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Abstract. Local minimizers for the anisotropic isoperimetric problem in the small-volume regime on
closed Riemannian manifolds are shown to be geodesically convex and small smooth perturbations of
tangent Wulff shapes, quantitatively in terms of the volume.

1. Introduction

Perimeter-driven variational problems play a central role across analysis and geometry, serving as a
tool to investigate the geometry of Riemannian manifolds and constituting the foundation of various
models of real-world phenomena in materials science and physics. Describing the shape of local and
global minimizers is a central aim in study of these problems.

For the isoperimetric problem on a general closed Riemannian manifold, the qualitative description of
the shape of small-volume global minimizers goes back to work of Kleiner as described in [Tom93]; see also
[MJ00, Ros05, Nar09, Fal10] and references therein among the many works dedicated to this topic. In the
realm of physically motivated models, small-volume capillary droplets on a flat surface were shown to be
asymptotically spherical in [Fin82, Tam84] (see also [Fin86]), and the shape of crystalline materials inter-
acting with a convex potential was addressed in [McC98, FM11, DPG22]. In [FM11], Figalli and Maggi
developed an approach to describing global minimizers in the small-volume regime quantitatively in terms
of the volume, based on the quantitative Euclidean isoperimetric inequality [FMP08, FMP10, CL12]. The
technique was further developed to prove a quantitative description of small-volume capillary droplets
in a container in [MM16]. Quantitative isoperimetry has also been crucial in explicitly characterizing
small-mass global minimizers for the liquid drop model in nuclear physics [KM13, KM14, BC14].

Recent years have seen a surge of interest in the shape of local minimizers, and more generally of
critical points, of geometric variational problems. At the forefront of this line of research was work of
Ciraolo and Maggi [CM17], where the authors prove and apply a quantitative version of Alexandrov’s
theorem to show that any volume-constrained local minimizer of a capillarity-type energy consisting of
perimeter plus potential energy with sufficiently small volume is quantitatively close to a ball; see also
[KM17, Bel, CFMN18]. For anisotropic surface energies interacting with an external potential in Rn, it
was shown in [DMMN18] that small-volume local minimizers that are assumed a priori to be smooth
and to satisfy scale-invariant diameter bounds are quantitatively close to a Wulff shape. Very recently, a
qualitative description of small-volume local minimizers of the capillary droplet problem in a container
was derived [DW22], also under a priori smoothness and diameter assumptions. These results are all
based on quantitative or qualitative stability of Heintze-Karcher-type inequalities.

In this paper, we use a different approach to the study of local minimizers. We focus on the context
of volume-constrained local minimizers of anisotropic surface energies on a closed Riemannian manifold,
though we expect that the ideas will apply in other settings. This approach combines compactness, via
achieving scale-invariant diameter bounds, and the rigidity of critical points of the blow-up problem.

Fix a closed Riemannian manifold (M, g) of dimension n ≥ 2, α ∈ (0, 1), and a C2,α elliptic integrand F
on M . More precisely, let F : TM → R be a function whose restriction to the unit tangent bundle is C2,α

and whose restriction Fx0(·) := F (x0, ·) : Tx0M → R is a convex, positively one-homogeneous function
with F 2

x0 uniformly convex, C2,α, and positive except at the origin for each x0 ∈M ; see Section 2.3. The
1
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associated anisotropic surface energy of a set of finite perimeter Ω ⊂M is

F(Ω) =

ˆ
∂∗Ω

F
(
x, νΩ(x)

)
dHn−1

g .

A set of finite perimeter Ω is said to be a volume-constrained ε0-local minimizer of F if F(Ω) ≤ F(E) for
any competitor E ⊂M with

|E|g = |Ω|g = v and E∆Ω ⊂ Ug(∂Ω, ε0v
1/n)

Here, for any r > 0 and measurable set E we let Ug(E, r) denote the tubular neighborhood

Ug(E, r) = {x ∈M : dg(x, y) < r} . (1.1)

Volume-constrained ε0-local minimality is scaling invariant: if Ω is a volume constrained ε0-local minimizer
of F in (M, g) with volume v, then it is a volume constrained ε0-local minimizer of F in (M, v−2/ng) with
volume 1. Restricting F at a point x0 ∈ M induces a translation invariant elliptic integrand Fx0 and a
corresponding anisotropic surface energy F̄x0 defined for sets of finite perimeter in Tx0M . The surface
energy F̄x0 is minimized for any volume constraint by a translation or dilation of the unit-volume Wulff
shape Kx0 ⊂ Tx0M corresponding to F̄x0 ; again see Section 2.3.

We prove that a volume-constrained ε0-local minimizer of F for sufficiently small volume is a small
C2,α perturbation of the image of a Wulff shape Kx0 under the exponential map at a point x0 ∈M . The
estimates are quantitative with respect to the volume constraint.

Theorem 1.1. Let (M, g) be a closed Riemannian manifold of dimension n ≥ 2, fix α ∈ (0, 1), and let F
be an anisotropic surface energy corresponding to a C2,α elliptic integrand F . For any ε0 > 0 and κ > 0,
there exist v0(g, F, ε0, κ) ∈ (0, |M |) and C = C(g, F, α, ε0, κ) > 0 such that the following holds.

Let Ωv be a volume-constrained ε0-local minimizer of F with volume v ∈ (0, v0] and F(Ωv) ≤ κv(n− 1)/n.
Then Ωv is a geodesically convex C2,α-domain. Moreover, there is a point x0 ∈M such that

dH,g

(
∂Ωv, expx0(∂v1/nKx0)

)
v1/n

< Cv
1/2n2

and

∣∣∣Ωv∆ expx0(v1/nKx0)
∣∣∣
g

v
< Cv

1/2n . (1.2)

Let us make a few remarks about Theorem 1.1.

Remark 1.2. The property of Ωv being of class C2,α follows from (1.2) and the regularity theory for
minimizers of anisotropic surface energies (see Section 2.4). Actually, arguing as in the proof of [FM11,
Theorem 2], one can strengthen the quantitative Hausdorff estimates (1.2) and prove that ∂Ωv is locally
a C2,α graph, with quantitative estimates in v. By Schauder estimates, if F is Ck,α, one can upgrade the
quantitative regularity of Ωv to Ck,α.

Remark 1.3. The smallness of the volume v0 in Theorem 1.1 depends on the constant κ of the anisotropic
surface energy bound F(Ωv) ≤ κv(n− 1)/n. This dependence is crucial at several points in our proof. A

posteriori, however, Theorem 1.1 implies the improved bound F(Ωv) ≤ Cv(n− 1)/n, where C = C(F, g) > 0
depends only on the maximum (in x) of the anisotropic surface energies of the Wulff shapes Kx. Hence it
is conceivable that one could upgrade Theorem 1.1, removing the assumption on the anisotropic perimeter
bound and obtaining constants v0 and C that are uniform in κ. We did not succeed in doing so and we
leave it as interesting open question.

Remark 1.4. In the case of global minimizers of F , one may hope to prove a more refined statement than
the one in Theorem 1.1, namely providing information about the point x0 ∈M at which a global minimizer
is centered. We expect a global minimizer is centered at a point x0 where F̄x0(Kx0) is minimized.
This question becomes intriguing if one considers an integrand F such that F̄x0(Kx0) is constant. Here
we expect global minimizers to be centered at a point maximizing a weighted average of the sectional
curvatures of (M, g) that is compatible with the anisotropy of F , playing the role of the scalar curvature
for the isoperimetric problem. We leave this point as an interesting open problem.



LOCAL MINIMIZERS OF THE ANISOTROPIC ISOPERIMETRIC PROBLEM ON CLOSED MANIFOLDS 3

Remark 1.5. For global minimizers, a slightly weaker version of Theorem 1.1, which is stated in Theorem
5.1, can be generalized to every convex integrand that is C1 in the x variable. Indeed, we just need to
replace the use of the Alexandrov-type theorem of the first author, Kolasiński, and Santilli [DRKS20,
Corollary 6.8] in the proof of the intermeditate Theorem 5.5 with the uniqueness (up to translations) of
the Wulff shape among global minimizers [Tay78, FM91, BM94, MS86]. The rest of the proof of Theorem
5.1 remains unchanged.

Let us discuss the proof of Theorem 1.1. First, a qualitative form of Theorem 1.1 requires three key
ingredients: (1) a diameter bound, (2) a compactness argument, and (3) a classification of local minimizers
in the blow-up limit. Ingredient (3) was proven in [DRKS20], where the first author, Kolasiński, and
Santilli showed that Wulff shapes are the only critical points of the blowup problem among sets of finite
perimeter. The main contributions of this paper are ingredients (1) and (2).

For ingredient (1), in the context of the standard perimeter functional, a sequence of volume-constrained
local minimizers with a scale-invariant perimeter bound and volume vk → 0 can be shown to have

uniformly bounded (constant) mean curvature with respect to the rescaled metrics h = v
− 2/n
k g via

the Heitze-Karcher inequality (see [MJ00, Theorem 2.2] for global minimizers). The area monotonicity
formula then implies a uniform diameter bound. For any anisotropic surface energy that is not an affine
transformation of the perimeter, however, no monotonicity formula is available [All74]!

