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Abstract

We prove that m-dimensional Lipschitz graphs in any codimension with C1,α

boundary and anisotropic mean curvature bounded in Lp, p > m, are regular at every
boundary point with density bounded above by 1/2+σ, provided the anisotropic energy
satisfies the uniform scalar atomic condition.

1 Introduction

1.1 Regularity theorems for the area functional

In his seminal work [1], Allard developed the regularity theory for varifolds with bounded
first variation. He first obtained a rectifiability theorem, proving that, for every m-varifold
V,

if sup
∥X∥∞≤1

δV(X) ≤ 1 , thenV {x ∈ Rm+n : Θ∗
m(V, x) > 0} is a rectifiable varifold. (R)

Additionally, he proved a celebrated ε-regularity theorem, which guarantees, for every m-
varifold V with generalized mean curvature in Lp(Hm), p > m, and Hm(spt(∥V∥)∩B (x, r))
close to ωmr

m, that spt(∥V∥) is C1,η locally around x for some η ∈ (0, 1).
Afterwards, in [3], Allard extended this regularity result to varifolds with C1,1 boundary.

Here the boundary is intended as a C1,1 submanifold Γ with dimension m− 1 such that the
first variation of the varifold is bounded away from Γ.

One of the reasons why Allard considered a C1,1 boundary is that for each point
x ∈ Γ there is a neighborhood of x in Γ such that the distance function y 7→ dist(y,Γ)
is differentiable in a tubular neighborhood of Γ. For more details, we refer the reader to
[29], where the authors explore Federer’s notion of reach of Γ to prove that Γ is C1,1 if, and
only if, the reach is strictly positive. Bourni [6] generalized Allard’s boundary regularity
theorem to C1,α boundaries, for α ∈ (0, 1), using a Whitney partition argument to overcome
the non-differentiability of the distance function above around Γ.
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1.2 Anisotropic functionals

A natural question is whether or not the regularity theorems mentioned in Section 1.1
still hold if the first variation is not computed with respect to the area functional, but rather
with respect to more general anisotropic functionals F : Rm+n ×Gr(m,n) → (0,+∞).

Anisotropic functionals, together with their minimizers and critical points, have been
extensively studied, and several results available for the area functional have been extended
to the anisotropic setting. This is typically not an easy task, as several basic properties of
isotropic minimal surfaces dramatically fail for anisotropic minimal surfaces. More precisely,
Allard’s proof of the aforementioned regularity theorems strongly rely on the well-known
monotonicity formula. However, in [2], Allard showed that the monotonicity formula holds
only for linear transformations of the area functional. The lack of a monotonicity formula
for general anisotropic functionals gives rise to numerous technical issues in the theory, since
the majority of the isotropic results deeply rely on it.

De Philippis, De Rosa and Ghiraldin proved in [17] that, if F is of class C1 and satisfies the
so called atomic condition (AC), the rectifiability criterium (R) holds also for the anisotropic
first variation δF in place of δ. This result found applications, among others, in the solution of
the anisotropic Plateau problem [18, 16] and the anisotropic min-max theory [21]. In the case
of an autonomous anisotropy F , i.e., F does not depend on the variable in Rm+n, the authors
in [17] showed that the validity of (R) is actually equivalent to AC. We refer the interested
reader to the following works for further developments of the theory: [33, 9, 18, 23, 41, 12].
In codimension n = 1 and in dimension m = 1, AC is equivalent to strict convexity of F . In
[22], De Rosa and Kolansinski have proven that the atomic condition implies the Almgren’s
strict ellipticity condition. We refer the reader to the following works about this type of
functionals in higher codimension, where basic questions remain open to date: [38, 7, 8].

Several important regularity theorems have been obtained for anisotropic minimizers. In
particular, Almgren [5] proved regularity for sets minimizing an elliptic anisotropic energy in
any dimension and codimension; Duzaar and Steffen, [25], exhibited how to obtain interior
and boundary regularity for integer rectifiable currents in any dimension and codimension
that almost minimize an elliptic anisotropic energy. Schoen, Simon and Almgren [39] proved
that, in codimension 1, anisotropic energy minimizers in the sense of currents have singular
set of Hausdorff codimension at least 2; De Philippis and Maggi in [20] proved regularity
for free boundary Caccioppoli sets that minimize an elliptic anisotropic energy. Figalli in
[28] focused on the proof of regularity for almost minimal integral rectifiable currents, in
codimension 1 and with density 1, under weak conditions on the anisotropic functional:
namely C1,1 anisotropies rather than the usual C2 assumption. We also refer the reader to
[32, 36, 19] for the boundary regularity of anisotropic energy (almost) minimizers and stable
surfaces.

However, the regularity theory of stationary points for anisotropic integrands is much less
understood, due to the number of nontrivial difficulties caused by the lack of a monotonicity
formula and of mass ratio bounds. For codimension 1 varifolds, Allard proved regularity
under a density lower bound assumption [4, The basic regularity Lemma, Assumption (1)].
De Lellis, De Philippis, Kirchheim, and Tione presented in an expository fashion several open
questions in the theory, see [11]. To the best of our knowledge, for codimension bigger than
or equal to 2, the only regularity result for varifolds that are stationary for an anisotropic
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energy is proved by De Rosa and Tione in [24] for varifolds induced by Lipschitz graphs.

1.3 Main result

The aim of this work is to prove the anisotropic counterpart of Allard’s boundary
regularity theorem [3]. To this aim, we will consider the anisotropic integrands introduced
in [24, Definition 3.3] satisfying the uniformly scalar atomic condition (USAC), c.f.
Definition 2.2.

Our main result is the following. For a more precise and detailed statement, we refer to
Theorem 6.2.

Theorem. Let m,n ≥ 2, F be an integrand of class C2 satisfying USAC, Γ ⊂ Rm+n be
an (m − 1)-submanifold of class C1,α, Ω ⊂ Rm, u ∈ Lip(Ω,Rn), and ∂graph(u) = Γ.
Assume that the anisotropic mean curvature of u is in Lp for p > m. Then there exists
δ = δ(m,n, p,F , ∥u∥Lip,Γ) > 0 with the following property. If σ < δ, x ∈ Γ and r0 > 0 are
such that

∥graph(u)∥(B (x, r))

ωmrm
≤ 1

2
+ σ ∀r ∈ (0, r0),

then there exist ρ > 0 and η ∈ (0, 1) depending only on m,n, p,F , ∥u∥Lip,Γ such that

u ∈ C1,η(B (x, ρ)).

Following Allard’s paper [3], an interesting and direct application of this results is for
minimizing currents satisfying a convex barrier assumption. In this scenario, we are able
to prove that all boundary points satisfy the mass ratio bound, thus we would have full
regularity for the boundary. In fact, this was already shown by Hardt in [32].

When either one does not have the convex barrier condition or the condition on the
density, the problem is much more subtle even for minimizers of the area integrand. For
some results in this direction we refer to [10, 13, 37, 31].

2 Notation and preliminaries

We fix integers m,n ≥ 1 and denote R+ := {t ∈ R : t ≥ 0}. We denote by U an open
subset of Rm+n,B (x, r) := {y ∈ Rm+n : |x− y| < r},Br := B (0, r). If π is a linear subspace
of Rm+n, we denote Bπ(x, r) := B (x, r) ∩ (x + π), and we also denote pπ the orthogonal
projection from Rm+n onto π. When π = Rm × {0}, we omit π in the preceding notations.

