
The Yamabe Problem

Notes by Robin Neumayer

These notes are from a five-part set of expository lectures that I gave for a graduate class
at Northwestern University in January 2018. Our presentation largely follows that given in the
survey [LP87] and the book [Aub82], though for the analytic portion we follow the concentration
compactness approach of Lions [Lio84a, Lio84b] instead of the original PDE approach. For brevity
we have omitted some proofs, but we try to give references for where the reader can find them.

1 Introduction and preliminaries

The uniformization theorem says that every closed two-dimensional Riemannian manifold is con-
formally equivalent to one of constant sectional curvature. In higher dimension this is false; the
problem of prescribing sectional curvature is highly overdetermined. The Yamabe problem can be
seen as one appropriate higher dimensional analogue of this problem.

The Yamabe Problem. Let (M, g) be a closed Riemannian manifold of dimension n ≥ 3. Is
there a metric g̃ conformal to g that has constant scalar curvature?

A metric g̃ is conformal to g if there is a smooth function ϕ > 0 such that g̃ = ϕ4/(n−2)g.
In [Yam60], Yamabe claimed to give an affirmative answer to the question above. In [Tru68],
Trudinger found a nontrivial gap in the proof and provided a partial repair. Further contributions
of Aubin [Aub76a, Aub76b] and Schoen [Sch84] finally closed the proof nearly a quarter century
after Yamabe’s initial work.

Given two conformal metrics g and g̃ = ϕ4/(n−2)g, and let R and R̃ denote the scalar curvatures
of g and g̃ respectively. These quantities are related by the identity

R̃ = ϕ1−2∗(−cn∆ϕ+Rϕ). (1.1)

Here and in the sequel, cn = 4(n−1)/(n−2) and our sign convention is ∆ϕ = ∇a∇aϕ. The number
2∗ = 2n/(n− 2) is the exponent in the critical Sobolev embedding, a fact that plays a decisive role
in the problem. Rearranging (1.1), we see that solving the Yamabe problem on (M, g) is equivalent
to finding a positive smooth solution of the nonlinear eigenvalue problem

−cn∆ϕ+Rϕ = λϕ2∗−1 (?)

for some λ ∈ R. Stated another way, solving the Yamabe problem is equivalent to finding a positive
smooth critical point of the associated energy functional

Q(u) =

∫
M cn|∇u|2 +Ru2 dvolg

‖u‖22∗
.
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With this in mind, we define the Yamabe constant of (M, g) by

λ(M) = inf
{
Q(u) : u ∈W 1,2(M)

}
(1.2)

Note that |λ(M)| < ∞ by the Sobolev inequality, and λ(M) is conformally invariant. In fact, by
(1.1), it can be rewritten as

λ(M) = inf

{ ∫
M R̃ dvolg̃

volg̃(M)2/2∗
: g̃ conformal to g

}
We will frequently abuse notation by letting λ(M) denote both the infimum value and the vari-
ational problem itself. Let us see that (?) is the Euler Lagrange equation corresponding to this
variational problem.

Claim. Let u ∈W 1,2(M) be a critical point of λ(M). Then u satisfies (?) for some λ. Furthermore,
if u is a minimizer with ‖u‖2∗ = 1, then λ = λ(M).

Proof. Let ϕ ∈ C∞c (M). Then

0 =
d

dε

∣∣∣∣∣
ε=0

∫
M cn|∇u+ ε∇ϕ|2 +R(u+ εϕ)2 dvolg

‖u+ εϕ‖22∗

=

∫
2cn〈∇u,∇ϕ〉+ 2Ruϕdvolg

‖u‖22∗
−

2
∫
M cn|∇u|2 +Ru2 dvolg

‖u‖22∗︸ ︷︷ ︸
=2Q(u)

∫
u2

∗−1ϕdvolg

‖u‖2∗2∗

=
2

‖u‖22∗

∫
ϕ
(
− cn∆u+Ru−Q(u)

u2
∗−1

‖u‖2∗−22∗

)
dvolg .