Establishing uniform density estimates is another known technique for achieving diameter bounds, but
it also falls short in this setting. An argument of Almgren [Alm76] (see also [GMT83, Mor03]) shows that
Ωv is a quasi-minimizer of F and satisfies density estimates, but with constants that depend on the set
itself and in particular are not uniform in v in a scale invariant sense. Uniform quasi-minimality and thus
uniform density estimates can be achieved by scaling for some volume-constrained problems in Euclidean
space, see e.g. [FJ14, Neu16], but this technique is clearly specific to Rn. (After proving the diameter
bound, we apply this technique in charts to prove in Lemma 5.4 that local minimizers as in Theorem 1.1
satisfy uniform density estimates in a scale invariant sense.)

Another approach to obtaining a diameter bound was shown in [FM13] and [MM16], for global mini-
mizers of weighted Euclidean isoperimetric problems and capillary drops in a container in Rn respectively.
Here the idea is to partition a global minimizer Ev with a well-chosen collection of cubes {Qi}Ni=1. Apply-
ing the isoperimetric inequality to each element of the partition they bound from below the sum of the
energies of the partition elements. On the other hand, by global minimality, this sum can be bounded
from above by the same constant, obtaining an estimate of the following type:

0 ≤
∑(

|Ωv ∩Qi|g
v

)(n− 1)/n

− 1 ≤ ε(v) (1.3)

The concavity of the function t 7→ t(n− 1)/n immediately implies that for any 1 ≤ L ≤ N ,( L∑
i=1

|Ωv ∩Qi|g
v

)(n− 1)/n

+

( N∑
i=L+1

|Ωv ∩Qi|g
v

)(n− 1)/n

− 1 ≤ ε(v),

from which one deduces that |Ωv ∩Qi| ≥ 1− ε for some i and for v small enough. Then a classical use of
coarea formula provides a standard differential inequality which allows to prove a diameter bound. We
remark that in doing so, in order to make ε(v) small enough, the radius of the cubes should be optimized

at a scale v1/2n. However this provides a suboptimal diameter bound that in the scale invariant sense
blows up as v → 0.

This sandwiching argument relies on having precisely the constant 1 in (1.3). Underpinning this is
the fact that the energy of a small-volume global minimizer is asymptotically equal to the isoperimetric
constant of the blow up problem. Thus, this approach is confined to the setting of global minimizers.

For the aforementioned reasons, we need to take a new approach to obtain our scale invariant diameter
bound for volume-constrained ε0-local minimizers of F with small volume (Section 4). It is possible to



4 A. DE ROSA AND R. NEUMAYER

adapt the ideas of [FM13, MM16] to obtain a similar partition of a local minimizer Ωv on the compact
manifold. However, as explained above, one cannot obtain the constant 1 in (1.3) (or equivalently, make
the right-hand side of (1.3) small). To overcome this problem we use a general concavity lemma (Lemma
4.2) for sequences of real numbers, which has been previously utilized in concentration compactness
arguments for isoperimetric type problems; see for instance [GNR22, CTG21, CGOS18, NPST22]. We
apply this lemma to show that most of the volume of Ωv is contained in the union of J0 balls of radius
v1/n, where J0 depends just on n, F , and the anisotropic isoperimetric ratio of the finite perimeter set.
From this point, we can use Ωv intersected with the J0 balls as a competitor, to deduce a standard
differential inequality which allows us to obtain the diameter bound. Beyond the fact that this argument
works for local minimizers, this approach provides a diameter bound that does not blow up in a scale
invariant sense.

The diameter bound is the starting point for ingredient (2), allowing us in Section 5 to pull back and
rescale a sequence of local minimizers in (J0) charts and obtain L1 convergence to a set E. Using the
rigidity theorem [DRKS20, Corollary 6.8] (Ingredient (3)), we deduce the limiting set is a translation of a
tangential Wulff shape. This translation, whose modulus a priori could be much larger than the natural
length scale v1/n, leads to serious difficulties in transmitting this information about the blowup back to
the local minimizers on the manifold. Hence we need to compare the shape of the limiting translated
Wulff shape and a tangent Wulff shape at a different appropriately chosen point. Since the integrand F
is not autonomous, that is, it is x-dependent, careful analysis is needed to carry this out in Section 3.

The final step (Section 6) is to provide a quantitative version of the closeness of the previous step,
meaning that the closeness is not only scale invariant, but will actually decay quantitatively as a power of
the volume. The key ingredient for this is the quantitative Wulff inequality of Figalli, Maggi, and Pratelli
[FMP10].

Acknowledgments. Antonio De Rosa has been partially supported by the NSF DMS CAREER Award
No. 2143124. Robin Neumayer is partially supported by NSF Grant DMS-2155054 and the Gregg Zeitlin
Early Career Professorship. Both authors are indebted to Michael Goldman for showing us the current
much simpler proof of Lemma 4.2 and sharing with us its use in the setting of concentration compactness
arguments. Both authors warmly thank Nick Edelen for a useful discussion.

2. Preliminaries

In this section we introduce definitions and notation and prove some preliminary results that will be
needed in the remainder of the paper.

2.1. Basic Notation. Consider a smooth Riemannian manifold (M, g) of dimension n ≥ 2. LetBg(x, r) =
{y ∈ M ; dg(x, y) < r} denote the geodesic ball of radius r > 0 centered at x ∈ M . Recall the notation
Ug(E, r) = {y ∈ M : dg(x,E) < r} introduced in (1.1) for the tubular neighborhood of a set E ⊂ M .
The Hausdorff distance between sets Σ,Σ′ ⊂M is defined by

dH,g(Σ,Σ
′) = inf{r > 0 : Σ ⊂ Ug(Σ′, r) and Σ′ ⊂ Ug(Σ, r)}.

For the k dimensional Hausdorff measure with respect to the metric g, we write Hkg(·). When k = n we
simply write | · |g = Hng (·) since Hng agrees with the standard volume measure induced by g. We call a
set measurable if it is Hng -measurable. It is worth noting how these quantities behave under rescaling the

metric g: if h = r−2g for r > 0, then for x ∈M,E ⊂M, and ρ > 0 we have

Bh(x, ρ) = Bg(x, rρ), Uh(E, ρ) = Ug(E, rρ), dH,h(Σ,Σ′) =
dH,g(Σ,Σ

′)

r
, Hkh(E) =

Hkg(E)

rk
.

We denote the Euclidean metric by geuc.

We let injgM > 0 denote the injectivity radius of M , i.e. the supremum over r > 0 such that the
exponential map expx : TxM →M is a diffeomorphism from Bgx(0, r) to Bg(x, r) for all x ∈M .
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Let E∆G = (E \ G) ∪ (G \ E) be the symmetric difference between sets, which we note satisfies the
triangle inequality-type property

E∆G ⊂ (E∆E′) ∪ (E′∆G). (2.1)

A sequence of measurable sets {Ei} converges in L1 to E if |Ei∆E|g → 0.

2.2. Sets of finite perimeter. We work in the framework of sets of finite perimeter. A measurable set
E ⊂M is a set of finite perimeter if

Pg(E) = sup

{ˆ
E

divgT (x) dHng (x) : T ∈ Xc(M), |T (x)|g ≤ 1 for all x ∈M
}
< +∞.

Here Xc(M) denotes the space of smooth compactly supported vector fields on M .

For any set of finite perimeter E ⊂ M , by the Riesz representation theorem for bounded linear
functionals on Xc(M) ([MPPP07, Section 1.2], [Vol10, Theorem 2.36]), there is a finite Radon measure
|D1E | on M and a |D1E |-measurable vector field νE : M → TM with |νE(x)|g = 1 for |D1E |-a.e.
x ∈ M , such that the distributional gradient D1E has the representation D1E = νE |D1E | (in other
words,

´
E divgT dHn =

´
M 〈T, νE〉g d|D1E | for any T ∈ Xc(M)). Note that νE depends on the metric g,

though we suppress this dependence in the notation when there is no ambiguity.

The reduced boundary ∂∗E of E is defined by

∂∗E = {x ∈ spt|D1E | : |νE(x)|g = 1}.

It is easy to show that spt|D1E | and thus ∂∗E are contained in the topological boundary ∂E. Note that
D1E = νE |D1E |x∂∗E. By the De Giorgi Structure Theorem (see [Mag12, Theorem 15.9] in the Euclidean
case; the proof can be adapted to the setting of Riemannian manifolds), ∂∗E is an Hn−1-rectifiable set
and D1E = νEHn−1

g x∂∗E.

We denote with E(1) the set of points of density 1 for E, i.e.

E(1) :=

{
x : lim

r→0

|Bg(x, r) ∩ E|g
|Bg(x, r)|g

= 1

}
.

Sets of finite perimeter enjoy a useful compactness property with respect to the L1 topology: if {Ei}
is a sequence of sets of finite perimeter in M with Ei ⊂ A for a compact set A and supi P (Ei) < +∞,
then up to a subsequence, Ei → E in L1 for a set of finite perimeter E ⊂ A.