For s ≥ 0, Hs denotes the s-dimensional Hausdorff measure induced by the Euclidean
metric in Rm+n, and ωs := Hs(Bπ(0, 1)) where π is an s-dimensional subspace. We denote
the inner product of vectors by ⟨, ⟩ : Rm+n ×Rm+n → R, the product of matrices by · where
to any A = (aij)

j=1,...,r
i=1,...,h and B = (bij)

j=1,...,s
i=1,...,r it assigns A · B = (

∑r
k=1 aikbkj)

j=1,...,s

i=1,...,h
, and

A : B = tr(At ·B).
For the basic theory that we will assume, we refer the reader to [27], [40], [1], and the

references therein.
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2.1 Measures, rectifiability and Grassmannian

We denote by M(U,Rm) the set of Rm-valued Radon measures on U , when m = 1, we
denote with M+(U) the set of nonnegative Radon measures on U . Given µ ∈ M(U,Rm), we
set:

• for a Borel set A ⊂ U , µ A(E) := µ(E ∩ A) as the restriction of µ to A;

• ∥µ∥ ∈ M+(U) to be the total variation of µ. Recall that, for any open set A ⊂ U ,

∥µ∥(A) := sup

{ˆ
⟨g(x),dµ(x)⟩ : g ∈ C∞

c (A,Rm), ∥g∥∞ ≤ 1

}
,

where ⟨g(x),dµ(x)⟩ :=
∑m+n

i=1 gi(x)dµi(x);

• the upper and lower s-dimensional density of µ at x, respectively, as

Θ∗
s(µ, x) := lim sup

r→0+

∥µ∥(B (x, r))

Hs(B (x, r))
, Θs

∗(µ, x) := lim inf
r→0+

∥µ∥(B (x, r))

Hs(B (p, r))
.

In case Θ∗
s(µ, x) = Θs

∗(µ, x), we call this number the density of µ at x and denote it by
Θs(µ, x);

• for a Borel function g : U → Rn, the push-forward of µ through g as g♯µ = µ ◦ g−1.

Let M ⊂ U ⊂ Rm+n, we say that M is s-rectifiable if there exist a sequence of Lipschitz
maps {gj : Rs → U}+∞

j=1 and an Hs-null set M0 such that

M =M0 ∪

(
+∞⋃
j=1

gj(Mj)

)
.

In [40, Lemma 1.2, Chapter 3], it is shown that M is s-rectifiable if, and only if, M can
be covered, up to a Hs-null set, by countably many s-dimensional submanifolds of U of
class C1. A nonnegative Radon measure µ ∈ M+(U) is said to be s-rectifiable, if there
is an s-rectifiable set M ⊂ U and a nonnegative Borel function Θ : U → R+ such that
µ = ΘHs M .

The Grassmannian of s-dimensional linear subspaces of Rm+n is denoted by Gr(m+n, s),
we will often call π ∈ Gr(m+n, s) as an s-plane in Rm+n. We endow Gr(m+n, s) with the
metric

∥π − π̃∥ :=

√√√√m+n∑
i,j=1

(⟨ei,pπ(ej)⟩ − ⟨ei,pπ̃(ej)⟩)2, ∀π, π̃ ∈ Gr(m+ n, s),

where pπ and pπ̃ denote the orthogonal projections of Rm+n on π and π̃, respectively, and
{ei}m+n

i=1 is the canonical orthonormal basis of Rm+n. We also fix the notation

Gr(A,m+ n, s) := A×Gr(m+ n, s), ∀A ⊂ U ⊂ Rm+n,

and Gr(A) := Gr(A,m+ n,m).
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2.2 Varifolds

We say that V is an m-varifold on U if V is a nonnegative Radon measure defined on
Gr(U). The space of all m-varifolds on U is denoted by Vm(U). For every V ∈ Vm(U) we
can define the measure ∥V∥ ∈ M+(U), which is often called weight of V, by the relation

∥V∥(A) = V(proj−1(A)), ∀A ⊂ U,

where henceforth proj denote the canonical projection of Gr(U) on U . Hence, we define

Θ∗
m(V, x) := Θ∗

m(∥V∥, x), Θm
∗ (V, x) := Θm

∗ (∥V∥, x),

and, when Θm(∥V∥, x) exists,

Θm(V, x) := Θm(∥V∥, x).

Of particular interest are rectifiable varifolds, which enjoy a richer structure than general
varifolds, see [40, Chapter 4 and 9]. In fact, we say that V ∈ Vm(U) is an m-rectifiable
varifold if, there exists an m-rectifiable set M in U and a positive locally Hm-integrable
function Θ on M with Θ ≡ 0 on Rn \M such that

V(A) =

ˆ
proj(A)∩M

Θ(y)dHm(y), ∀A ⊂ Gr(U).

In this case, we use the notation V = v(M,Θ).
For every diffeomorphism ψ ∈ C1

c (U,Rm+n), the push-forward ψ#V ∈ Vm(U) of V ∈
Vm(U) with respect to ψ is defined asˆ

Gr(U)

Φ(x, π)d(ψ#V)(x, π) =

ˆ
Gr(U)

Φ(ψ(x), dxψ(π))Jψ(x, π)dV(x, π), ∀Φ ∈ C0
c (Gr(U)).

Here dxψ(π) denotes the image of π under the map dxψ(x) and

Jψ(x, π) :=

√
det
((
dxψ

∣∣
π

)∗ ◦ dxψ∣∣π)
is the m-Jacobian determinant of the differential dxψ restricted to π, see [40, Chapter 8].

We consider an anisotropic integrand to be a C1 function F : Gr(U) → (0,+∞) and we
define the anisotropic energy of V with respect to the anisotropic integrand F in A as

EV(A) :=
ˆ
Gr(A)

F(y, π)dV(y, π).

Note that the area integrand is recovered when we consider F ≡ 1.
We define the notion of anisotropic first variation or F-first variation of an m-varifold

V as the distribution that acts on each g ∈ C1
c (U,Rn) as follows

δFV(g) :=
d

dt
E(ϕ#

t V)(U)

∣∣∣∣
t=0

,

where ϕt(x) := x + tg(x). If δFV ≡ 0, we say that V is anisotropically stationary or
F-stationary.

We recall the following formula for the anisotropic first variation of a varifold:

5



Proposition 2.1 (Lemma A.2, [17]). Let F ∈ C1(Gr(U)) and V ∈ Vm(U), then for every
g ∈ C1

c (U,Rm+n) we have

δFV(g) =

ˆ
Gr(U)

[
⟨DxF(x, π), g(x)⟩+ BF(x, π) : Dg(x)

]
dV(x, π),

where the matrix BF(x, π) ∈ Rm+n ⊗ Rm+n is uniquely defined by

BF(x, π) : L := F(x, π)(π : L) +
〈
DπF(x, π), π⊥ ◦ L ◦ π +

(
π⊥ ◦ L ◦ π

)∗〉
, (2.1)

for all L ∈ Rm+n ⊗ Rm+n.

If we assume that δFV is a Radon measure on Br0 \ Γ, there exists a ∥V∥-measurable
function HF : Br0 \ Γ → Rm+n called either anisotropic mean curvature vector or F-mean
curvature vector such that

δFV(g) = −
ˆ
Br0\Γ

⟨HF , g⟩ d∥V∥, ∀g ∈ C1(Br0) s.t. g|Γ ≡ 0, (2.2)

|HF(x)| = D∥V∥∥δFV∥(x), ∀x ∈ Br0 \ Γ,

where D∥V∥∥δFV∥ denoted the Radon-Nykodim derivative.

2.3 Assumptions on the anisotropic integrand

As we briefly mentioned in the introduction, there are several ellipticity conditions which
one might impose on F . We refer the reader to the references in Section 1.2. We will just
recall the ellipticity condition that we will use in this paper, i.e. the uniformly scalar atomic
condition, introduced in [24, Definition 3.3].

To this aim, we denote the dual function of F by F∗ which is defined on Gr(U,m+n, n)
as F∗(x, π) := F(x, π⊥).

Definition 2.2 (Uniformly scalar atomic condition). Given an anisotropic integrand F ∈
C1(Gr(U)), F satisfies the uniformly scalar atomic condition (USAC) if for every x ∈ U
there exists a constant KF ,x > 0 such that

BF(x, π0) : BF∗(x, π⊥
1 ) ≥ KF ,x∥π0 − π1∥2, ∀π0, π1 ∈ Gr(m+ n,m).

Remark 2.3. We recall that De Rosa and Tione proved in [24, Proposition 3.5] that USAC
implies the so-called atomic condition. The atomic condition was in turn introduced in [17,
Definition 1.1] to prove the Rectifiability Theorem ((R) with respect to the anisotropic first
variation δF). Hence, the Rectifiability Theorem (R) holds assuming that the anisotropic
integrand satisfies USAC.