As this holds for any variation ϕ, we see that u satisfies (?) with λ = Q(u)/‖u‖2∗−22∗ . If u is a
minimizer, then Q(u) = λ(M).

To summarize thus far, to solve the Yamabe problem, it suffices to show the existence of a
smooth positive minimizer of λ(M). The problem lacks compactness, which makes establishing
the existence of such a minimizer difficult. The solution of the problem comes from combining the
following three theorems.

Theorem 1.1 (Yamabe, Trudinger, Aubin). Suppose λ(M) < λ(Sn). Then there exists a mini-
mizer of λ(M) and hence a solution of the Yamabe problem on M .

Here λ(Sn) be the Yamabe constant of (Sn, g0) where g0 is the round metric (which, of course,
has constant scalar curvature).

Theorem 1.2 (Aubin). In M has dimension n ≥ 6 and is not locally conformally flat at some
point p ∈M , then λ(M) < λ(Sn).

A Riemannian manifold (M, g) is said to be locally conformally flat at a point p ∈ M if there
exists a conformal change of metric for which the curvature tensor vanishes in a neighborhood of
p.
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Theorem 1.3 (Schoen). If M has dimension 3, 4, or 5 or if M is locally conformally flat at some
point p ∈M , then λ(M) < λ(Sn) unless M is conformal to Sn.

Theorem 1.1 represents the analytic portion of the problem. The idea behind Theorem 1.1 is
the following: a minimizing sequence for λ(M) must either converge in W 1,2(M) to a minimizer,
or else it must concentrate at a point p ∈M . A concentration (or “bubble”) contributes λ(Sn) to
the energy, so if λ(M) < λ(Sn), this possibility cannot occur.

Theorems 1.2 and 1.3 represent the contributions on the geometry side of the problem. To
show that an infimum λ(M) is strictly less than a certain number λ(Sn), one must construct a test
function ϕ with Q(ϕ) < λ(M). For both theorems, the test functions involve suitable modifications
of minimizers for λ(Sn), though we crucially must first choose the right conformal representative
and coordinate system.

At first sight of Theorem 1.1, several natural questions arise:

1. Why can’t we just apply the direct method of the calculus of variations?

2. Why does the value of the infimum λ(M) affect the existence of minimizers?

3. Why does λ(Sn) play a role?

Analytically speaking, the direct method falls short because the embedding of W 1,2(M) into
L2∗(M) is not compact. The following example shows that the direct method can be used to
establish existence of minimizers in a particular case and is instructive for understanding the first
two questions.

Example 1.4 (Existence when λ(M) ≤ 0). When λ(M) ≤ 0, we may use the direct method to
show the existence of a minimizer of λ(M). It is not hard to show that a u is a minimizer of λ(M)
if and only if it is a minimizer of

E(u) =

∫
cn|∇u|2 +Ru2dvolg − λ(M)‖u‖22∗

among all u ∈W 1,2(M). Now, suppose λ(M) ≤ 0, and let {uk} be a minimizing sequence for E(u).
Then E(uk) ≤ C, hence ‖uk‖W 1,2(M) ≤ C (by the Sobolev inequality). So, we have

uk ⇀ u in W 1,2(M) and L2∗(M),

uk → u in L2(M) .

by the Banach-Olaglu theorem and the Rellich-Kondrachov theorem respectively. Norms are lower
semicontinuous with respect to weak convergence. Therefore, and because the coefficient λ(M) has
the right sign, we see that E(u) ≤ lim inf E(uk) and so u is a minimizer.

Remark 1.5. In the general case, we will have lower semicontinuity of the energy only if we can
show strong convergence of a minimizing sequence in L2∗(M).

Along the same lines, the direct method can be used to show existence for a related problem
with subcritical scaling.
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Exercise 1.6 (Existence for the subcritical power). Suppose we instead wanted to consider the
analogue of (?) with a subcritical exponent, that is,

−cn∆u+Ru = λup−1

for 1 ≤ p < 2∗. Use the direct method and the Rellich Kondrachov compact embedding theorem
to establish existence of minimizers of the corresponding energy

Qp(u) =

∫
M cn|∇u|2 +Ru2 dvolg

‖u‖2p
.