All of these properties of sets of finite perimeter are invariant by modification of the set on an Hng -null
set. By [Mag12, Prop. 12.19], we can modify E on a Hng -null set to ensure that

∂∗E = {x ∈M : 0 < |E ∩Bg(x, r)|g < |Bg(x, r)|g for all r > 0} = ∂E . (2.2)

(The first identity always holds, while the second holds after a measure zero modification.) In the sequel
we will tacitly assume that every set of finite perimeter has been cleaned up in this way.

2.3. Elliptic integrands. Let F : TM → R be an anisotropic integrand on (M, g) as defined in the
introduction. Given a diffeomorphism ψ : U → V ⊂M , define the pulled-back integrand

ψ∗F : TU → R by ψ∗F (x, ν) = F (ψ(x), dψxν). (2.3)

When no confusion can arise, we will write ψ∗F = F ∗; this should not be confused with the dual integrand
F∗ used in Appendix 3. Let r0 = injg(M)/2. The C2,α regularity of F in particular implies that for any
x0 ∈M if we take ψ : Bgeuc(0r0)→ Bg(x0, r0) to be the normal coordinate map, then

sup
{
‖ψ∗F ( · , ν)‖C1(Bgeuc (0,r0)) : ν ∈ Sn−1

}
≤ C(n, g, F ). (2.4)

For the majority of the paper we will only use this C1 regularity of F in x and will only use the higher
regularity in x when applying the ε-regularity theorem and Schauder estimates in Section 6.
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For x0 ∈ M , the restricted integrand Fx0 : Tx0M → R defined by Fx0(ν) = F (x0, ν) gives rise to a
translation invariant surface energy for sets of finite perimeter E ⊂ Tx0M :

F̄x0(E) =

ˆ
∂∗E

Fx0(νE(x)) dHn−1
gx0

(x).

Here the Hausdorff measure and measure theoretic outer unit normal are taken with respect to the
metric gx0(·, ·) on Tx0M . Among sets of a fixed volume in Tx0M , the energy F̄x0 is uniquely minimized
by translations and dilations of the volume-1 tangent Wulff shape Kx0 ⊂ Tx0M defined by

Kx0 :=
K̂x0

|K̂x0 |gx0
where K̂x0 :=

{
y ∈ Tx0M : gx0(y, ν) < Fx0(ν) for all ν ∈ Tx0M \ {0}

}
; (2.5)

see [Tay78, FM91, BM94, MS86]. Note that 0 ∈ Kx0 . This minimality property is stated in scale-invariant
form as the Wulff inequality:

F̄x0(E) ≥ n|E|
n−1
n

gx0
|K̂x0 |1/ngx0

=

(
|E|gx0
|K̂x0 |gx0

)n−1
n

F̄x0(K̂x0) = |E|
n−1
n

gx0
F̄x0(Kx0) (2.6)

We set

C = sup{Pgx(Kx) : x ∈M}. (2.7)

Define the quantities M = sup{F (x, ν) : x ∈ M, |ν|g = 1} and m = inf{F (x, ν) : x ∈ M, |ν|g =
1}, which are positive and finite by the assumptions on F and the compactness of (M, g). Moreover,
mPg(E) ≤ F(E) ≤MPg(E) for any set of finite perimeter E ⊂ M and Bgx0 (0,m) ⊂ Kx0 ⊂ Bgx0 (0,M).
Estimating the isoperimetric profile above by taking geodesic ball competitors, we thus find that there
exists v̄ = v̄(n, g) ∈ (0, |M |g) such that

F(E) ≥ m

2
nω

1/n
n |E|

(n− 1)/n
g for E ⊂M with |E|g ≤ v̄. (2.8)

It is also useful to notice how the surface energy behaves under rescaling the metric. Setting h = r−2g
for r > 0, the same integrand defines an anisotropic surface energy

Fh(E) =

ˆ
∂∗E

F (x, νhE(x)) dHn−1
h (x) =

F(E)

rn−1
.

2.4. Classical regularity results for local minimizers. Let Ωv be a volume-constrained ε0-local
minimizer of F with volume v ∈ (0, |M |). A classical argument dating back to Almgren [Alm76] (see also
[GMT83, Mor03]) shows that Ωv is a quasi-minimizer of F and satisfies density estimates. Unlike the
uniform quasi-minimality and density estimates we will ultimately derive in Lemma 5.4, these estimates
depend on the set Ωv itself, and thus are not be directly useful to proving Theorem 1.1. However, they
show that Hn-a.e. x ∈ ∂E is a point of density strictly between 0 and 1; together with Federer’s theorem
[Mag12, Theorem 16.2] this implies that Hn(∂Ωv \∂∗Ωv) = 0 and thus, up to modifying Ωv by an Hn-null
set, we can replace a local minimizer with an open set representative. In the remainder of the paper we
will always take this representative.

In fact, the classical regularity theory, [Alm68, Bom82, SSA77, SS82, DS02] shows that ∂Ωv is a C1,α

hypersurface outside of a singular set of Hn−2 measure zero. These estimates are again not a priori
uniform in v.

2.5. Matching the volume constraint. At several points throughout this paper, we will have a set
whose volume is close, but not exactly equal, to a certain prescribed volume. To use it as a competitor
for volume-constrained local minimality, we need to replace it with a set that exactly satisfies the volume
constraint. The following technical lemma allows us to do this in such a way that the difference between
the surface energies of the original set and the modified set is quantitatively controlled in terms of the
volume error. For the proof we borrow some ideas from [MM16, Lemma 3.1].
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Lemma 2.1. For any n ≥ 2, there exist η0 > 0 and cn > 0 depending only on n such that the following
holds. Fix D > 1, η ∈ (0, η0) and let (N,h) be a closed Riemannian n-manifold with injhN > D and

‖ψ∗h− geuc‖C1(Bgeuc (0,D)) ≤
η

D
(2.9)

in normal coordinates ψ centered at any x ∈M . Let E ⊂M be a measurable set with ||E|h − 1| < η for
which there exist finitely many disjoint open sets {Vi}Ki=1 with diamh(Vi) ≤ D such that Uh(E, 1) ⊂ ∪Ki=1Vi.

Then there is a measurable set Ẽ ⊂ ∪Ki=1Vi such that

Ẽ∆E b Uh(∂E, cnDη) and |Ẽ|h = 1. (2.10)

Moreover, if F is an anisotropic perimeter with integrand F satisfying

‖ψ∗F (·, ν)− ψ∗F (0, ν)‖C1(Bgeuc (0,D)) ≤ 1 (2.11)

for every x and ν, then
F(Ẽ) ≤ F(E) (1 + cnD ||E|h − 1|) . (2.12)

Proof. Fix η0 > 0 to be specified later in the proof and let η ∈ (0, η0) and D > 1. For each k ∈ 1, . . . ,K,
since diamhVk ≤ D, we can find xk ∈ Vk with Vk ⊂ Bgeuc(xk, D). Let ψk : Bgeuc(0, D) → Bh(xk, D) be
the normal coordinate map at xk. For λ ∈ [1

2 ,
3
2 ], define the set Eλ ⊂M by

Eλ :=
⋃K
k=1ψk

(
λψ−1

k

(
Vk ∩ E

))
.

Note that E1 = E and that Eλ is well-defined for the full interval since we have assumed Uh(E∩Vk, 1) ⊂ Vk.
Moreover, letting λ+ = (1− η)−(n+1)/n and λ− = (1− η)−(n+1)/n and recalling (1− η) ≤ |E|h ≤ (1 + η)
by assumption, we compute in coordinates to find

|Eλ+ |h ≥ λn+(1− η)n|E|h ≥ λn+(1− η)n+1 ≥ 1, and

|Eλ− |h ≤ λn−(1 + η)n|E|h ≤ λn−(1 + η)n+1 ≤ 1.

The function λ 7→ |Eλ|h is continuous, and thus we can find we can find λ0 ∈ [λ−, λ+] ⊂ [1− cnη, 1 + cnη]

such that |Eλ0 |h = 1. We set Ẽ = Eλ0 .

In order to prove the remaining properties of Ẽ, we prove the following key fact:

|λ0 − 1| ≤ cn||E|h − 1| (2.13)

provided η0 > 0 is small enough in terms of n. To this end, we let J (x) =
√

dethij(x) be the volume

form of h in the coordinates defined by ψ and let Gk = ψ−1
k (Vk ∩ E) ⊂ Rn. We therefore have

|Eλ|h − |E|h =

K∑
k=1

{ˆ
λGk

J (x) dx−
ˆ
Gk

J (x) dx

}
=

K∑
k=1

ˆ
Gk

{λnJ (λx)− J (x)} dx. (2.14)

When λ ∈ [1, 1 + cnη], we add and subtract λnJ (x) and use the fundamental theorem of calculus to find

λnJ (λx)− J (x) ≥ (λn − 1) J (x)− λn (J (λx)− J (x))

≥ (λ− 1)J (x)− (λ− 1) sup {|∇J (tx) · x| : t ∈ [1− cnη, 1 + cnη]}
for any fixed x. Since (2.9) guarantees that J (x) ≥ 1−η and that the term in brackets is bounded above by
1/2 for all x ∈ B(0, D) provided η0 > 0 is small enough depending on n, we see that λnJ (λx)−J (x) ≥
cn(λ − 1)J (x). Applying this inequality to the right-hand side of (2.14) we find that (2.13) holds in
this case. The analogous argument in the case when λ ∈ [1 − cnη, 1] shows that J (x) − λnJ (λx) ≥
(1− λ)cnJ (x), which applied to (2.14) implies (2.13) in this case as well.