3 Anisotropic first variation at boundary points

We isolate here the assumptions under which we work in this section.
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Assumption 1. We set the boundary, varifold and anisotropy assumptions as follows:

(Boundary) Let Γ be a closed (m−1)-dimensional submanifold of class C1,α for some
α ∈ (0, 1]. Assume that 0 ∈ Γ, the radius r0 > 0 is such that Γ ∩Br0 is a graph of a
C1,α function over T0Γ and κ ≥ 0 is a constant which satisfies

|pNxΓ(x− y)| ≤ κ|x− y|1+α, ∥pNxΓ − pNyΓ∥ ≤ κ|x− y|α and cκrα0 <
1

2
, (3.1)

for all x, y ∈ Γ ∩Br0 ;

(Varifold) Let V ∈ Vm(Br0) satisfying 0 ∈ spt(V) and Θ(x) ≥ 1 for ∥V∥-almost
every x ∈ Br0 . We assume that δFV is a Radon measure when restricted to Br0 \ Γ,
and the F -mean curvature HF of V belongs to L1 (Br0 \ Γ,V);

(Anisotropy) Let F ∈ C1(Gr(Br0)).

3.1 A good distance function

If Γ were of class C1,1 we would have that Γ has strictly positive reach and the distance
function d(x,Γ) is differentiable (not necessarily of class C1) in a tubular neighborhood
of thickness of the reach. However, for a C1,α boundary Γ, the distance function is not
necessarily differentiable and thus we need to “smoothen it”. Bourni in [6, Section 3] showed
how to properly construct this smooth distance function and we briefly recall the main
properties that we are going to use in our work.

Following the scheme of [35, Definition 5.3.2 and 5.3.9], let W be a Whitney decompo-
sition of Br0 \ Γ into nontrivial closed (m + n)-cubes such that, for every C ∈ W , we have
that

diam(C) ≤ d(C,Γ) ≤ 3diam(C).

We will fix the following notations: xC is the center of the cube C, pC is a point in Γ that
satisfies |xC − pC | = d(xC ,Γ) and {φC}C∈W is a Whitney partition of the unity associated
to W as in [35, Definition 5.3.9] such that

|DφC(x)| ≤
c

d(x,Γ)
, (3.2)

where c ≥ 2 is a dimensional constant. Since by construction
∑

C∈W φC ≡ 1, and for every
x there exists Cx ∈ W such that φCx(x) > 0, therefore∑

C∈W

φ2
C(x) ≥ C(m,n, r0) > 0. (3.3)

We recall the following lemma:

Lemma 3.1 ([6]). If we assume that cκrα0 < 1/2, there exists ρ : Br0 → R+ such that

(i) ρ is a positive function of class C1 with |Dρ(x)| ≤ 1 + cκρ(x)α;
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(ii) the following equality holds

ρ(x)Dρ(x) =
∑
C∈W

φC(x)pNpC
Γ(x− pC) + Y (x),

where |Y (x)| ≤ cκd(x,Γ)1+α ≤ cκρ(x)1+α;

(iii) we have that

d(x,Γ)

2
≤ (1− cκd(x,Γ)α) d(x,Γ) ≤ ρ(x) ≤ (1 + cκd(x,Γ)α) d(x,Γ) ≤ 3d(x,Γ)

2
.

Remark 3.2. Notice that, the constructions in this subsection do work if we replace Γ by
any k-manifold of class C1,α with k < m+ n.

3.2 First variation formula

We state the formula for the anisotropic first variation at boundary points in the following
proposition. First, following Allard’s framework, we show that, under Assumption 1, the
anisotropic first variation is a Radon measure in the whole ball Br0 , i.e., including the
boundary Γ.

Proposition 3.3. Under Assumption 1, δFV is a Radon measure on Br0. Moreover, there
exists a ∥δFV∥-measurable function NF defined on Γ such that NF(p) ∈ NpΓ,∀p ∈ Γ, and

δFV(g) = −
ˆ
Br0\Γ

⟨HF , g⟩ d∥V∥+
ˆ
Γ

⟨NF , g⟩ d∥δFV∥sing, ∀g ∈ C1(Br0).

Remark 3.4. Thanks to Proposition 3.3, under Assumption 1, δFV is a Radon measure
on the whole ball Br0 and Θ ≥ 1, ∥V∥-a.e. in Br0 . Hence, if F satisfies USAC, by the
Rectifiability criterium [17, Theorem 1] and Remark 2.3, the varifoldV shall bem-rectifiable.

Proof. We want to show that for any compact subset W ⊂ Br0 and g of class C1 with
support in W , we have δFV(g) ≤ C supx∈Br0

|g(x)|. To that end, we cannot directly apply

(2.2), since g does not need to vanish on Γ. We thus define the family of smooth functions
fh : R → R such that h ∈]0, 1[,

fh(t) =

{
1, if t ≤ h/2,

0, if t ≥ h,
, f ′

h(t) ≤ 0, |f ′
h(t)| ≤ 3/h.

Recalling the definition of ρ in Lemma 3.1, by Proposition 2.1, we obtain that

δFV(g) =

ˆ
Gr(Br0\Γ)

[
⟨DxF , g⟩+ BF : Dg

]
dV

=

(∗)︷ ︸︸ ︷ˆ
Gr(Br0\Γ)

⟨DxF , g⟩ dV+

ˆ
Gr(Br0\Γ)

BF : D (g + (fh ◦ ρ)g − (fh ◦ ρ)g) dV.
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Notice that (∗) is controlled by CF ,W supBr0
|g|, thus it remains to bound

ˆ
Gr(Br0\Γ)

BF :

[ T1︷ ︸︸ ︷
D ((1− fh ◦ ρ) g)+

T2︷ ︸︸ ︷
(fh ◦ ρ)Dg+

T3︷ ︸︸ ︷
f ′
h ◦ ρ(∇ρ)t · g

]
dV. (3.4)

Using that F is of class C1 and g has support in W , by the definition of BF in (2.1),
we can bound the modulus of (3.4) by C|T1 + T2 + T3|, where the constant is such that
C = C(F ,W ) > 0.

Since (1− fh ◦ ρ) g vanishes on Γ, by (2.2), we have that
ˆ
Gr(Br0\Γ)

BF : D((1− fh ◦ ρ) g)dV = −
ˆ
Gr(Br0\Γ)

⟨(1− fh ◦ ρ) g,HF +DxF⟩ dV. (3.5)

We notice that fh ◦ ρ → 0 as h → 0, which together with (3.5) ensures the estimate
|T1|+|T2| ≤ C1(F ,W ) sup |g|. It remains to bound the last summand T3 by C2(F ,W ) sup |g|,
which is done by precisely the same proof provided in [6, Equation 3.10]. Therefore we have
that δFV(g) ≤ C supBr0

|g| which guarantees that δFV is a Radon measure on Br0 . The

moreover part can be proved as in [6, Theorem 3.1], hence we omit the details here.

4 Caccioppoli inequality at boundary points

An usual step in the proof of regularity theorems is proving an estimate where the excess
is controlled by the height, mean curvature, and an ’error’ in case of ’boundary points’.
This is the so-called Caccioppoli-type inequality. To the best of our knowledge, there is no
such result for boundary points ofm-rectifiable varifolds with L2-integrable anisotropic mean
curvature.

Allard did prove a Caccioppoli-type inequality in [3, Lemma 4.5] for the area functional.
Unfortunately, the techniques used in the isotropic case do not work in the anisotropic
case due to the lack of a monotonicity formula. We also have another difficulty compared
to Allard’s work: our boundary Γ has regularity C1,α while the setting of [3] requires a
boundary Γ of class C1,1, as explained in the introductory section.

We aim to achieve a Caccioppoli-type inequality (Proposition 4.2) in the sense of [3,
Lemma 4.5], [24, Proposition 4.3], and [6, Lemma 4.10].

Assumption 2. We assume Assumption 1. We further impose that the anisotropic
functional F satisfies USAC, defined in Definition 2.2, and HF ∈ L2(Br0).

Under such assumptions, by Remark 3.4, the varifold V is m-rectifiable. So, henceforth
we might use the following notation V = v(M,Θ). We define the classical notions of excess
and height for varifolds as follows.