2 The Yamabe constant on the sphere

The statements of Theorems 1.1, 1.2, and 1.3 indicate that the Yamabe constant on the sphere
will play an important role in what follows. In this section, we give explicit describe minimizers
of the variational problem (1.2) and consequently give establish the value λ(Sn). Recall that
if we consider the embedded round sphere Sn ⊂ Rn+1 with north pole N = (0, . . . , 0, 1), then
stereographic projection Ψ : Sn \ {N} → Rn is a conformal diffeomorphism given by

Ψ(s1, . . . , sn, ξ) = (x1, . . . , xn) where xi = si/(1− ξ) . (2.1)

If we define the conformal factor v1 by

(Ψ−1)∗g0 = 4v
4/(n−2)
1 geuc,

then v1 is explicitly given by

v1(x) =
(
1 + |x|2

)(2−n)/2
(2.2)

where geuc is the Euclidean metric on Rn. Thanks to the conformal invariance of the Yamabe
constant and the fact that Euclidean space has vanishing scalar curvature, we have

λ(Sn) = inf{Q(u) : u ∈W 1,2(Sn)} = cnσ
2
n, (2.3)

where we let

σ2n := inf

{ ∫
Rn |∇u|

2

(
∫
Rn u

2∗)2/2∗
: u ∈W 1,2(Rn)

}
. (2.4)

In other words, understanding λ(Sn) is equivalent to understanding the sharp Sobolev inequality on
Rn. Aubin [Aub76b] and Talenti [Tal76] independently proved the following:

Theorem 2.1 (Talenti, Aubin). Fix n ≥ 3 and let σn be as above. Then

σ2n =
n(n− 1)ω2/n

cn
.

Furthermore, minimizers of (2.4) are exactly the function v1 defined in (2.2) and its invariant
scalings: translations, dilations, and constant multiples.
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Theorem 2.1 gives the sharp Sobolev inequality on Euclidean space, together with its charac-
terization of extremal functions. That is, for any u ∈W 1,2(Rn),

σn‖u‖2∗ ≤ ‖∇u‖2

Equality holds if and only if u is a translation, dilation, or constant multiple of v1.

Remark 2.2. If we pull back the minimizer v1 via Ψ−1, we obtain (a multiple of) the round
metric. However, pulling back translations and dilations of v1, we obtain conformal factors that
localize most of the mass near any point on Sn. In particular, these symmetries imply that the set
of minimizers λ(Sn) is noncompact in W 1,2(Sn).

Notice the following immediate corollary of Theorem 2.1 and the dilation invariance of Sobolev
extremal functions.

Corollary 2.3. Let (M, g) be any closed Riemannian manifold of dimension n ≥ 3. The

λ(M) ≤ λ(Sn).

3 Proof of Theorem 1.1

In this section, we prove Theorem 1.1. That is, when λ(M) < λ(Sn), we can find a minimizer of
(1.2) and therefore a solution to the Yamabe problem.

Remark 3.1 (A historical remark). The original proof of Theorem 1.1 followed this basic idea: as
we saw in Exercise 1.6, we can easily show existence of minimizers up of the subcritical functional
Qp. In Yamabe’s original paper, he claimed to show uniform (in p) C2,α estimates for up, and then
passed to the limit p→ 2∗ to get a solution on (?). Such uniform estimates are false in general; we
saw this in Remark 2.2. It turns on that these uniform estimates holds when λ(M) < λ(Sn) = cnσ

2
n.

The proof uses the sharp Sobolev inequality and requires the strict inequality to have some room
to absorb error terms. The survey [LP87] has a clear account of this approach.