Next, with (2.13) in hand, we show the containment

Ẽ∆E ⊂ Uh(∂E, cnDη) . (2.15)

Indeed, if x ∈ E \ Eλ0 , then for some k ∈ {1, . . . ,K}, we have y := ψ−1
k (x) ∈ Gk but y 6∈ λ0Gk. Here we

again let Gk = ψ−1
k (Vk ∩ E) ⊂ Rn. So, ty ∈ ∂Gk for some t ∈ [1, λ0] or t ∈ [λ0, 1], and thus by (2.13),

dgeuc(y, ∂Gk) ≤ |t− 1||y| ≤ |λ0 − 1||y| ≤ cnDη.
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Hence by (2.9), we have dh(x, ∂E) ≤ cnηD (up to doubling cn). The analogous argument holds for any
x ∈ Eλ0 \ E, and thus (2.15) holds.

Finally, we show the estimate for the anisotropic perimeter. Similarly to (2.14), we have

F(Eλ)−F(E) =
K∑
k=1

{ˆ
∂∗λGk

F̂ (x, νGk(x)) dHn−1
geuc −

ˆ
∂∗Gk

F̂ (x, νGk(x)) dHn−1
geuc

}

=
K∑
k=1

{ˆ
∂∗Gk

λn−1F̂ (λx, νGk(x))− F̂ (x, νGk(x)) dHn−1
geuc

} (2.16)

where here we define the function F̂ (x, ν) = F ∗(x, ν)
√

det h̃ij(x) where h̃ij are the coefficients of the

metric on ∂∗E induced by h. Adding and subtracting terms and using λ ∈ [1 − cn, 1 + cnη], (2.9), and
(2.11), a Taylor expansion shows that for any fixed x and ν ∈ Sn−1 that∣∣∣λnF̂ (λx, ν)− F̂ (x, ν)

∣∣∣ ≤ ∣∣λn−1 − 1
∣∣ F̂ (x, ν) + λn−1

√
det h̃ij(λx) |F ∗(λx, ν)− F ∗(x, ν)|

+ λn−1F ∗(x, ν)

∣∣∣∣√det h̃ij(λx)−
√

det h̃ij(x)

∣∣∣∣ ≤ cnD(λ− 1)F̂ (x, ν),

provided η > 0 is chosen sufficiently small depending on n. Combining this with (2.16) and recalling
(2.13), we conclude that the estimate (2.12) holds. This completes the proof. �

3. Comparing projections of tangent Wulff shapes

The following proposition compares projections of translated tangent Wulff shapes via the exponential
map at different points. Its proof is postposed until the appendix.

Proposition 3.1. There exist C = C(g, F ) and ρ0 = ρ0(g, F ) > 0 such that the following holds. Fix
ρ ∈ [0, ρ0), choose x0, x1 ∈ M with dg(x0, x1) < ρ, and let Kx0 ⊂ Tx0M and Kx1 ⊂ Tx1M be defined as
in (2.5). Then for any 0 < r < ρ0, letting z1 = exp−1

x0 (x1), we have

dH,g
(

expx1(∂rKx1), expx0(∂rKx0 + z1)
)
< Cρ r,

dH,g
(

expx1(rKx1), expx0(rKx0 + z1)
)
< Cρ r.

This section is dedicated to proving Proposition 3.1. As in the remainder of the paper we assume that
F is a C2,α elliptic integrand. However, we note that the proof of Proposition 3.1 only requires that
F has C1 dependence on x and for each x0 ∈ M , F (x0, ·) is a convex one-homogenous function that is
positive expect a the origin, with no smoothness or ellipticity needed.

Together with the metric g, the integrand F induces a dual integrand F∗ : TM → R via

F∗(x, z) = sup
{
gx(z, ν) : ν ∈ TxM, F (x, ν) ≤ 1

}
.

Given a pair of points x0, x1 ∈M , let

dF∗(x0, x1) = inf

{ˆ 1

0
F∗(γ(t), γ̇(t)) : γ : [0, 1]→M, γ(0) = x0, γ(1) = x1

}
.

If F is not symmetric, we may have dF∗(x0, x1) 6= dF∗(x1, x0). Nonetheless we may consider the F∗-balls

BF∗(x0, ρ) = {x1 ∈M : dF∗(x0, x1) < ρ} .
Recall the quantities m and M defined in Section 2.3 and note that m−1 = sup{F∗(x, z) : x ∈M, gx(z, z) =
1} and M−1 = inf{F∗(x, z) : x ∈M, gx(z, z) = 1} and therefore

M−1dg(x0, x1) ≤ dF∗(x0, x1) ≤ m−1dg(x0, x1),

Bg(x0,mρ) ⊂ BF∗(x0, ρ) ⊂ Bg(x0,Mρ) .
(3.1)

Proposition 3.1 will follow from the next lemma and the triangle inequality.
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Lemma 3.2. There exist C = C(g, F ) > 0 and ρ0 = ρ0(g, F ) > 0 such that the following holds. Fix
x0, x1 ∈M with dg(x0, x1) ≤ ρ ≤ ρ0. Then for all 0 < r ≤ ρ0, letting z1 = exp−1

x0 (x1), we have

dH,g
(

expx0
(
∂rKx0 + z1

)
, ∂BF∗

(
x1, r

))
≤ Cρ r,

dH,g
(

expx0
(
rKx0 + z1

)
, BF∗

(
x1, r

))
≤ Cρ r.

Before proving Lemma 3.2, let us see how it implies Proposition 3.1.

Proof of Proposition 3.1. Let ρ0 > 0 be chosen according to Lemma 3.2. Fix r, ρ ≤ ρ0 and choose
x0, x1 ∈M with dg(x0, x1) ≤ ρ. First, we apply Lemma 3.2 to find

dH,g(expx0
(
∂ρKx0 + z), ∂BF∗(x1, ρ)

)
≤ Cρ r,

dH,g
(

expx0(ρKx0 + z), BF∗(x1, ρ)
)
≤ Cρ r.

Next, apply Lemma 3.2 with the roles of both x0 and x1 played by x1 (and thus z1 = 0 ∈ Tx1M) to find

dH,g
(

expx1
(
∂rKx1

)
, ∂BF∗

(
x1, r

))
≤ Cρ r,

dH,g
(

expx0
(
rKx1

)
, BF∗

(
x1, r

))
≤ Cρ r .

We apply the triangle inequality to conclude the proof. �

We need three preparatory lemmas to prove Lemma 3.2. The first transfers the assumed regularity on
F in the variable x to regularity of F∗ in x. Let r0 = injg(M)/2. Fix x0 ∈ M and let ψ = expx0 and
consider the pulled-back integrand ψ∗F : Bgx0 (0, r0) × Tx0M → R defined as in (2.3). The regularity
(2.4) of F in x implies, in particular, that for all ν ∈ Tx0M with gx0(ν, ν) = 1 and ρ < r0 we have

‖ψ∗F ( · , ν)− ψ∗F (0, ν)‖C0(B(0,ρ)) ≤ C ρ (3.2)

for a constant C = C(F, g). Define the pulled-back dual integrand ψ∗F∗ : Bgx0 (0, r0)× Tx0M → R by

ψ∗F∗(y, z) = F∗(ψ(y), dψy(z)).

Lemma 3.3. There exists ρ2 = ρ2(g, F ) and C = C(g, F ) such that the following holds. Let F : TM → R
be an elliptic integrand satisfying (3.2). Then for each x0 ∈ M and z ∈ Tx0M with gx0(z, z) = 1, and
ρ < ρ2, we have

‖ψ∗F∗( · , z)− ψ∗(F∗(0, z))‖C0(B(0,ρ)) ≤ C ρ. (3.3)

Here we let ψ = expx0 : Tx0M →M .

Proof. Choose ρ2 ≤ injgM/2 small enough depending on g such that

(1− ρ)gx0 ≤ ψ∗g ≤ (1 + ρ)gx0 in Bgx0 (0, ρ) for all ρ < ρ2. (3.4)

For any z ∈ Tx0M with gx0(z, z) = 1, choose νz ∈ Tx0M such that F (x0, νz) = 1 and

gx0(z, νz) = F∗(x0, z) = ψ∗F∗(0, z). (3.5)

So, choosing any y ∈ Bgx0 (0, ρ) ⊂ Tx0M , the assumption (3.2) implies that ψ∗F (y, νz) ≤ 1 + Cρ with C
as in (3.2). So, using νz := νz/ψ

∗F (y, νz) as a competitor in the definition of ψ∗F∗(y, z), we have

ψ∗F∗(y, z) = sup
{

(ψ∗g)y(z, ν) : ψ∗F (y, νz) ≤ 1
}
≥ (ψ∗g)y (z, ν̄z) =

(ψ∗g)y(z, νz)

ψ∗F (y, νz)
≥ (ψ∗g)y(z, νz)

1 + Cρ
.

