
Existence of Extremals and Rigidity for Optimal Sobolev Inequalities

Robin Neumayer

(joint work with Francesco Maggi and Ignacio Tomasetti)

Introduction. Sobolev inequalities, which relate the integrability or regularity
of a function to the integrability of its derivatives, are a fundamental tool across
analysis and geometry. A classical example is the optimal Sobolev inequality on
Euclidean space: for n ≥ 2 and p ∈ (1, n) fixed, any function u ∈ C∞

0 (Rn) satisfies

(1) ‖∇u‖Lp(Rn) ≥ Sn,p‖u‖Lp! (Rn) .

The critical exponent p! = np/(n − p) is the unique value making the left- and
right-hand sides of (1) scale the same way under dilations u(x) &→ u(x/α) for
α > 0. Optimal Sobolev constants often encode geometric information about
their underlying domain or manifold. For example, Ledoux showed in [6] that if a
complete Riemannian manifold (Mn, g) with non-negative Ricci curvature admits
a Sobolev inequality of the form (1) with optimal constant Sg, then Sg ≤ Sn,p,
with Sg = Sn,p if and only if (Mn, g) is isometric to Euclidean space. A stability
result corresponding to this geometric comparison theorem was shown in [13]; for a
comparison theorem for optimal log-Sobolev constants, a different type of stability
was shown in [7] for manifolds with (almost) non-negative scalar curvature.

Let Ω ⊂ Rn be an open bounded domain with C1 boundary. The Sobolev
inequality (1) holds for any u ∈ C∞

c (Ω), with the same optimal constant Sn,p.
This is just one slice of the global picture, though; functions that do not vanish on
the boundary also enjoy a Sobolev inequality once a term with a trace norm on
∂Ω is included. The optimal form of such a Sobolev inequality is defined through
a family of variational problems with two critical constraints: for T ≥ 0, let

(2) ΦΩ(T ) = inf
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Here p# = (n − 1)p/(n − p) is the critical exponent making this norm scale the
same way as the other two; the critical scaling of the norms makes ΦΩ(T ) invariant
under dilations as well as translations of the domain Ω. By definition, ΦΩ(T ) is
the optimal constant in a family of Sobolev inequalities:

‖∇u‖Lp(Ω) ≥ ΦΩ(T )‖u‖Lp! (Ω) whenever ‖u‖
Lp" (∂Ω)

&
‖u‖Lp! (Ω) = T.(3)

The particular slice T = 0 is the inequality (1), i.e. ΦΩ(0) = Sn,p. A constant test

function shows that ΦΩ(I(Ω)
1/p"

) = 0, where we set I(Ω) := Per(Ω)/|Ω|n−1
n .

In [10], Maggi and Villani proved a geometric comparison theorem for the opti-
mal Sobolev constants ΦΩ(T ), showing that balls have the worst optimal Sobolev
constant. More precisely, letting B = {|x| < 1} ⊂ Rn, they showed that

(4) ΦΩ(T ) ≥ ΦB(T ) for all T ∈ [0, I(B)1/p
"

] .

They also proved existence and characterization of minimizers for the variational
problem ΦB(T ) for all T in this parameter range. Scaling shows that half spaces
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have the best optimal Sobolev constant, i.e. ΦΩ(T ) ≤ ΦH(T ) for all T > 0, where
H = {x ·en > 0} ⊂ Rn. In [8], Maggi and the author established the existence and
characterization of minimizers of ΦH(T ) for all T > 0 (see also [3] when p = 2).

Main Results. Two main open problems about ΦΩ(T ) motivate the paper [9].

(A) When do minimizers of the variational problem (2) exist? Equivalently,
when do extremal functions exist in the sharp Sobolev inequality (3)?

(B) Does rigidity hold in the geometric comparison theorem (4)?

From scaling and the characterization of extremal functions of (1) due to Aubin [2]
and Talenti [12], it is easily shown that for T = 0, minimizers of (2) cannot exist
unless Ω = Rn. For T > 0, in [9] we use the characterization of ΦH(T ) from [8] to
prove that if existence fails on an open bounded domain Ω with C1 boundary, it
can only occur because a minimizing sequence concentrates at exactly one point
located on ∂Ω. Assuming further regularity of ∂Ω and restricting the dimension,
we rule out this possibility and prove the following existence theorem.

Theorem 1. Fix p > 1 and n > 2p. Let Ω ⊂ Rn be an open bounded domain with
boundary of class C2. For every T ∈ (0,∞), a minimizer of (2) exists.

Question (B) was posed as an open problem in [10], and the proof of (4) implies
the following rigidity criterion: If Ω is connected and ΦΩ(T ) = ΦB(T ) for some

T ∈ (0, I(B)1/p
"

), and additionally a minimizer of (2) exists for this T , then Ω is a
ball. The connectedness assumption is necessary for rigidity to hold; consider the
union of a ball and any other domain. Thanks to this rigidity criterion, we obtain
an affirmative answer to Question (B) under the assumptions of Theorem 1.

Corollary 2. Fix p > 1 and n > 2p. Let Ω ⊂ Rn be an open, bounded, connected

domain with boundary of class C2. If ΦΩ(T ) = ΦB(T ) for some T ∈ (0, I(B)1/p
"

],
then Ω is a ball.

Finally, we obtain the following weak rigidity theorem without additional re-
strictions on n or ∂Ω.

Theorem 3. Fix n ≥ 2 and p ∈ (1, n). Let Ω ⊂ Rn be an open, bounded,
connected domain with boundary of class C1. If there exists T∗ > 0 such that
ΦΩ(T ) = ΦB(T ) for all T ∈ (0, T∗), then Ω is a ball.

The proof of Theorem 3 again uses the rigidity criterion above; based on
the characterization of minimizers of ΦH(T ) from [8] and an analysis of the
Euler-Lagrange equation asymptotically satisfied by a concentrating minimizing
sequence, we prove that minimizers of (2) exist for T > 0 sufficiently small under
the assumptions of Theorem 3.

Open problems. There are quite a few open problems related to this program.
First, can one show Theorem 1 in all dimensions? In [9], we build an explicit
(“Aubin-type” [1]) test function and expand its energy to rule out concentration.
The dimension restriction comes from the tail decay rate of extremals of ΦH(T );
this issue is familiar from the Yamabe problem and one may hope to construct a
“Schoen-type” [11] global test function to show existence in low dimensions.
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Second, under the assumptions of Corollary 2, is the comparison theorem (4)

stable, i.e. if ΦΩ(T ) ≈ ΦB(T ) for some T ∈ (0, I(B)1/p
"

], then is Ω close to a ball in
a suitable sense? A starting point here is to analyze the mass transportation proof
of (4) from [10] and to show that the optimal transport map taking a minimizer
of ΦΩ(T ) to a minimizer of ΦB(T ) is close to the identity.

Finally, when p = 2, the variational problem (2) is related to the Yamabe prob-
lem for manifolds with boundary [4, 5], where one seeks a conformal metric of
constant scalar curvature and constant mean curvature boundary on a given Rie-
mannian manifold with boundary. In the conformally flat case (M, g) = (Ω, geuc),
this is equivalent to showing the existence of critical points of the energy

'
Ω
|∇u|2+

cn
'
∂Ω

hu2 in the same constraint space as in (2). Here h is the mean curvature of
∂Ω. Can our analysis in [9] be refined to produce a one-parameter family {gT }T>0

of Yamabe metrics with the prescribed ratio vol(∂M, gu)/vol(M, gu) = T?
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