Definition 4.1. Let V = v(M,Θ) be a rectifiable m-varifold and π ∈ Gr(m + n,m). We
define the tilt excess of V with respect to π in B (x, r) as the number

eV(π, x, r) :=
1

rm

ˆ
B(x,r)

∥π − TyM∥2d∥V∥(y).
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We also define the height excess of V with respect to π in B (x, r) to be the number

hV(z, π, x, r) :=
1

rm

ˆ
B(x,r)

d(y − z, π)2d∥V∥(y).

We usually hide the subscripts whenever it is clear from the context.

We now state the Caccioppoli-type inequality in this context.

Proposition 4.2 (Caccioppoli-type inequality). Under Assumption 2, there exists a constant
C = C(m,n, ∥F∥C2 , KF ,Γ) > 0 such that

Ce(π, 0, r/2) ≤ 1

r2
h(z, π, 0, r) + r2−m∥HF∥2L2(Br)

+ κ2r2α, (4.1)

for all z ∈ Rm+n, 4r < r0, π ∈ Gr(m+ n,m) with T0Γ ⊂ π.

When the varifold V is induced by the graph of a Lipschitz function, the next corollary
states that the quantities in Proposition 4.2 can be replaced by integrations on balls of
the subspace Rm, while in Proposition 4.2 they are quantities/integrations over balls of the
ambient space Rm+n.

Given an open bounded set Ω ⊂ Br0 ⊂ Rm and a Lipschitz function u : Ω → Rn, we will
denote by

V[u] := v(graph(u), 1)

the m-varifold induced by graph(u) ⊂ Rm+n and by HF its anisotropic mean curvature. Let
also H[u] : Ω → Rn denote the function H[u](x) := HF(x, u(x)) and, for any R > 0, z ∈
BR, s < d(z, ∂BR), and f : BR ⊂ Rm → Rn measurable function, we set

(f)x,s :=
1

Hm (B (x, s) ∩ sΩ)

ˆ
B(x,s)∩sΩ

f(y)dy and (f)s := (f)0,s.

For the reader’s convenience, we recall that B (x, s) := B ((x, 0), s) ∩ (Rm × {0}).

Corollary 4.3 (Caccioppoli-type inequality). Assume that V[u] and H[u] satisfy Assump-
tion 2. There exists a constant Cc = Cc(m,n, ∥F∥C2 , KF ,Γ, ∥u∥Lip) > 0 and Cu :=
2 + 2∥u∥Lip such that

Cc−
ˆ
Br∩Ω

∥Du(y)− L∥2dy ≤ 1

r2
−
ˆ
BCur∩Ω

|u(y)− (u)Cur − L(y)|2dy

+ r2−
ˆ
BCur∩Ω

|H[u](y)|2dy + κ2r2α,

for all L ∈ Rm ⊗ Rn such that T0Γ ⊂ im(h(L)) and ∥L∥ ≤ 2∥u∥Lip and all r ∈ (0, 4−1r0).

Remark 4.4. The function h stands for one of the canonical charts of the Grassmannian,
we make it precise defining h : Rm ⊗ Rn → Rm+n ⊗ Rm+n as

h(L) :=M(L)
[
M(L)tM(L)

]−1
M(L)t, where M(L) :=

(
idm

L

)
.

We refer the reader to [11, Subsection 6.1], [24, Page 470], and [34, Subsection A.6] for a
more expository introduction to these objects.
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Proof. Extending this proof from the interior case to boundary points setting is identical to
the argument presented in [24, Corollary 4.4], but now relying on Proposition 4.2.

Proof of Proposition 4.2. First of all, by standard arguments, cf. [24, Page 465], we can
assume without loss of generality that F is an autonomous functional, i.e., it does not
depend on the variable in Rm+n. Hence we will denote BF(π) ≡ BF(x, π) and KF ≡ KF ,x.
We can set the m-manifold of class C1,α given by Γ = Γ + (N0Γ ∩ π). In particular, by
Remark 3.2, we have a Whitney decomposition W of Br0 \ Γ. We denote with xC and xC
respectively the center of the cube C and the orthogonal projection of xC on Γ. We consider
a Whithney’s partition of unity {φC}C∈W , and a C1 function ρ satisfying all the conclusions
of Lemma 3.1.

We choose the following vector field g ∈ C1
c (B2r,Rm+n) as a test for the first variation:

g(x) := ψ2(x)
∑
C∈W

φ2
C(x)gC(x), where gC(x) := BF∗(π⊥)(pNxC

Γ(x− xC)),

where ψ ∈ C∞
c (B2r, [0, 1]) such that ψ|Br ≡ 1. It is important to choose g using the Whitney

decomposition, since it ensures that g|Γ ≡ 0, in particular g|Γ ≡ 0, and then (2.2) holds. By
direct computations we obtain that

Dg =
∑
C∈W

[
2ψφ2

C (gC) · (∇ψ)t + ψ2φ2
CDgC + 2ψ2φCgC · (∇φC)

t

]
, (4.2)

DgC = BF∗(π⊥) ◦ pNxC
Γ. (4.3)

Equation (4.2) together with (2.2) assures that

−
ˆ

⟨HF , g⟩ =
ˆ ∑

C∈W

BF :

[
2ψφ2

C (gC) · (∇ψ)t + ψ2φ2
CDgC + 2ψ2φCgC · (∇φC)

t

]
. (4.4)

We set the following notation

R1 :=

ˆ ∑
C∈W

ψ2(x)φ2
C(x) ⟨HF(x), gC(x)⟩ d∥V∥(x),

R2 :=

ˆ ∑
C∈W

2ψ(x)φ2
C(x)BF(TxM) :

(
gC(x) · ∇ψ(x)t

)
d∥V∥(x),

R3 :=

ˆ ∑
C∈W

2ψ2(x)φC(x)BF(TxM) :
(
gC(x) · ∇φC(x)

t
)
d∥V∥(x),

L1 := −
ˆ ∑

C∈W

ψ2(x)φ2
C(x)BF(TxM) : BF∗(π⊥) ◦ pNxC

Γd∥V∥(x).

By (4.4) and (4.3) we obtain that

L1 = R1 +R2 +R3. (4.5)
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We estimate |L1| from below. By the definition of L1 and the uniformly scalar atomic
condition, Definition 2.2, recalling that ψ|Br ≡ 1,we get

|L1| ≥ KF

ˆ ∑
C∈W

ψ2(x)φ2
C(x)∥TxM − π∥2d∥V∥(x)

(3.3)

≥ KFC

ˆ
Br

∥TxM − π∥2d∥V∥(x) = KFCr
me(π, 0, r),

(4.6)

where here and in the rest of this proof C = C(m,n, r0) > 0 is defined in (3.3). The right-
hand side of (4.6) is exactly the desired left hand side in the Caccioppoli-type inequality
(4.1), up to the factor rm. Therefore, it remains to bound |R1|+ |R2|+ |R3| from above with
the right hand side in (4.1) (again up to the factor rm) plus a term that can be reabsorbed
in the left hand side of (4.1). With this aim in mind, let us estimate the term R3. We have
that

R3 =

ˆ ∑
C∈W

2ψ2(x)φC(x)BF(TxM) :
(
gC(x) · ∇φC(x)

t
)
d∥V∥(x).

By straightforward linear algebra computations, we have that

BF(π)
t · BF∗(π⊥) = 0 (4.7)

which in turn implies

R3 =

ˆ ∑
C∈W

2ψ2(x)φC(x) (BF(TxM)− BF(π)) :
(
gC(x) · ∇φC(x)

t
)
d∥V∥(x).

We apply Young’s inequality to obtain

|R3| ≤
KFC

4

ˆ
ψ4(x)∥TxM − π∥2d∥V∥(x) (4.8)

+ c(m,n,KF)

ˆ ∣∣∣∣∣∑
C∈W

φC(x)gC(x) · (∇φC(x))
t

∣∣∣∣∣
2

d∥V∥(x).