We present another approach here using concentration compactness. The key tool will be
Lions’ (second) concentration compactness lemma [Lio84a, Lio84b] (see also the book [Str08] and
Lemma 3.2 below), which tells us two structural facts about Sobolev functions:

1. If a sequence of uniformly bounded Sobolev functions does not converge strongly in L2∗ , the
only thing that can go wrong is that it concentrates at countably many points. (Such a
sequence cannot, for instance, concentrate on some two dimensional surface.)

2. These atoms where the sequence concentrates satisfy a sort of “Sobolev inequality” for mea-
sures with the sharp Sobolev constant σn.

Lemma 3.2 (Lions). Suppose {uk} is uniformly bounded in W 1,2(M), so uk ⇀ u ∈W 1,2(M). Up
to subsequences,

µk := |∇uk|2 dvolg
∗
⇀ µ,

νk := |uk|2
∗
dvolg

∗
⇀ ν.
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Then

ν = |u|2∗ dvolg +
∑
j∈J

νjδpj , (3.1)

µ ≥ |∇u|2 dvolg + σ2n
∑
j∈J

νjδpj (3.2)

where J is an at most countable set.

Before proving Lemma 3.2 let us see how Theorem 1.1 follows.

Proof of Theorem 1.1. Let {uk} be a minimizing sequence for λ(M). Without loss of generality,
we may assume that ‖uk‖2∗ = 1. Up to a subsequence, uk → u in L2(M) and uk ⇀ u in W 1,2(M)
and L2∗(M) with ‖u‖2∗2∗ = t ∈ [0, 1]. Note that if t = 1, then uk → u strongly in L2∗ and, as noted
in Remark 1.5, we are done. So, by Lemma 3.2,

λ(M) = limQ(uk) ≥
∫
cn|∇u|2 +Ru2 + cnσ

2
n

∑
νj

2/2∗

Note that
∫
cn|∇u|2 +Ru2 dvolg = t2/2

∗
Q(u) ≥ t2/2∗λ(M). Together with Jensen’s inequality (and

recalling that λ(Sn) = cnσ
2
n), this implies

λ(M) ≥ t2/2∗λ(M) + cnσ
2
n

∑
νj

2/2∗

≥ t2/2∗λ(M) + λ(Sn)(1− t)2/2∗
(∑ νj

1− t

)2/2∗

= t2/2
∗
λ(M) + λ(Sn)(1− t)2/2∗

The final equality holds because
∑
νj = 1 − t. Now, since λ(Sn) > λ(M) and again applying

Jensen’s inequality, we have

λ(M) ≥ t2/2∗λ(M) + λ(Sn)(1− t)2/2∗

≥ λ(M){t2/2∗ + (1− t)2/2∗} (3.3)

≥ λ(M). (3.4)

Given that the left-hand side is equal to the right-hand side above, it follows that we can equality
in both (3.3) and (3.4). Equality in (3.4) implies that t = 0 or t = 1. If t = 0, then we have strict
inequality in (3.3). Therefore t = 1. This establishes the existence of a minimizer u ∈W 1,2(M).

Since |∇u| = |∇|u|| for a.e. x ∈ M , we may assume without loss of generality that u ≥ 0.
Results in elliptic regularity theory (see [Tru68]) show that u is smooth, and then the maximum
principle ensures that u is positive. Thus our minimizer is indeed a conformal factor.

Let us now prove Lemma 3.2.
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Proof of Lemma 3.2. We give the proof on a bounded subset of Rn; it is not hard to adapt the
proof to M . Let

vk := (uk − u) ⇀ 0 in W 1,2 and L2∗

ωk := (|uk|2
∗ − |u|2∗) dx ⇀ ω

µ̃k := |∇vk|2 dx ⇀ µ̃

One can show (exercise) that ωk = |vk|2
∗
dx + o(1). Now, take any ξ ∈ C∞c (Rn). Applying the