By (3.4) and (3.5), we have (ψ∗g)y(z, νz) ≥ (1− ρ)gx0(z, νz) = (1− ρ)ψ∗F∗(y, z), and thus

ψ∗F∗(y, z)

ψ∗F∗(0, z)
≥ 1− ρ

1 + Cρ
≥ 1− 2(1 + C)ρ,

where the final inequality holds for ρ small enough depending on C and thus on F.g. The same argument
holds with the roles of 0 and y swapped. Together these inequalities along with (3.1) show that

|ψ∗F∗(0, z)− ψ∗F∗(y, z)| ≤ 4(1 + C)ψ∗F∗(0, z)ρ ≤
4(1 + C)

m
ρ .
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This proves the lemma. �

The next simple lemma will allow us to pull back (almost) F∗-geodesics via the exponential map.

Lemma 3.4. Fix x1, x2 ∈ M and let γ̂ : [0, 1] → M be a curve with γ̂(0) = x1 and γ̂(1) = x2 such that´ 1
0 F∗(γ̂(t), ˙̂γ(t)) dt ≤ 2dF∗(x1, x2). Then dg(x1, γ̂(t)) ≤ 2M

m dg(x1, x2) for all t ∈ [0, 1].

Proof. Let γ̂ : [0, 1] → M be a curve as in the statement of the lemma.. Recalling that dF∗(x1, x2) ≤
m−1dg(x1, x2) by (3.1), we see that for any t ∈ [0, 1],

dg(x1, γ̂(t)) ≤
ˆ t

0
| ˙̂γ(t)|g dt ≤M

ˆ t

0
F∗(γ̂(t), ˙̂γ(t)) dt ≤M

ˆ 1

0
F∗(γ̂(t), ˙̂γ(t)) dt ≤ 2M

m
dg(x1, x2).

�

Lemmas 3.3 and 3.4 will be used to prove the following lemma.

Lemma 3.5. There exist ρ1 = ρ1(g, F ) > 0 and C = C(g, F ) > 0 such that for all x0 ∈M , ρ < ρ1, and
z1, z2 ∈ Bgx0 (0, ρ) ⊂ Tx0M , we have

(1− Cρ)F∗(x0, z2 − z1) ≤ dF∗
(

expx0(z1), expx0(z2)
)
≤ (1 + Cρ)F∗(x0, z2 − z1). (3.6)

In particular, up to further decreasing ρ1 depending on the same parameters,∣∣∣dF∗( expx0(z1), expx0(z2)
)
− F∗

(
x0, z2 − z1

)∣∣∣
≤ Cρmin

{
F∗

(
x0, z2 − z1

)
, dF∗

(
expx0(z1), expx0(z2)

)} (3.7)

Proof. Let ρ2 = ρ2(g, F ) be chosen according to Lemma 3.3. Let ρ1 be a fixed constant to be specified
later in the proof, small enough such that ρ1 ≤ (1 + m

4M)ρ2. Let ρ < ρ1 and fix z1, z2 ∈ Bgx0 (0, ρ) ⊂ TxM .
We prove the second inequality in (3.6) first. With the usual shorthand ψ = expx0 , we have

dF∗(ψ(z1), ψ(z2)) ≤ inf

{ˆ 1

0
ψ∗F∗ (γ(t), γ̇(t)) dx : γ : [0, 1]→ Bgx0 (0, ρ), γ(0) = z1, γ(1) = z2

}
.

We plug in γ(t) = tz2 + (1 − t)z1 as a test curve. By convexity, γ(t) ∈ Bgx0 (0, ρ) for all t ∈ [0, 1], and
since ρ < ρ2, we can apply Lemma 3.3 to find

dF∗
(
ψ(z1), ψ(z2)

)
≤
ˆ 1

0
ψ∗F∗

(
tz2 + (1− t)z1, z2 − z1

)
dt

≤ (1 + Cρ)

ˆ 1

0
ψ∗F∗

(
0, z2 − z1

)
dt = (1 + Cρ)ψ∗F∗

(
0, z2 − z1

)
= (1 + Cρ)F∗

(
x0, z2 − z1

)
.

Here C = C(C,m) = C(g, F ) is the constant from (3.3).

Now we prove the first inequality in (3.6); the proof is similar but slightly more involved. Let γ̂ :
[0, 1]→M be a curve with γ̂(0) = ψ(z1) and γ̂(1) = ψ(z2) such that

ˆ 1

0
F∗
(
γ̂(t), ˙̂γ(t)

)
dt ≤ (1 + ρ)dF∗

(
ψ(z1), ψ(z2)

)
.

Since, by the triangle inequality, we have dg(ψ(z1), ψ(z2)) ≤ 2ρ, Lemma 3.4 guarantees that the image of

γ̂ is contained in Bg(ψ(z1), 4M
m ρ), which in turn is contained in Bg(x0, (1 + 4M

m )ρ). So, (1 + 4M
m )ρ < ρ2 <

injgM/2 we may consider the pulled-back curve γ = ψ−1γ̂ : [0, 1] → Bgx0 (0, (1 + 4M
m )ρ) ⊂ Tx0M , which

has γ(0) = z1, and γ(1) = z2. It is easy to check using duality that for any z1, z2 ∈ Tx0M ,

F∗(x0, z2 − z1) = inf
{
ψ∗F∗(0, γ̇(t)) dt : γ : [0, 1]→ TxM, γ(0) = z1, γ(1) = z2

}
. (3.8)
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Using γ as a competitor in (3.8) and applying the bound (3.3) and γ̇(t) = dψγ̂(t)( ˙̂γ(t)), we find

F∗(x0, z2 − z1) ≤
ˆ 1

0
ψ∗F∗(0, γ̇(t)) dt ≤ (1 + Cρ)

ˆ 1

0
ψ∗F∗(γ(t), γ̇(t)) dt

= (1 + Cρ)

ˆ 1

0
F∗(γ̂(t), ˙̂γ(t)) dt = (1 + Cρ)dF∗(ψ(z1), ψ(z2)).

Here C = C(C,m,M) = C(F, g). This proves (3.6); (3.7) follows immediately from (3.6) up to decreasing
ρ1 depending on C (and thus on F, g) and doubling the constant C. �

We are now ready to prove Lemma 3.2.

Proof of Lemma 3.2. Let ρ1 = ρ1(g, F ) be chosen according to Lemma 3.5. Let ρ0 > 0 be a fixed constant
to be specified in the proof, small enough so that (1 + m−1)ρ0 ≤ ρ1. Fix r ∈ (0, ρ0] and ρ ∈ [0, ρ0] and
choose x0, x1 ∈M with dg(x0, x1) ≤ r. Let ψ = expx0 : Tx0M →M . Provided we choose ρ0 small enough
in terms of g,m,M, we can pull back BF∗(x1, 2ρ0) by ψ and it suffices to show that

dH,gx0
(
∂rKx0 + z1, ψ

−1(∂BF∗(x1, r))
)
≤ Cρ r, (3.9)

dH,gx0
(
rKx0 + z1, ψ

−1(BF∗(x1, r))
)
≤ Cρ r . (3.10)

We prove (3.9), with the proof of (3.10) being analogous. Toward (3.9), fix z2 ∈ ∂rKx0 + z1 ⊂ Tx0M . So,
F∗(x0, z2−z1) = r. By assumption |z1|gx0 < ρ, and thus using (3.1), we also have |z2|gx0 < ρ+m−1r ≤ ρ1.
So, we can apply Lemma 3.5: recalling that F∗(x0, z2 − z1) = r, (3.7) guarantees that

|dF∗(x1, ψ(z2))− r| ≤ Cρ r. (3.11)

Note that (3.11) implies z ∈ ψ−1(BF∗(x1, r̂)) for r̂ with |r̂ − r| < Cρ r, Together with (3.1) this implies

z2 ∈ Ugx0 (ψ−1(∂BF∗(x1, r)), Cρ r) (3.12)

where C = C(g, F ).

The other direction is analogous. Take z2 ∈ ψ−1(∂BF∗(x1, r)) so that dF∗(x1, ψ(z2)) = r. Again we
have assumed that |z1|gx0 < ρ and using (3.1) deduce that |z2|gx0 < ρ + m−1r < ρ1 as well. Hence, we
are in a position to apply Lemma 3.5, which guarantees that

|F∗(x0, z2 − z1)− r| ≤ Cρ r .

So, we see that z2 ∈ ∂Kr̂ + z1 for some r̂ with |r̂ − r| < Cρ r. Together with (3.1), this proves that

z2 ∈ Ugx0 (∂rKx0 + z1, Cρ r)

with C = C(g, F ) and completes the proof. �

4. The diameter bound

In this section we prove a uniform scale-invariant diameter bound for volume-constrained ε0-local
minimizers Ωv of F with sufficiently small volume v: Ωv is contained in the union of J0 balls of radius
2v1/n. This estimate is uniform in v in the sense that, with respect to the rescaled metric h = v − 2/ng,
|Ωv|h = 1 and Ωv is contained in J0 balls of radius 2.