To bound the second summand on the right hand side of the last inequality, we proceed as
follows∑

C∈W

pNxC
Γ(x− xC) · (∇φC(x))

t =
∑
C∈W

(pNxC
Γ(x− xC)− pNxC

Γ(x− x)) · (∇φC(x))
t

=
∑
C∈W

pNxC
Γ(x− xC) · (∇φC(x))

t,

where in the first equality we have used that
∑

C∈W ∇φC ≡ 0. Plugging the equality above
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in (4.8), we get that

|R3| ≤
KFC

4
rme(π, 0, r) + c

ˆ ∑
C∈W

φC(x)|pNxC
Γ(x− xC)|2|∇φC(x)|2d∥V∥(x)

(3.2)

≤ KFC

4
rme(π, 0, r) + c1

ˆ ∑
C∈W

φC(x)
|pNxC

Γ(x− xC)|2

diam2(C)
d∥V∥(x)

(3.1)

≤ KFC

4
rme(π, 0, r) + κ2c1

ˆ ∑
C∈W

φC(x)
|x− xC |2+2α

diam2(C)
d∥V∥(x)

≤ KFC

4
rme(π, 0, r) + κ2c1

ˆ ∑
C∈W

φC(x)|x− xC |2αd∥V∥(x)

≤ KFC

4
rme(π, 0, r) + κ2rm+2αc1,

(4.9)

where c1 = c1(m,n, ∥F∥C2 ,W) > 0.
Turning our attention to R1, thanks to the hypothesis that HF belongs to L2, we apply

Young’s inequality and Jensen inequality to get

|R1| =
∣∣∣∣ˆ ψ2(x)

〈
HF(x),

∑
C∈W

φ2
C(x)gC(x)

〉
d∥V∥(x)

∣∣∣∣
≤ r2∥HF∥2L2(B2r)

+
C1(m,n)

r2

ˆ ∑
C∈W

ψ4(x)φ4
C(x)|gC(x)|2d∥V∥

≤ r2∥HF∥2L2(B2r)
+
C1(m,n)

r2

ˆ ∑
C∈W

φC(x)|gC(x)|2d∥V∥.

(4.10)

We now use (4.7) to estimate the summand R2 as follows

|R2| ≤
∣∣∣∣ˆ ∑

C∈W

2ψ(x)φ2
C(x) (BF(TxM)− BF(π)) :

(
gC(x) · ∇ψ(x)t

)
d∥V∥(x)

∣∣∣∣
≤ 2

ˆ
∥ψ∥∥∇ψ∥∥BF(TxM)− BF(π)∥

∑
C∈W

φ2
C(x)|gC(x)|d∥V∥(x)

≤C2(m,n, ∥F∥C2)

ˆ
∥ψ∥∥TxM − π∥

∑
C∈W

φ2
C(x)|gC(x)|d∥V∥(x)

≤r
2KFC

4

ˆ
B2r

∥ψ∥2∥TxM − π∥2 + C2(m,n, ∥F∥C2)

r2

∑
C∈W

φ2
C(x)|gC(x)|2d∥V∥(x),

where in the third inequality we have used that F is C2 and that the Grassmannian is
compact, and in the fourth inequality we have used again Young’s inequality. Since the last
chain of inequalities is true for any ψ choosen as above, we can take a sequence {ψi}i∈N ⊂
C∞

c (B2r[0, 1]) such that ψi converges to the indicator functions of Br. Therefore we obtain
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that

|R2| ≤
KFC

4

ˆ
Br

∥TxM − π∥2 + C2

r2

ˆ
B2r

∑
C∈W

φ4
C(x)|gC(x)|2

=
KFC

4
rme(π, 0, r) +

C2

r2

ˆ
B2r

∑
C∈W

φC(x)|gC(x)|2,
(4.11)

where C2 = C2(m,n, ∥F∥C2) > 0. We finally use (4.9), (4.10), and (4.11) to estimate

|R1|+ |R2|+ |R3| ≤
KFC

2
rme(π, 0, r) + r2∥HF∥2L2(B2r)

+ κ2rm+2αc1

+
C2

r2

ˆ
B2r

∑
C∈W

φC(x)|BF∗(π⊥)(pNxC
Γ(x− xC))|2d∥V∥,

(4.12)

where c1 = c1(m,n, ∥F∥C2 ,W) > 0, and C2 = C2(m,n, ∥F∥C2) > 0. It only remains to
bound the last summand of the previous inequality. We firstly recall the equality in [24,
Equation 3.5] which states that BF(π

⊥) = F(π)π⊥ − πDF(π)π⊥ and thus we obtain the
following

|BF∗(π⊥)(pNxC
Γ(x− xC))| ≤ ∥F(π)π⊥ − πDF(π)π⊥∥|pNxC

Γ(x− xC)|

≤ ∥F∥C2|pNxC
Γ(x)− pNxC

Γ(xC)|

≤ ∥F∥C2

(
|pNxC

Γ(x)|+ |pNxC
Γ(xC)|

)
(3.1)

≤ ∥F∥C2

(
|pNxC

Γ(x)|+ κ|xC |1+α
)

≤ ∥F∥C2

(
|(pNxC

Γ − pπ⊥)(x)|+ |pπ⊥(x)|+ κr1+α
)

≤ ∥F∥C2

(
|(pNxC

Γ − pπ⊥)(x)|+ d(x, π) + κr1+α
)

(3.1)

≤ ∥F∥C2

(
κ|xC |α|x|+ d(x, π) + κr1+α

)
≤ 4∥F∥C2

(
d(x, π) + κr1+α

)
.

The chain of inequalities above with (4.12) provides the following estimate

|R1|+ |R2|+ |R3| ≤
KFC

2
rme(π, 0, r) + r2∥HF∥2L2(B2r)

+ c2(m,n, ∥F∥C2 ,W)

(
κ2rm+2α +

ˆ
B2r

d2(x, π)

r2
d∥V∥

)
.

Combining this inequality with (4.6), and recalling (4.5), we can reabsorb KFC
2
rme(π, 0, r)

on the left hand side and conclude the proof of (4.1).

5 Excess decay at boundary points

In this section, we will work under the following Assumption 3. It is clear that
Assumption 3 is more restrictive than Assumption 2.
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Assumption 3. We assume Assumption 1. Additionally, V = V[u] and HF = HF [u],
where u : Ω ⊂ Br0 ⊂ Rm → Rn is a Lipschitz function with HF [u] ∈ Lp(Ω) for some p > m.
We also set Γ ∩B4r0 = ∂(graph(u)) ∩B4r0 and ∂Ω = p(Γ) splits B4r0 into two disjoint open
sets, namely Ω and B4r0 \Ω. Moreover, there exists σ ∈ (0, 1) such that for every r ∈ (0, 4r0),
we have

∥V[u]∥(Br)

ωmrm
≤ 1

2
+ σ. (5.1)

We recall a lemma that relates the stationarity of the function u with the stationarity of
the varifold V[u] induced by u. This lemma is proved in [11] for the case of interior points.
Let us set the notation to state it:

A(L) :=
√
M(L)tM(L), IF(L) := A(L)F (h(L)) ∀L ∈ Rm ⊗ Rn. (5.2)

where h and M(L) are defined in Remark 4.4.

Lemma 5.1. Assume Assumption 3. If for some positive constants C and q ≥ 1 it holds

|δFV[u](g)| ≤ C∥g∥Lq(B4r0×Rm), ∀g ∈ C1
c

(
B4r0 × Rm,Rm+n

)
with g|Γ ≡ 0,

then there exists C ′ = C ′(C,m, p, q) > 0 such that∣∣∣∣ˆ
Ω

⟨DIF(Du), Dζ⟩
∣∣∣∣ dHm ≤ C ′∥ζA

1
q (Du)∥Lq(B4r0 )

, ∀ζ ∈ C1
c (B4r0 ,Rn) with ζ|p(Γ) ≡ 0.

(5.3)
Moreover, if C = 0, thus C ′ = 0.

The proof of Lemma 5.1 is a straightforward extension of [11, Proposition 6.8] to our
boundary setting. Furthermore, [11, Proposition 6.8] can be adapted to give the equivalence
between the two properties. However, we choose to state only the exact statement we will
use.

We now use the mass ratio bound (5.1) in Assumption 3 to prove the following technical
lemma, that will allow us to apply the Caccioppoli inequality (Proposition 4.2).

Lemma 5.2. Under Assumption 3, there exists Cd = Cd(m,n, α) > 0, c0 = c0(m,n, α) > 0
and Lu ∈ Rm ⊗ Rn with T0Γ ⊂ im(h(Lu)) such that ∥Lu − (Du)r∥ ≤ Cdr

α + Cdσ for any
r ∈ (0, c0).

