a corollary

of Lemma 6.9. In the other case, since the maps N1,N j
2 : Met∞(M) → R given, respectively, by

N1(g) = ∇2W (v/vg(M)) ∈ R and N j
2 (g) = αj(g) ∈ R are continuous maps for any j ∈ N, we

conclude that (ε̂, ĝ) possess a neighborhood V in (0,∞)×Met∞(M) for which the constant solutions
are nondegenerate. Finally, we have V ∩ GW ,v is a neighborhood of (ε, g) ∈ (0,∞) ×Met∞(M)
such that the respective (ACHε,v,m,N,g) does not admit degenerate solutions.
Claim 2: The set GW ,v is dense.
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In fact, let U ⊂ (0,∞) × Met∞(M) be a neighborhood of (ε, g). To show that GW ,v is dense,
we need to verify that GW ,v ∩ U is not empty. As a matter of fact, taking (ε, g) ∈ GW ,v ∩ U
and supposing that (ACHε,v,m,N,g) does not admit constant solutions, we can apply Lemma 6.9.
Otherwise, the volume constraint shows that the unique constant solution shall be u = vg(M)−1v,
which is a degenerate solution if, and only if, the linearized system (3) admits a nontrivial solution.
This happens when there exists j ∈ N satisfying

ε2 = −∇
2W (vg(M)−1v)

αj(g)
.

Therefore, since σ(−∆g)
∗ ⊂ (0,∞) is a discrete subset, there exists ε̂ > 0 such that (ε̂, g) ∈

GW ,v ∩ U and the last identity does not hold for any j ∈ N, which yields (ε̂, g) ∈ GW ,v.
As a result of these two claims, the proof of the theorem is concluded. �
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