Theorem 4.1. Let (M, g) be a closed Riemannian manifold of dimension n ≥ 2 and let F be an
anisotropic surface energy with integrand F. Fix ε0 > 0 and κ > 0. There exist v0 = v0(n, g, F, ε0, κ) ∈
(0, |M |g) and J0 = J0(n, g, F, ε0, κ) ∈ N such that for any volume-constrained ε0-local minimizer Ωv of F
with volume v < v0 and F(Ωv) ≤ κv(n− 1)/n, there is a collection of points x1, . . . , xJ0 ∈M such that

Ωv ⊂
J0⋃
i=1

Bg
(
xi, 2v

1/n
)
.
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The proof of Theorem 4.1 has three steps. First, Lemma 4.2 uses the concavity of the function
t 7→ t(n− 1)/n to imply that if a set of finite perimeter is the union of N disjoint sets, then a significant
portion of its volume is contained in the union of J0 of those sets. Next, combining Lemma 4.2 with a
grid argument inspired by [FM13, MM16], we show in Proposition 4.3 that any set of finite perimeter
with volume v and a uniform perimeter (or F) bound has most of its volume contained in the union of

J0 balls of radius v1/n. Finally, we prove a differential inequality that allows us to improve this measure
bound to containment in J0 balls in the case of a volume-constrained ε0-local minimizer.

4.1. A lemma about concavity and sequences of real numbers. The following lemma says that if a
nonnegative decreasing sequence {ai} sums to 1 and has ‖{ai}‖`α bounded for a concave power α ∈ (0, 1),
then the tail end of the sequence has small `1 norm. This lemma has been already used in concentration
compactness arguments, see for instance [GNR22, Proposition 3.7], [CTG21, Proposition 3.1], [CGOS18,
Lemma 5.6, Lemma 6.6], [NPST22, Theorem 3.3]. We will apply it with α = n−1

n as described above.

Lemma 4.2. Fix α ∈ (0, 1), κ > 0, and η > 0. There exists J0 = J0(α, κ, η) ∈ N such that for any
sequence {ai}i∈N of nonnegative real numbers with a1 ≥ a2 ≥ . . . and such that∑

i∈N
ai = 1 and

∑
i∈N

aαi ≤ κ,

we have
∑J0

i=1 ai ≥ 1− η.

Proof. Since
∑J

i=1 ai ≤ 1 and the sequence is decreasing, we observe that aJ ≤ 1/J for every J ∈ N.
Hence we compute

1−
J∑
i=1

ai =
∑
i>J

ai =
∑
i>J

aαi a
1−α
i ≤ a1−α

J

∑
i>J

aαi ≤
1

J1−ακ.

The proof follows choosing J large enough so that 1
J1−ακ ≤ η. �

4.2. A diameter bound in measure. In this section, we prove that a set of finite perimeter in (M, g)

with small enough volume v has all but an η-fraction contained in J0 balls of radius v1/n, where J0

depends only on dimension, the scale invariant anisotropic perimeter bound and η. The proposition
applies to all sets of finite perimeter of sufficiently small volume and does not require minimality.

Proposition 4.3. Fix κ ≥ 1 and η > 0. Let (M, g) be a closed Riemannian manifold of dimension
n ≥ 2 and fix an anisotropic surface energy F with integrand F. There exist v0 = v0(n, g, F, η) > 0
and J0 = J0(n, F, κ, η) ∈ N such that the following holds. For any finite perimeter set Ω with volume

v ∈ (0, v0] and F(Ω) ≤ κv(n−1)/n, we may find points x1, . . . xJ0 in M such that∣∣∣Ω \ J0⋃
i=1

Bg
(
xi, v

1/n
)∣∣∣
g
≤ ηv . (4.1)

The idea of the proof of Proposition 4.3 is the following. First, we intersect Ω with a collection of
disjoint open sets {Qi} of diameter at most v1/n that cover Ω up to a null set, decomposing Ω into finitely
many pairwise disjoint sets with the desired diameter bound. Importantly, Lemma 4.5 below ensures the
collection {Qi} can be constructed in such a way that we quantitatively control the amount of surface
energy that is added through taking intersections. Next, the Wulff inequality (2.8) yields a bound on the
sum of a concave power of the volume of each component. Finally, by Lemma 4.2 we conclude that most
of the volume of Ω must be contained in J0 of the disjoint components.

Remark 4.4. The smallness of v0 in the statement of Proposition 4.3 is used to apply the Wulff inequality
in the form (2.8) on (M, g). In Euclidean space with a translation invariant F (in particular the perimeter),
the Wulff inequality (2.8) holds for every volume: hence Proposition 4.3 holds, with the same proof, for
sets of finite perimeter of any volume.
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Lemma 4.5. Let (M, g) be a closed Riemannian manifold of dimension n ≥ 2. There exist c = c(n, g) > 0
and r0 = r0(n, g) > 0 such that the following holds. For every finite perimeter set E ⊂M and r ∈ (0, r0),
there is a finite collection of pairwise disjoint open sets {Qi}Ni=1 in M with diamg(Qi) ≤ r such that
|E \ ∪Ni=1Qi|g = 0,

Hn−1
g ({x ∈ ∂∗E ∩ ∂∗Qi : νE(x) = νQi(x)}) = 0, (4.2)

and

|E|g
r
≥ c

N∑
i=1

Hn−1
g

(
E(1) ∩ ∂Qi

)
. (4.3)

In [FM13, Lemma 5.1], a statement analogous to Lemma 4.5 is shown in Euclidean space by decompos-
ing Rn into cubes whose sides are parallel to a judiciously chosen orthonormal basis depending on the set
E itself. To prove Lemma 4.5, we will obtain an initial collection of sets by applying [FM13, Lemma 5.1]
in charts, and then refine the sets by hand to ensure they satisfy the properties of the lemma. Although
[FM13, Lemma 5.1] is stated without using the set E(1) of points of density 1 and without the property

(4.2), as observed in [MM16, Proof of Lemma 3.1, Step four] we will need to use E(1) and (4.2) in the
proof of Proposition 4.3 in order to apply [Mag12, Theorem 16.3 (16.7)] to obtain (4.5).

Proof of Lemma 4.5. Step 1. First, we construct an initial collection of open sets {Qi}Ni=1, possibly not
pairwise disjoint, with diameter at most r that cover E up to a null set and satisfy (4.3).

Choose r0 < (injgM)/4 small enough so that 1
2geuc ≤ ψ∗g ≤ 2geuc on Bgeuc(0, 4r0) ⊂ Rn, where ψ is

the normal coordinate map centered at any x ∈ M . Choose a finite collection of points x1, . . . , xK such
that the balls {Bg(xk, 2r0)}Kk=1 cover M and let ψk : Bgeuc(0, 4r0) → M be the normal coordinate map
centered at xk.

Let Gk = ψ−1
k (E ∩ Bg(xk, 3r0)) ⊂ Rn, so that Gk b Bgeuc(0, 4r0) and E = ∪Kk=1ψk(Gk). Fix k ∈

{1, . . . ,K} and r < r0. Applying [FM13, Lemma 5.1] to the set Gk, we obtain a collection of disjoint
open cubes {Q′k} of diameter r/2 with parallel sides that cover Lebesgue almost all of Rn such that

|Gk|geuc ≥ r
4n

∑
Q′k
Hn−1
geuc(G

(1)
k ∩ ∂Q

′
k). Let {Q′k,a}a∈A′k ⊂ {Q

′
k} be the finite collection of those cubes that

intersect Gk nontrivially. Note that Q′k,a ⊂ Bgeuc(0, 4r0) for each a ∈ A′k, and

|Gk|geuc ≥
r

4n

∑
a∈A′k

Hn−1
geuc

(
G

(1)
k ∩ ∂Q

′
k,a

)
. (4.4)

For each a ∈ A′k, let Qk,a = ψk(Q
′
k,a). Notice that diamg(Qk,a) ≤ r for all k ∈ {1, . . . ,K} and a ∈ A′k.

As an initial refinement of this collection, we let A1 = A′1 and for k ≥ 2 let

Ak :=
{
a ∈ A′k : Qk,a 6⊂

⋃
j<k

⋃
a∈Aj

Qj,a

}
.

The collection {Qk,a}a∈Ak,1≤k≤K consists of open sets with diamg(Qk,a) ≤ r and covers E up to a set of
measure zero. Moreover, applying (4.4) in charts, we find that

|E|g ≥
1

K

K∑
k=1

|E ∩ Vk|g ≥
1

2K

K∑
k=1

|Gk|geuc ≥
r

8nK

K∑
k=1

∑
a∈Ak

Hn−1
geuc

(
G

(1)
k ∩ ∂Q

′
a,k

)
≥ r

16nK

K∑
k=1

∑
a∈Ak

Hn−1
g

(
E(1) ∩ ∂Qa,k

)
,

so the collection satisfies (4.3). However, the sets in this collection are not pairwise disjoint.

Step 2: We now slightly modify the collection of sets from Step 1 above so that they are pairwise
disjoint and are still open with diameter at most r, cover E up to a null set, and satisfy the estimate
(4.3). Fix 2 ≤ k ≤ K and b ∈ Ak. Let Ik,b = {a ∈ A1 : Q1,a ∩ Qk,b 6= ∅} be the indices corresponding
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to cubes from the chart ψ1 that intersect Qk,b. By the construction from disjoint cubes in charts, the

cardinality of Ik,b is at most Cn. Let Q̂k,b := Qk,b \ ∪a∈Ik,bQ1,a. Then

Hn−1
g

(
∂Q̂k,b ∩ E(1)

)
≤ Hn−1

g

(
∂Qk,b ∩ E(1)

)
+
∑
a∈Ik,b

Hn−1
g

(
∂Q1,a ∩Qk,b ∩ E(1)

)
.