Sobolev inequality, we have∫
ξ2

∗
dω = lim

∫
|ξvk|2

∗
dx ≤ lim inf

1

σ2∗n

(∫
|∇(ξvk)|2

)2∗/2

= lim inf
1

σ2∗n

(∫
ξ2|∇vk|2

)2∗/2

=
1

σ2∗n

(∫
ξ2 dµ̃

)2∗/2

The penultimate equality is an exercise that can be shown using Hölder’s inequality and the compact
embeddings of subcritical norms. Rearranging powers, what we have shown is a sort of “reverse
Hölder’s inequality” for the measures ω and µ̃:

σn

(∫
ξ2

∗
dω
)1/2∗

≤
(∫

ξ2 dµ̃
)1/2

∀ξ ∈ C∞c (Rn). (3.5)

Applied to ξ approximating the characteristic function of any open set Ω, (3.5) shows that µ̃
controls ω nonlinearly:

σ2nω(Ω)2/2
∗ ≤ µ̃(Ω), (3.6)

This scaling will force ω to be supported on a countable set of atoms. Indeed, since µ̃ is a finite
measure, it contains at most countably many atoms, say at {xj}. For any point x ∈ B1 \

⋃
{xj},

we can take any open set Ω containing x with µ̃(Ω) ≤ σ2n, so that (3.6) yields

1 ≥ σ−2n µ̃(Ω) ≥ ω(Ω)2/2
∗ ≥ ω(Ω).

In other words, ω is absolutely continuous with respect to µ̃ on B1\
⋃
{xj}. By the Radon-Nikodym

theorem, ω = fµ̃ and for µ̃-a.e. x,

f(x) = lim
r→0

ω(Br(x)

µ̃(Br(x))

(3.6)

≤ lim
r→0

σ−2
∗

n µ̃(Br(x))2
∗/2−1 = 0.

Hence, the support of ω is contained on
⋃
{xj} and so

ω =
∑
j∈J

νjδxj ,

proving (3.1). To see (3.2), take any xj and again use the reverse Hölder’s inequality (3.5), now
applied to a ξ with ξ(xj) = 1, and ξ = 0 on Br(xj)

c, to find

σ2nν
2/2∗

j δxj ≤ µ̃(xj) .

This concludes the proof.
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4 Proof of Theorem 1.2

We now prove Theorem 1.2, which is due to Aubin in [Aub76a]. The idea is to contruct test
functions which are pullbacks of a sequence of extremal functions in the Sobolev inequality that
concentrate at a point. To this end, let us define

vα(x) = α(2−n)/2v(x/α) (4.1)

to be a one-parameter family of Sobolev extremals that concentrate at zero in Euclidean space
as α → 0. After multiplying by a cutoff function and pulling back these functions with the
concentration centered at a point that is not locally conformally flat, we show that the geometry
forces Q(vα) < λ(Sn). We need some background before we get into the proof.

4.1 The Weyl tensor

The Weyl tensor is a tensor whose coordinate expression is given by

Wijkl = Rijkl −
1

n− 2
(Rikgjl −Rilgjk +Rjlgik −Rjkgil)−

R

(n− 1)(n− 2)
(gjlgik − gjkgil)

The Weyl tensor is the “traceless component of the Riemann tensor” in the sense that the full
curvature tensor can be written in terms of the Weyl and Ricci tensors. The key facts about the
Weyl tensor that we will use are:

1. The Weyl tensor is invariant under conformal changes of metric.

2. if n = 3, the Weyl tensor vanishes.

3. If n > 3, the Weyl tensor vanishes at a point if and only if (M, g) is locally conformally flat
near p.

Recall that (M, g) is locally conformally flat near p if, up to a conformal change of metric, the
curvature vanishes in a neighborhood of p.

4.2 Conformal normal coordinates

For any p ∈ M , we can choose normal coordinates in a neighborhood of p using the exponential
map. In such coordinates, the metric is Euclidean at p and the Christoffel symbols vanish, so the
metric is Euclidean up to first order. The Yamabe constant is conformally invariant, so we have
the freedom to simplify the local geometry even more by first choosing a smart conformal metric
and then using normal coordinates.