Proof. Without loss of generality, we can assume that Γ = B4r0 ∩Rm−1 ×{0} by a standard
procedure of straightening the boundary (for instance, using [14, Lemma 3.1]). By the Taylor
expansion of the mass (c.f. [15]), we obtain that

C0r
m+α + 2

(
∥V[u]∥(Br)−

ωmr
m

2

)
≥
ˆ
{xm≥0}∩Br

∥Du∥2.

Thus the control over the mass ratio enables us to straightforwardly derive that

∥(Du)r∥ ≤ C0r
α + 2σ.

We choose Lu := lims→0(Du)s which, by the last inequality, satisfies the desired inequality.
It is easy to see that T0Γ = Rm−1 × {0} ⊂ im(h(Lu)), since Du(x) = xmv0 for any x =
(x′, xm) ∈ Rm−1 × {0} and a fixed v0 ∈ Rn.
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One of the crucial parts of the regularity theory is to prove an excess decay with a precise
rate of decay. Let us fix the following shorthand notation for the excess of the function u:

E(x, r, L) := −
ˆ
B(x,r)∩Ω

∥Du(z)− L∥2dz,

E(x, r) := E(x, r, (Du)r), and E(r) := E(0, r).

(5.4)

We now prove the excess decay at boundary points for the function u, i.e., we prove that
the derivative Du of u becomes closer in L2-norm to a linear map as we decrease the radius
of balls centered at the origin. The proof follows a similar argument as the one for [24,
Proposition 4.5].

Proposition 5.3 (Excess decay). Under Assumption 3, there exists a positive constant Ce =
Ce(m,n, ∥F∥C2 , KF , ∥u∥Lip,Γ) > 0 with the following property. For every ε ∈ (0, 4−1C−1

u ),
there exist δ = δ(ε) > 0 such that

rmin{α,1−m
p
}∥HF [u]∥Lp(Ω×Rn) ≤ E(r) ≤ δ and σ ≤ δ (5.5)

imply
E(εr, Lu) ≤ Ceε

2αE(r). (5.6)

Proof. As in the proof of Proposition 4.2, we can again assume without loss of generality
that F is an autonomous functional.

We prove our statement by a contradiction argument. Assume that for every Ce > 0
there exist ε ∈ (0, 4−1C−1

u ) such that, for any δ, σ > 0 satisfying

rmin{α,1−m
p
}∥HF [u]∥Lp(Ω×Rn) ≤ E(r) ≤ δ and σ ≤ δ, (5.7)

for some r, (5.6) does not hold, i.e.,

E(εr, Lu) > Ceε
2αE(r). (5.8)

We divide our proof into three steps. In Step 1, we prove that a certain blowup sequence
for u converges in W1,2(Br∩Ω) to a limit function u0. After that, we show in Step 2 that the
function u0 is a weak solution of an elliptic system of PDEs, subsequently we use regularity
theory for elliptic PDEs to obtain an estimate for the second derivative of u0. We close our
argument in Step 3, where we apply the Caccioppoli inequality, Corollary 4.3, together with
the elliptic estimates from Step 2, to get a contradiction with (5.8).

Step 1: We choose σj = δjε
α and δ2j := E(rj) where rj → 0 satisfying both (5.7) and

(5.8). For j large enough such that rj ≤ min{c0, σ1/α}, we pick L given by Lemma 5.2. We
set Ωj := r−1

j Ω, Γj := r−1
j Γ, and the blowup sequence as follows

uj : Ωj → Rn

z 7→
u(rjz)− (u)rj − rj(Du)rjz

δjrj
.

We assume that δj > 0, otherwise there is nothing to prove. It is easy to see that Ωj → {x ∈
Rm : xm ≥ 0} and Γj → Rm−1 as j goes to +∞. Furthermore, we list some properties of the
sequence uj that will be used in this proof. They are:
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(a) Duj(z) = δ−1
j

(
Du(rjz)− (Du)rj

)
, which is a trivial computation;

(b) (Duj)1 = 0, which is a straightforward consequence of Item a;

(c) −́
B1∩Ωj

∥Duj∥2 = 1, which follows changing variables and using Item a;

(d)
´
B1∩Ωj

∥uj − (uj)1∥2 is uniformly bounded. This follows from the Poincarè-Witinger

inequality and Item c;

(e) E(εrj, Lu) > Ceε
2αEuj

(1), where we set Euj
(r) to be the excess, as defined above in

(5.4), for the function uj, i.e., Euj
(r) := −́

Br∩Ωj
∥Duj(z)− (Duj)r ∥

2dz. This item follows

from (5.8), Item b, and the definition of uj.

Denote the halfball B+
s := Bs∩{(x′, xm) ∈ Rm−1×R : xm > 0},∀s > 0. As a consequence of

Item c and Item d, we obtain that (uj) is bounded in W1,2(B+
1 ). Since W

1,2(B+
1 ) is reflexive,

we can assume that

uj ⇀ u0 in W1,2(B+
1 ) and uj → u0 in L2(B+

1 ).

By classical trace theory, c.f. [26, Section 5.5], we have the following convergence

uj → u0 in L2(Rm−1 ∩ B+
1 ) ⇒ u0|Rm−1∩B1

≡ 0.

Moreover, we also have that there exists a matrix (Du)0 such that (Du)rj → (Du)0 thanks
to the fact that {(Du)rj}j∈N is equibounded.

Step 2: We start defining, for all A ∈ Rn ⊗ Rm, the following sequence of operators

Ij(A) :=
1

δ2j

[
IF(δjA+ (Du)rj)− IF((Du)rj)− δj⟨DIF((Du)rj), A⟩

]
, (5.9)

where IF is defined above in Eq. (5.2). One can check that Ij(A) → D2IF((Du)0)[A,A] in
the C2-topology. We now claim that u0 is a weak solution of an elliptic system of PDEs,
namely,

ˆ
B+

1

D2IF((Du)0)[Du0, Dζ]dHm = 0 for all ζ ∈ C∞
c (B+

1 ,Rn), ζ|p(Γ) ≡ 0. (5.10)

For the fluency of the text, we let the proof of this claim to the end. Since u0 is a weak
solution of the elliptic PDE in (5.10), we have that

sup
B+

1/2

∥D2u0∥2 ≤ ∥u0∥C2,α(B+
1/2

)

Schauder Est.

≤ C0∥u0∥C0,α(B+
1/2

)

DG-N-M

≤ C0∥u0∥L2(B+
1 )

Poincaré Ineq.

≤ C0∥Du0∥L2(B+
1 )

Item c

≤ C0,

(5.11)

where DG-N-M stands for the De Giorgi-Nash-Moser inequality and we put Item c into
account to use the Poincaré inequality.
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Step 3: We now apply the Caccioppoli inequality, i.e., Corollary 4.3, for L chosen at the
beginning of the proof and r = εrj to obtain

Cc−
ˆ
Bεrj∩Ω

∥Du(y)− Lu∥2dy ≤ 1

(εrj)2
−
ˆ
BCuεrj

∩Ω
|u(y)− (u)Cuεrj − Lu(y)|2dy

+ (εrj)
2−
ˆ
BCuεrj

∩Ω
|H[u](y)|2dy + κ2(εrj)

2α.

Using Hölder inequality, we guarantee that

Cc−
ˆ
Bεrj∩Ω

∥Du(y)− Lu∥2dy ≤ 1

(εrj)2
−
ˆ
BCuεrj

∩Ω
|u(y)− (u)Cuεrj − Lu(y)|2dy

+ C0(εrj)
2− 2m

p ∥HF [u]∥2Lp + κ2(εrj)
2α.

(5.12)

We work on the integral in the right-hand side of (5.12) as follows

1

(Cuεrj)2
−
ˆ
BCuεrj

∩Ω
|u(y)− (u)Cuεrj − Lu(y)|2dy

Poincaré Ineq.

≤ −
ˆ
BCuεrj

∩Ω
|Du(y)− Lu|2dy + (∥Lu∥Cuεrj)

2

≤ (∥Lu∥Cuεrj)
2 + ∥Lu − (Du)Cuεrj∥2 +−

ˆ
BCuεrj

∩Ω
|Du(y)− (Du)Cuεrj |2dy.