Summing this up over all b ∈ Ak and 2 ≤ k ≤ K, we find that

K∑
k=2

∑
b∈Ak

Hn−1
g

(
∂Q̂k,b ∩ E(1)

)
≤

K∑
k=2

∑
b∈Ak

Hn−1
g

(
∂Qk,b ∩ E(1)

)
+ CnK

∑
a∈A1

Hn−1
g

(
∂Q1,a ∩ E(1)

)
.

Here we have used the fact that any x ∈ ∂Q1,a is contained in Qk,b for at most CnK cubes, thanks to the

construction from disjoint cubes in charts. Adding
∑

a∈A1
Hn−1
g

(
∂Q1,a∩E(1)

)
to both sides and recalling

(4.4), we see that

∑
a∈A1

Hn−1
g

(
∂Q1,a ∩ E(1)

)
+

K∑
k=2

∑
b∈Ak

Hn−1
g

(
∂Q̂k,b ∩ E(1)

)
≤ CnK

K∑
k=1

∑
a∈Ak

Hn−1
g (E(1) ∩ ∂Qa,k) ≤

|E|g
r
.

So, the collection of sets {Q1,a}a∈A1 ∪ {Q̂k,b}2≤k≤K,b∈Ak satisfies (4.3), each set is open with diameter at

most r, and the sets Q1,a are pairwise disjoint and also have trivial intersection with any Q̂k,b.

Setting aside the sets {Q1,a}a∈A1 , we apply the same procedure with the index k = 2 playing the role

of 1 to refine the sets {Q̂k,b} for 3 ≤ k ≤ K, b ∈ Ak, to make them disjoint from Q̂2,a for any a ∈ A2 and
satisfy the properties above. Proceeding inductively and applying the refinement procedure K times, we
obtain a collection of sets satisfying the properties of the lemma. In particular, property (4.2) can be
obtained by slightly tilting the initial collection of open sets {Qi}Ni=1. �

We now prove Proposition 4.3.

Proof of Proposition 4.3. Let v̄ be as in (2.8), let r0 be as in Lemma 4.5, and set v0 := min{v̄, rn0 }. Let

{Qi}Ni=1 be the collection of sets obtained applying Lemma 4.5 to E = Ω with r = v1/n. We first apply the
isoperimetric inequality (2.8) and then, using (4.2), we apply [Mag12, Theorem 16.3 (16.7)] to compute

N∑
i=1

|Ω ∩Qi|
n−1
n

g ≤ C
N∑
i=1

F(Ω ∩Qi) ≤ C
(
F(Ω) +

N∑
i=1

Hn−1
g (Ω(1) ∩ ∂Qi)

)
. (4.5)

Applying estimate (4.3) from Lemma 4.5 to (4.5), we obtain

N∑
i=1

|Ω ∩Qi|
n−1
n

g ≤ C
(
κv

n−1
n +

v

r

)
.

Dividing by v
n−1
n and using the choice r = v

1
n , we deduce that

N∑
i=1

(
|Ω ∩Qi|g

v

)n−1
n

≤ C v
1/n

r
+ Cκ ≤ Cκ. (4.6)

The sets Qi are pairwise disjoint and cover E up to a set of measure zero, so
∑N

i=1
|Ω∩Qi|g

v = 1. Up to

relabeling the indices, we can suppose that the sequence ai :=
|Ω∩Qi|g

v is non-increasing, hence we can

apply Lemma 4.2 to {ai}Ni=1, to deduce that there exists J0 = J0(n, κ, η) ∈ N such that

J0∑
i=1

|Ω ∩Qi|g
v

≥ 1− η.
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For each i = 1, . . . , J0, since diamg(Qi) ≤ r = v
1
n , we can find a point xi ∈M such that Qi ⊂ Bg(xi, v1/n).

So, again using the pairwise disjointness of the Qi,∣∣Ω \⋃J0
i=1Bg(xi, v

1/n)
∣∣
g
≤
∣∣Ωv \

⋃J0
i=1Qi

∣∣
g

= |Ω|g −
J0∑
i=1

|Ω ∩Qi|g ≤ ηv. (4.7)

Thus (4.1) holds, as desired. �

4.3. Proof of the diameter bound. In this section, we prove the diameter bound of Theorem 4.1. In
the proof, we will use (slight modifications of) sets of the form Ω′v := Ωv ∩

⋃J0
i=1Bg(xi, R) as competitors

for the ε0-local minimality of Ωv, where xi, . . . , xJ0 are the points obtained in Proposition 4.3. To this
aim, we first prove that Ωv∆Ω′v ⊂ Ug(∂Ωv, δ) in the following lemma. Recall that Ug(E, δ) is the tubular
neighborhood defined in (1.1).

Lemma 4.6. Fix a Riemannian manifold (M, g) of dimension n ≥ 2. Let r0 > 0 be small enough so that
|Bg(x, r)|g ≥ ωnr

n/2 for any x ∈ M and r ∈ (0, r0). Fix δ > 0 and J0 ∈ N. Let γ < ωn
2 min{rn0 , δn}. If

Ω ⊂M is a measurable set with ∣∣∣Ω \⋃J0
i=1Bg(xi, R)

∣∣∣
g
≤ γ

for some x1, . . . , xJ0 ∈M and R > 0, then

Ω \
⋃J0
i=1Bg(xi, R+ δ) ⊂ Ug(∂Ω, δ). (4.8)

Proof. Suppose there is a point x0 ∈ Ω \
⋃J0
i=1Bg(xi, R+ δ) with x0 6∈ Ug(∂Ω, δ). Then by definition,

Bg(x0, δ) ⊂ Ω \
⋃J0
i=1Bg(xi, R)

and so in particular

|Bg(x0, δ)|g ≤
∣∣∣Ω \⋃J0

i=1Bg(xi, R)
∣∣∣
g
≤ γ.

On the other hand, |Bg(x0, δ)|g ≥ ωn
2 min{rn0 , δn}, contradicting our choice of γ. We conclude that no

such point exists and the containment (4.8) holds. �

We are now ready to prove the main result of the section, using Lemma 4.6 and Proposition 4.3 to
establish a differential inequality for the volume of Ωv outside J0 balls of radius r.

Proof of Theorem 4.1. We begin by fixing parameters. Let η = η(n, ε0) ∈ (0, 1/2) be a fixed number
to be determined later in the proof. Let J0 = J0(n, F, κ, η) = J0(n, F, κ, ε0) be chosen according to
Proposition 4.3. Choose r0 = r0(g, η, J0, F ) = r0(g, n, κ, F ) < injgM to be small enough according to the
assumptions of Lemma 4.6 and such that

‖ψ∗g − geuc‖C1(Bgeuc (0,r0)) ≤
η

12J0
and sup

ν∈Sn−1

‖ψ∗F (·, ν)‖C1(Bgeuc (0,r0)) ≤ 1, (4.9)

in normal coordinates ψ at any x ∈ M . Let v0 = v0(n, g, F, κ, η) < rn0ωn/2 be small enough to apply

Proposition 4.3 and such that 3v
1/n
0 < r0/100J0 . Let v < v0 be fixed. Throughout the proof, cn denotes

a dimensional constant whose value may change from line to line.

By Proposition 4.3, we can find a collection of points x1, . . . , xJ0 ∈M such that∣∣Ωv \
⋃J0
i=1Bg(xi, v

1/n)
∣∣
g
< ηv . (4.10)

Let I = [v1/n, 3v1/n], and for r ∈ I let

A(r) =

J0⋃
i=1

Bg(xi, r) and u(r) =
|Ωv \A(r)|g

v
.

Note that u is decreasing in r, and u(v1/n) < η by (4.10). We claim there exists cn > 0 such that

[(vu(r))
1/n]′ ≤ −cn (4.11)
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for all r ∈ I with u(r) > 0. Before proving the differential inequality (4.11), let us see how it will allow
us to conclude the proof of the proposition. Take r ∈ I such that u(r) > 0. Since u is decreasing, (4.11)

holds for all s ∈ (v1/n, r]. Integrating this differential inequality and recalling that u(v1/n) < η, we find

cn
(
r̂ − v1/n

)
≤ (ηv)

1/n − [vu(r̂)]
1/n < (ηv)

1/n.

In particular, provided we choose η < cn/2, we find that r < 2v1/n. Thus u vanishes on [2v1/n, 3v1/n] and

Ωv ⊂ A(2v1/n). This shows the claim in the proposition.

It therefore remains to prove (4.11). By the coarea formula, we find that

u′(r) = −1

v
Hn−1
g (∂A(r) ∩ Ωv) (4.12)

for a.e. r ∈ I. To gain information about the right-hand side of (4.12), we would like to use the sets

Er := A(r) ∩ Ωv

for r ∈ I as competitors for the local minimality of Ωv. But, since we may have |Er| < v, we must

modify the sets using Lemma 2.1 to make them admissible competitors. To this end, note that A(3v1/n)
has 1 ≤ K ≤ J0 connected components A1, . . . , AK , and each connected component Ak has diameter at
most 6J0 v

1/n. Thus, we can find a collection of disjoint open sets V1, . . . , VK in M such that diamg(Vk) ≤
12J0 v

1/n and Ug(Ak, v
1/n) ⊂ Vk. In particular, Ug(Er, v

1/n) ⊂ ∪Kk=1Vk for each r ∈ I.