Theorem 4.1 (Conformal normal coordinates). Let (M, g) be a closed Riemannian manifold and
fix p ∈ M . For any K ≥ 2, there exists a conformal metric g̃ on M such that in g̃ normal
coordinates near p,

det g̃ = 1 +O(rK) .

Here we let r = |x|. Furthermore, if K ≥ 5, then R̃ = O(r2) and −∆R̃ = 1
6 |W |

2.

The proof of Theorem 4.1 is by induction and is fairly involved. We will not prove it here, but
refer the reader to [LP87, Theorem 5.1].
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4.3 Proof of Theorem 1.2

Pick a point p ∈ M where |W (p)| 6= 0. Without loss of generality, assume that g = g̃ where g̃ is
as in Theorem 4.1 and K is taken to be as large as we need in the proof. Let {xi} be conformal
normal coordinates in B2ε(p). Let η : Rn → R be a smooth cutoff function with η = 1 in Bε and
η = 0 in B2ε. We take as test functions

ϕ = vαη

where α small will be chosen later. In order to compute Q(ϕ) in coordinates, let us make a few
preliminary estimates. The following three expressions simply come from changing variables and
Taylor expanding the integrands.∫

Bε

v2
∗
α = 1−

∫
Bc
ε/α

v2
∗

1 = 1−O
(∫ ∞

ε/α
r−2nrn−1

)
= 1 +O(αn) (4.2)∫

Bε

|∇vα|2 = σ2n −
∫
Bc
ε/α

|∇v1|2 = σ2n −O
(∫ ∞

ε/α
r−2n+2rn−1

)
= σ2n +O(αn−2) (4.3)∫

B2ε\Bε
v2α = O(αn−2) (4.4)

The third estimate could be sharpened a bit, but the first and, crucially, the second are completely
sharp. This turns out to be an important point; see Remark 4.2 below.

By (4.2), we have

Q(ϕ) =

∫
cn|∇(vαη)|2 +

∫
Rv2αη

2

(
∫
B2ε

v2∗α η
2∗)2/2∗

=

(∫
cn|∇(vαη)|2 +

∫
Rv2αη

2

)
(1 +O(αn))

In the first equality, there are also errors in α coming from the volume form, but we will ignore
them since we can take them to be as high of order as we wish thanks to Theorem 4.1. By (4.3),
(4.4) and Hölder’s inequality,∫

cn|∇(vαη)|2 =

∫
cn|∇vα|2η2 +

∫
cnηvα∇vα · ∇η +

∫
cnvα|∇η|2 = σ2ncn +O(αn−2) .

Hence, recalling (2.3), we have shown that

Q(ϕ) = σ2ncn +

∫
Rv2αη

2 +O(αn−2) .

Now, using a Taylor expansion of R (which vanishes at first order because we are in normal
coordinates) and making use of Theorem 4.1, we find that∫

Rv2αη
2 =

∫
Bε

Rv2α +O(αn−2) =

∫ ε

0

∫
∂Br

(
1

2
R,ij(p)x

ixj +O(r3))v2α +O(n− 2)

=

∫ ε

0
{−Cr2|W (p)|2 +O)r3)}v2αrn−1 +O(αn−2)

= −C|W (p)|2
∫ ε

0
rn+1v2α +O(αn−2).
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A direct computation shows that

∫ ε

0
rn+1v2α =


α4 if n > 6

α4 log(1/α) if n = 6

αn−2 if n < 6

Thus we have shown that

Q(ϕ) ≤


λ(Sn)− c|W (p)|2α4 +O(αn−2) if n < 6

λ(Sn)− c|W (p)|2α4 log(1/α) +O(αn−2) if n = 6

λ(Sn) +O(αn−2) if n > 6

In particular, since |W (p)| > 0 and n ≥ 6, we see that

λ(M) ≤ Q(ϕ) < λ(Sn) .

concluding the proof of Theorem 1.2.