Using this computations, (5.12) turns into

Cc−
ˆ
Bεrj∩Ω

∥Du(y)− Lu∥2dy ≤ (∥Lu∥Cuεrj)
2 + ∥Lu − (Du)Cuεrj∥2 + C0(εrj)

2− 2m
p ∥HF [u]∥2Lp

+ κ2(εrj)
2α +

1

C2
u

−
ˆ
BCuεrj

∩Ω
|Du(y)− (Du)Cuεrj |2dy.

Rewriting the inequality above in terms of uj (changing variables, dividing by δ2j , using the
definition of the uj’s, and Item a) and inserting (5.7), we derive

Cc−
ˆ
Bε∩Ωj

∥Duj(y)− ℓj∥2dy ≤
(
∥Lu∥Cuεrj

δj

)2

+ ε2αδ2j + C0∥HF [u]∥2Lp

(εrj)
2− 2m

p

δ2j

+ κ2
(εrj)

2α

δ2j
+−
ˆ
BCuε∩Ωj

|Duj(y)− (Duj)Cuε|2dy,
(5.13)

where ℓj := δ−1
j (Lu − (Du)rj). We now focus on bounding the limits of the terms appearing

in (5.13). It is well known that

Ceε
2α Items b and c

= Ceε
2αEuj

(1)
Item e
< −
ˆ
Bεrj∩Ω

∥Du(y)− Lu∥2dy

= −
ˆ
Bε∩Ωj

∥Duj(y)− ℓj∥2dy.
(5.14)
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As a consequence of (5.7), it holds

lim
j→+∞

(
∥Lu∥2C2

uε
2r2j

δ2j
+ C0

(εrj)
2− 2m

p ∥HF [u]∥2Lp

δ2j
+ κ2

(εrj)
2α

δ2j

)
≤ Cbκ

2ε2α. (5.15)

Combining (5.13), (5.14), and (5.15), we attain

CeCcε
2α ≤ Cbκ

2ε2α + lim sup
j→∞

−
ˆ
BCuε∩Ωj

|Duj(y)− (Duj)Cuε|2dy

= Cbκ
2ε2α +−

ˆ
B+

Cuε

|Du0(y)− (Du0)Cuε|2dy

Poincaré Ineq.

≤ Cbκ
2ε2α + C2

uε
2−
ˆ
B+

Cuε

|D2u0(y)|2dy
(5.11)

≤ Cbκ
2ε2α.

Adjusting the constants in the last inequality, we finally find the desired contradiction,
as well we finish the proof of this proposition.

Proof of the claim (5.10): Without loss of generality we can assume that p(Γ) =
Br0 ∩Rm−1. Indeed, it is a standard procedure of straightening/flattening out the boundary,
see [26, Subsection 3.2.3]. If the boundary is not flat, i.e., p(Γ) ̸= Br0 ∩ Rm−1, we take a
smooth function Φ such that Φ(0) = 0, DΦ(0) = 0, and Φ(p(Γ)) = Br0 ∩ Rm−1. So, u0 ◦ Φ
satisfies (5.10), which assures that u0 satisfies a similar elliptic PDE. For more details on
this standard argument, we refer the reader to [26, Subsection 3.2.3].

Fix a flattened boundary p(Γ) = Br0 ∩ Rm−1, denote B+
s := Bs ∩ {(x′, xm) ∈ Rm−1 × R :

xm > 0} for every s > 0, and q ∈ R the conjugate exponent of p, i.e., such that p−1+q−1 = 1.
Let ζ ∈ C∞

c (B+
1 ,Rn) a test vector field with ζ(z′, 0) = 0 for every z′ ∈ Rm−1. Then we define

the sequence ζj(z) := ζ( z
rj
) which for each j also satisfies ζj(z

′, 0) = 0 for every z′ ∈ Rm−1.

Our aim now is to apply Lemma 5.1. To this aim, we estimate the left-hand side of (5.3)
in Lemma 5.1 as followsˆ

B+
1

⟨DIF(Du(z)), Dζj(z)⟩dz = r−1
j

ˆ
B+

1

⟨DIF(Du(z)), Dζ

(
z

rj

)
⟩dz

= rm−1
j

ˆ
B+

1

⟨DIF(Du(rjz)), Dζ (z)⟩dz.
(5.16)

Notice that the domain of integration does not change under the change of variables since ζ
has compact support. Thus, by (5.16), we obtain thatˆ

B+
1

⟨DIF(Du(z)),Dζj(z)⟩dz = rm−1
j

ˆ
B+

1

⟨DIF(Du(rjz))−DIF((Du)rj), Dζ (z)⟩dz

(a)
= rm−1

j

ˆ
B+

1

⟨DIF((Du)rj + δjDuj(z))−DIF((Du)rj), Dζ (z)⟩dz

(5.9)
= δjr

m−1
j

ˆ
B+

1

⟨DIj(Duj(z), Dζ (z)⟩dz,

(5.17)

where we used the compactness of the support of ζ and the divergence theorem for the first
equality. We now focus on the right-hand side of (5.3). Recalling the definition of A and
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that u is Lipschitz, we have that ∥ζjA1/q(Du)∥Lq(Br∩Ω) ≤ C0∥ζj∥Lq(Br∩Ω), where we change
variables to get that

∥ζjA1/q(Du)∥Lq(Br∩Ω) ≤ C0rj
m
q ∥ζ∥Lq(Br∩Ω). (5.18)

We now use Lemma 5.1, (5.17), and (5.18), to derive that

δjr
m−1
j

ˆ
B+

1

⟨DIj(Duj(z)), Dζ (z)⟩dz = δjr
m−1
j

ˆ
B+

1

⟨DIF(Du(z)), Dζj(z)⟩dz

≤ C ′∥ζjA1/q(Du)∥Lq(Br∩Ω)

≤ C ′
0rj

m
q ∥ζ∥Lq(Br∩Ω).

(5.19)

Recalling (5.7) and the choice of q, we easily obtain that

C ′
0

r
m
q
−m+1

j

δj
= C ′

0

r
1−m

p

j

δj
≤ C ′

0

δj
∥HF [u]∥Lp(Ω×Rn)

,

which in turn, together with (5.19), implies that

lim
j→+∞

ˆ
B+

1

⟨DIj(Duj(z)), Dζ (z)⟩dz = 0.

By the very same argument of [24, Proposition 4.5], we conclude from the previous equation
that ˆ

B+
1

D2IF((Du)0)[Du0, Dζ] = 0,

for all ζ ∈ C∞
c (B+

1 ,Rn) with ζ(x′, 0) = 0,∀x′ ∈ B1 ∩ Rm−1, as claimed in (5.10).

6 Boundary regularity

We now define the auxiliary excess for ε > 0, which encompasses the mean curvature
rather than only the excess E, as follows

e(x, s, L) := E(x, s, L) +
8smin{α,1−m

p
}

εm
∥H[u]∥p,

e(x, s) := e(x, s, (Du)r), and e(s) := e(0, s),∀s > 0.

By Proposition 5.3, there exists Ce = Ce(m,n, ∥F∥C2 , KF , ∥u∥Lip,Γ) > 0 with the following
property: setting γ := min{α, 1−m/p} and

ε < min

{
(12Ce)

− 1
2α , C

− 1
2α−γ

e , 2−
2
γ , 8−

1
γ ,

1

4Cu

}
, (6.1)

then there exist δ = δ(ε) > 0 such that (5.5) implies (5.6), i.e.,{
rγ∥H[u]∥p ≤ E(r) ≤ δ

σ ≤ δ
=⇒ E(εr, Lu) ≤ Ceε

2αE(r). (6.2)
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We prove a decay for e in the next corollary, which is a consequence of the excess decay,
Proposition 5.3. We lastly choose

r1 := min

{
δ1/2α

6Cd

,

(
δ

2∥H[u]∥p

) 1
γ

}
and σ < min

{
δ,

1

6Cd

}
. (6.3)

Corollary 6.1. Assume Assumption 3, (6.1), and (6.3). Then we have

e(εjr, Lu) ≤ 2−2je(r) for every j ∈ N and r ∈ (0, r1).