Remark 4.2. Observe why this proof does not do through for higher dimensions. The Sobolev
extremals are not compactly supported, so when we multiply by a cutoff function and pull the
functions back to M , we necessarily introduce some errors between Q(ϕ) and λ(Sn) coming from
the tails of these functions. The tails of the vα decay polynomially, with a dimensional dependence
on the polynomial decay of vα. When n < 6 the error from the cutoffs of vα (in (4.2), (4.3), (4.4))
is too large to allow us to capture any geometry in the Taylor expansion of the energy.

5 Proof of Theorem 1.3

In this section, we prove Theorem 1.3, which is due to Schoen in [Sch84]. For omitted proofs in
this section we refer the reader to [Sch84, LP87]. We begin with some background.

5.1 Stereographic projections

To begin, let us recall our analysis of λ(Sn) in Section 2. In order to study this variational
problem explicitly, we used stereographic projection to transfer the problem to Euclidean space.
One particular reason this was fruitful was that Euclidean space has zero scalar curvature, so the
variational problem (1.2) simply became the one corresponding to the Sobolev inequality.

Let us take the following perspective on the choice to use the stereographic projection map in
Section 2. As before, let Ψ : Sn \ {N} → Rn be the stereographic projection map as defined in
(2.1), and let geuc and g0 respectively denote the Euclidean metric on Rn and the round metric on
Sn. Define G to be the conformal factor relating g0 to the metric ĝ on Sn obtained by pulling back
the Euclidean metric by Ψ, that is:

ĝ = Ψ∗(geuc) = G4/(n−2)g0 .

Since (Rn, geuc) has zero scalar curvature, we observe by (1.1) that

−cn∆g0G+R0G = 0 on Sn \ {N} .
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Here R0 = n(n− 1) is the scalar curvature of (Sn, g0). And in fact, one can show that

−cn∆g0G+R0G = δN on Sn.

In other words, G is the Green’s function at N for the conformal Laplacian −cn∆ + R on the
round sphere. The key idea of Schoen in [Sch84] was that, as long as the conformal Laplacian on
(M, g) has a positive Green’s function G, we can perform a sort of “stereographic projection” in
the following way. Fix p ∈M and let ĝ := G4/(n−2)g on M̂ := M \ {p}. Then we call (M̂, ĝ), along
with the map σ : M \ {p} → M , the stereographic projection of M from p. By construction and
(1.1), we have

Rĝ = 0 on M̂.

If (M, g) is a closed Riemannian manifold with λ(M) ≥ 0, then the conformal Laplacian has
a positive Green’s function. Recall that in Example 1.4, we showed that the Yamabe problem is
easily solved if λ(M) ≤ 0. Therefore we may assume the existence of a positive Green’s function.

Given a fixed point p ∈ M , without loss of generality, we may assume that g is the conformal
metric in which normal coordinates give the conformal normal coordinates of Theorem 4.1. Let
{xi} be conformal normal coordinates for (M, g) at p. In the setting of Theorem 1.3, we have the
following expansion for the Green’s function G with singularity at p.

Theorem 5.1. Let n = 3, 4, 5 or assume M is conformally flat in a neighborhood of p. Let {xi}
be conformal normal coordinates at p. Then

G = r2−n +A+O′′(r) as r → 0.

Here, A is a constant and r = |x|.

The notation O′′(r) indicates corresponding scale invariant decay for two derivatives. That is,
f(r) = O′′(r) if f(r) = O(r), f ′(r) = O(1), and f ′′(r) = O(1/r). We refer to the survey [LP87,
Lemma 6.4] for the proof of Theorem 5.1. Theorem 5.1 gives rise to an expansion of the metric ĝ
in related coordinates. Indeed, consider the inverted normal coordinates {zi} given by zi = r−2xi

on U \ {p}. Letting ρ = |z|, we can derive from Theorem 5.1 that

ĝij(z) =
(
1 +Aρ2−n +O′′(ρ1−n)

)4/(n−2) (
δij +O′′(ρ2)

)
(5.1)

when n = 3, 4, 5 or M is locally conformally flat. We recall that a Riemannian manifold (N, g) is
said to be asymptotically flat to order τ > 0 if there is a decomposition N = N0 ∪N∞ such that
N0 is compact and N∞ is diffeomorphic to Rn \Br for some r > 0 with

gij = δij +O′′(ρ−τ ) as ρ→∞.

Here ρ = |z| where {zi} are coordinates induced by the aforementioned diffeomorphism. (However,
being asymptotically flat turns out to be independent of the choice of diffeomorphism.) So, (5.1)
in particular implies that (M̂, ĝ) is asymptotically flat to order τ with

τ =


1 if n = 3,

2 if n = 4, 5,

n− 2 if M is locally conformally flat.

(5.2)
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5.2 Constructing the test functions

In view of (5.1), we are able to understand the geometry of (M̂, ĝ) well near infinity. With this
in mind, the test functions we construct in order to prove Theorem 1.3 will “localize” an extremal
function for the Sobolev inequality near infinity. To this end, we define

ϕα(z) =

{
vα(z) if ρ ≥ R
vα(R) if ρ ≤ R

(5.3)

where vα are the scalings of Sobolev extremal functions defined in (4.1). Instead of taking the
parameter α to be small (and hence vα to be concentrated) as before, we will now consider α large
and hence vα spread out.

We wish to compute Q(ϕα) asymptotically as α → ∞. Since ϕα is constant on spheres and
concentrates on large spheres for α large, it is natural to expect that Q(ϕα) will depend on some
average behavior of ĝ over large spheres. And indeed, we will find that the leading order term in
the expansion of Q(ϕα), will involve a quantity µ, called the distortion coefficient, which is defined
in the following way. Set

h(ρ) =
1

nωnρn−1

∫
Sρ

d σρ

where Sρ is a geodesic sphere of radius ρ with respect to ĝ and d σρ is the volume element on Sρ
induced by ĝ. The function h(ρ) measures the ratio of the volumes of geodesic spheres of radius ρ
in (M̂, ĝ) to those in Euclidean space. When n = 3, 4, 5 or M is locally conformally flat, making
use of Theorem 5.1 and (5.1), one comes to the expansion

h(ρ) = 1 + (µ/k)ρ−k +O′′(ρ−k−1)

where k depends on the dimension. The constant µ is the distortion coefficient of ĝ. In the
following theorem, we see that the distortion coefficient appears at leading order in the expansion
of λ(Sn)−Q(ϕα).

Theorem 5.2. Suppose n = 3, 4, 5 or M is locally conformally flat. Let ϕα be as defined in (5.3).
Then there exists a positive dimensional constant C such that

Q(ϕα) ≤ λ(Sn)− Cµαk +O(α−k−1) (5.4)

as α→∞.

It turns out that when n = 3, 4, 5 or that M is locally conformally flat in a neighborhood of p,
the distortion coefficient µ coincides up to a factor of two with a quantity called the mass m(ĝ),
which arises in general relativity. A version of the positive mass theorem of Schoen and Yau states
the following.

Theorem 5.3 (Positive Mass Theorem). Suppose n ≥ 3 and (N, g) is asymptotically flat to order
τ > (n − 2)/2 with nonnegative scalar curvature. Then m(g) ≥ 0. Furthermore, m(g) = 0 if and
only if (N, g) is isometric to (Rn, geuc).
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We now can conclude the proof of Theorem 1.3. Indeed, if (M̂, ĝ) is isometric to (Rn, geuc),
then necessarily (M, g) is conformally equivalent to (Sn, g0). One the other hand, suppose that
(M̂, ĝ) is not isometric to (Rn, geuc). Recalling (5.2) and that Rĝ = 0 by construction, we can
apply Theorem 5.3 to find that µ > 0. Then, by taking α sufficiently large in (5.4), we find that
λ(M) < λ(Sn) and the proof of Theorem 1.3 is complete.
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