Moreover, there exists η ∈ (0, 1) and ce = ce(r, ε) > 0 such that

e(s, Lu) ≤ ces
2η for all s ∈ (0, r).

Proof. Performing the same computations of Lemma 5.2, the excess E(r) can be taken small
enough, up to choose r1 and σ small enough. Hence, from (6.3), we can fix r > 0 such that

rγ∥H[u]∥p + E(r) ≤ δ. (6.4)

We wish to prove that
e(εr, Lu) ≤ 2−2e(r). (6.5)

To this end we consider two cases.
Case 1: if rγ∥H[u]∥p ≤ E(r), we can apply (6.2) to deduce that

e(εr, Lu)
(6.2)

≤ Ceε
2αE(r) +

8(εr)γ

εm
∥H[u]∥p ≤ (Ceε

2α−γ)εγE(r) +
8(εr)γ

εm
∥H[u]∥p

(∗)
≤ εγe(r) ≤ 2−2e(r),

which is precisely (6.5). Here (∗) follows from the fact that ε < min{C
− 1

2α−γ
e , 2−2/γ}, as

assumed in (6.1).
Case 2: if rγ∥H[u]∥p ≥ E(r), we proceed as follows:

e(εr, Lu) ≤ ε−mE(r, Lu) + 8ε−m+γrγ∥H[u]∥p ≤
(
ε−mrγ + 8ε−m+γrγ

)
∥H[u]∥p

=

(
1

8
+ εγ

)
8rγ

εm
∥H[u]∥p

(∗∗)
≤ 1

4

8rγ

εm
∥H[u]∥p ≤ 2−2e(r),

which is exactly (6.5). In (∗∗) we used that ε < 8−1/γ, as we have assumed in (6.1). We
conclude that (6.4) implies (6.5), i.e.,

r1−
m
p ∥H[u]∥p + E(r) ≤ δ =⇒ e(εr, Lu) ≤ 2−2e(r). (6.6)

We observe that (6.4) holds also with εjr in place of r for every j ∈ N. In fact, we have that

E(εjr, Lu) ≤ 2E(εjr, Lu) + 2∥Lu − (Du)εjr∥2
(5.6)

≤ 2Ceε
2jαE(r) + C0(σ

2 + r2α),

which, thanks to the smallness of r, σ and ε assumed in (6.1) and (6.3), ensures
(εjr)1−m/p∥H[u]∥p+E(εjr) ≤ δ/2. Then, applying (6.6), we obtain e(εjr, Lu) ≤ 2−2je(r) for
any j ∈ N. The latter surely implies the moreover part of the lemma by standard techniques,
see for instance [30, Theorem 3.1].
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We finally have all the tools to state and prove our main theorem. We will rewrite all
the assumptions made up to now as part of the hypothesis of the theorem for the reader’s
convenience.

Theorem 6.2 (Boundary regularity theorem). Let m,n ≥ 2, F be an integrand of class C2

on the m-Grasmannian bundle Gr(B (x, 4r0)) satisfying USAC, Γ be an (m−1)-submanifold
of class C1,α in B (x, 4r0) with reach κ ≤ (2rα0 )

−1 and such that x ∈ Γ. Let Ω be an open
subset of B (x, 4r0) ∩ (Rm × {0}) and V = V[u] ∈ Vm(B (x, 4r0)) be an m-varifold induced
by the graph of u ∈ Lip(Ω,Rn), and ∂graph(u) = Γ. Assume that the anisotropic first
variation δFV is a Radon measure on B (x, 4r0) \ Γ and the anisotropic mean curvature
HF ∈ Lp(B (x, 4r0)), p > m. Then there exists δ = δ(m,n, p, ∥F∥C2, KF , ∥u∥Lip,Γ) > 0
satisfying the following property. If σ ∈ (0, δ) is such that

∥V∥(B (x, r)) ≤
(
1

2
+ σ

)
ωmr

m, for any r ∈ (0, 4r0),

then there exist two constants r2 > 0 and η ∈ (0, 1) depending only on m,n, p, ∥F∥C2,
KF , ∥u∥Lip,Γ, such that u ∈ C1,η(B (x, r2)).

Proof. Without loss of generality, we can assume x = 0. Denote γ := min{α, 1 − m/p}.
The hypothesis of this theorem matches exatcly with Assumption 3. We can choose ε, δ > 0
satisfying (6.1) and (6.3). We now recall that the excess E(·, r) is continuous with respect
to the variable in Rm+n. Hence, as in the proof of (6.4), there exists r2 > 0 such that

rγ∥H[u]∥p + E(y, r) ≤ δ, ∀y ∈ Br2 , ∀r ∈ (0, r1).

We apply Corollary 6.1 to obtain the existence of η ∈ (0, 1) such that

e(y, r, Lu) ≤ cer
2η, ∀y ∈ Br2 , ∀r ∈ (0, r1),

In particular, since (Du)r is optimal for E(p, r, ·), it is easy to see that

E(y, r) ≤ E(y, r, Lu) ≤ e(y, r, Lu) ≤ cer
2η, ∀y ∈ Br2 , ∀r ∈ (0, r1).

This shows that Du restricted to Br2 belongs to a Campanato space, hence it is a Hölder
continuous function for some η ∈ (0, 1) which concludes the proof of the theorem.
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[22] De Rosa, A., and Kolasiński, S. Equivalence of the ellipticity conditions for
geometric variational problems. Communications on Pure and Applied Mathematics
73, 11 (2020), 2473–2515. 1.2

[23] De Rosa, A., and Lussardi, L. On the anisotropic kirchhoff-plateau problem.
Mathematics in Engineering 4, 2 (2022), 1–13. 1.2

24



[24] De Rosa, A., and Tione, R. Regularity for graphs with bounded anisotropic mean
curvature. Inventiones mathematicae 230, 2 (2022), 463–507. 1.2, 1.3, 2.3, 2.3, 4, 4.4,
4, 4, 5, 5

[25] Duzaar, F., and Steffen, K. Optimal interior and boundary regularity for almost
minimizers to elliptic variational integrals. Journal fur die reine und angewandte
Mathematik (2002). 1.2

[26] Evans, L. C. Partial differential equations, vol. 19. American Mathematical Soc.,
2010. 5, 5

[27] Federer, H. Geometric measure theory. Die Grundlehren der mathematischen
Wissenschaften, Band 153. Springer-Verlag New York Inc., New York, 1969. 2

[28] Figalli, A. Regularity of codimension 1 minimizing currents under minimal
assumptions on the integrand. Journal of Differential Geometry 106, 3 (2017), 371–
391. 1.2

[29] Ghomi, M., and Spruck, J. Total curvature and the isoperimetric inequality in
cartan–hadamard manifolds. The Journal of Geometric Analysis 32, 2 (2022), 1–54. 1.1

[30] Han, Q., and Lin, F. Elliptic partial differential equations, vol. 1. American
Mathematical Soc., 2011. 6

[31] Hardt, R., and Simon, L. Boundary regularity and embedded solutions for the
oriented Plateau problem. Ann. of Math. (2) 110, 3 (1979), 439–486. 1.3

[32] Hardt, R. M. On boundary regularity for integral currents or flat chains modulo two
minimizing the integral of an elliptic integrand. Comm. Partial Differential Equations
2, 12 (1977), 1163–1232. 1.2, 1.3

[33] Harrison, J., and Pugh, H. General methods of elliptic minimization. Calculus of
Variations and Partial Differential Equations 56, 4 (2017), 1–25. 1.2

[34] Hirsch, J., and Tione, R. On the constancy theorem for anisotropic energies through
differential inclusions. Calculus of Variations and Partial Differential Equations 60, 3
(2021), 1–52. 4.4

[35] Krantz, S. G., and Parks, H. R. The geometry of domains in space. Springer
Science & Business Media, 1999. 3.1

[36] LIN, F.-H. Regularity for a class of parametric obstacle problems (integrand, integral
current, prescribed mean curvature, minimal surface system). PhD thesis, University of
Minnesota, 1985. 1.2

[37] Nardulli, S., and Resende, R. Density of the boundary regular set of 2d
area minimizing currents with arbitrary codimension and multiplicity. arXiv preprint
arXiv:2204.11947 (2022). 1.3

25
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