In terms of the rescaled metric h = v − 2/ng, this means that diamh(Vk) ≤ 12J0, and Uh(Er, 1) ⊂
∪Kk=1Vk, and |Er|h = 1−u(r) ∈ [1−η, 1]. Moreover, since v0 was chosen small enough that v1/n < r0/12J0,
the estimates (4.9) hold with h in place of g and B(0, 12J0) in place of B(0, r0). Thus, for each r ∈ I, we
may apply Lemma 2.1 on (M,h) with D = 12J0 and E = Er. In terms of the metric g, the conclusion of

the lemma tells us there is a set Ẽr with |Ẽr| = v such that

Ẽr∆Er b Ug(∂Er, cnJ0ηv
1/n), (4.13)

F(Ẽr) ≤ {1 + cnJ0u(r)}F(Er). (4.14)

We now claim that, if η is chosen to be small enough, we have

Ẽr∆Ωv ⊂ Ug(∂Ωv, ε0v
1/n), (4.15)

thus Ẽr is an admissible competitor for the local minimality of Ωv. Thanks to the triangle inequality
property of the symmetric difference (2.1), it suffices to show that Ωv∆Er and Er∆Ẽr are both contained

in this neighborhood of ∂Ωv. To obtain the first containment, we apply Lemma 4.6 with δ = ε0
2 v

1/n and
γ = ηv, with η > 0 chosen small enough depending on ε0 so that ηv < ωn

2 min{rn0 , εn0v/2n}. This implies

Er∆Ωv = Ωv \A(r) ⊂ Ug(∂Ωv,
ε0
2
v
1/n). (4.16)

Next, to show the containment of Er∆Ẽr, thanks to (4.13), it suffices to show that

Ug(∂Er, cnJ0ηv
1/n) ⊂ Ug(∂Ωv, ε0v

1/n).

Since ∂Er = (∂Ωv ∩A(r)) ∪ (∂A(r) ∩ Ωv) we thus find that

Ug(∂Er, cnJ0ηr) = Ug(∂Ωv ∩A(r), cnJ0ηr) ∪ Ug(∂A(r) ∩ Ωv, cnJ0ηr)

⊂ Ug(∂Ωv, cnJ0ηr) ∪ Ug(∂A(r) ∩ Ωv, cnJ0ηr) .

Since ∂A(r)∩Ωv ⊂ Ωv\A(r) and r ≤ 3v1/n, if we take cnJ0ηr ≤ ε0v1/n/2, we have Ug(∂Ωv∩A(r), cnJ0ηr) ⊂
Ug(∂Ωv, ε0v

1/n) by (4.16) above. Thus (4.15) holds.
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Hence, Ẽr is an admissible competitor for the local minimality of Ωv, and so we find that

F(Ωv) ≤ F(Ẽr)
(4.14)

≤ (1 + Cu(r))F(Er)

= (1 + Cu(r))
(
F(Ωv;A(r)) + CHn−1(∂A(r) ∩ Ωv)

)
(4.12)

≤ (1 + Cu(r))(F(Ωv;A(r)) + Cv|u′(r)|)
≤ F(Ωv;A(r)) + Cκv(v−

1/nu(r) + |u′(r)|).
Subtracting F(Ωv;A(r)) from both sides and adding

´
∂A(r)∩Ωv

F (x,−νA(r)) dHn−1 to both sides (and

noting the latter term is bounded above by Cv|u′(r)|), we find

F(Ωv \A(r)) ≤ Cκv(v−
1/nu(r) + |u′(r)|)

from which we deduce from (2.8) that

(vu(r))
(n− 1)/n ≤ Cκv(v−

1/nu(r) + |u′(r)|).

Choosing η small enough that Cκvu(r) ≤ 1
2u(r)(n− 1)/n, we obtain (4.11) and conclude the proof. �

5. Uniform convergence to a Wulff shape, qualitatively

In this section, we prove Theorem 5.1, showing that for v sufficiently small, a volume-constrained
ε0-local minimizer Ωv of F is uniformly close to a tangent Wulff shape of the appropriate volume at some
point x0 ∈M . At this stage, the estimates are qualitative with respect to the volume parameter v.

Theorem 5.1. Fix a closed Riemannian n-manifold (M, g) and an anisotropic surface energy F with
integrand F . For every κ > 0 and ε0 > 0, there exists v0 = v0(n, g, F, κ, ε0) ∈ (0, |M |g) such that the
following holds. Let Ωv be a volume-constrained ε0-local minimizer Ωv of volume v < v0 with F(Ωv) ≤
κv(n− 1)/n. Then Ωv is connected and there is a point x0 ∈M such that

dH,g

(
∂Ωv, expx0(∂(v

1/nKx0))
)
<
ε0v

1/n

β0
and

∣∣∣Ωv∆ expx0(v
1/nKx0)

∣∣∣
g
<
ε0v

β0
. (5.1)

Here Kx0 is the tangent Wulff shape at x0 defined in (2.5), and

β0(n, κ, F, ε0) :=
8Cε0

min
{(

m
2Λnω

1/n
n

)n
,
εn0 ωn
2n+1

} .
Remark 5.2. In Theorem 5.6 we show that estimate (5.1) actually holds for any β0 > 0, provided v0

is also taken to be sufficiently small depending on β0. However, the explicit choice of β0 in the theorem
statement provides a volume threshold under which local minimizers are connected.

Remark 5.3. Since Kx0 ⊂ Bgx0 (0, R′) for a constant R′ > 0 depending only on F and g, Theorem 5.1

implies that Ωv satisfies a diameter bound Ωv ⊂ Bg(x0, R v
1/n) where R = R′ + 2ε0/β0 depends only on

F, g, and n. Moreover, (5.1) implies that

Ωv∆ expx0(v
1/nKx0) ⊂ Ug(∂Ωv, ε0v

1/n/β0).

We prove Theorem 5.1 via a compactness argument, using Theorem 4.1 crucially at various points.
To see the idea, take a sequence of volume-constrained ε0-local minimizers Ωk of volume vk → 0. Using
Theorem 4.1, we can pull back Ωk in charts and show that, after rescaling, the resulting sequence of sets
Ek in Rn subsequentially converges in L1 to a limit set E with unit volume. Again using Theorem 4.1,
we show in Section 5.1 that the sets Ωk satisfy scale-invariantly uniform density estimates. This upgrades
the L1 convergence of Ek to Hausdorff convergence of the boundaries and crucially allows us to deduce
that the limit set E is itself a volume-constrained local minimizer of a translation invariant anisotropic
surface energy. A scaling argument and the Alexandrov-type theorem [DRKS20, Corollary 6.8] show
that E is a translation of the corresponding Wulff shape. The translation invariance leads to technical
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challenges bringing this statement back to (M, g), which we tackle by comparing tangent Wulff shapes
at different points using Proposition 3.1.

5.1. Uniform quasi-minimality. In this section, we prove that volume-constrained ε0-local minimizers
of F with small volume satisfy a quasi-minimality property among non-volume-constrained competitors.
In the language of [Mag12], after rescaling, they satisfy a local version of being (Λ, r0)-minimizers of F .
Crucially, the parameters Λ and r0 are independent of v. Theorem 4.1 is key in the proof, as it allows us
to apply Lemma 2.1 to modify a local competitor into one with the prescribed volume while estimating
the error in a uniform way.

Lemma 5.4. Let (M, g) be a closed Riemannian manifold of dimension n ≥ 2 and let F be an anisotropic
surface energy on M . For each ε0 > 0 and κ > 0, there exist v0 = v0(n, ε0, κ, g) > 0 and Λ = Λ(n, κ) > 1
such that the following holds. If Ωv ⊂ M is a volume-constrained ε0-local minimizer of F with volume
v ∈ (0, v0) and F(Ωv) ≤ κv(n− 1)/n, then Ωv is a local (Λv−1/n, ε02 v

1/n)-minimizer of F , i.e.

F(Ωv) ≤ F(E) + Λ v−
1/n|Ωv∆E|g.

for any set E ⊂M such that Ωv∆E b Ug(∂Ωv,
ε0
2 v

1/n).

Proof. Let v0 and Λ be fixed constants to be specified in the proof and fix v ∈ (0, v0). Let h = v−2/ng, so
that Ωv is a volume-constrained ε0-local minimizer of Fh with |Ωv|h = 1. In terms of the rescaled metric,
we will prove that for any E ⊂M with Ωv∆E ⊂ Uh(∂Ωv,

ε0
2 ), we have

Eh(Ωv) ≤ Eh(E) where Eh(E) := Fh(E) + Λ ||E|h − 1| . (5.2)

Then, noting that ||E|h − 1| ≤ |E∆Ωv|h and scaling back to the original metric, this implies the lemma.

To show (5.2), it suffices to show that for any E ⊂M with E∆Ωv ⊂ Uh(∂Ωv,
ε0
2 ) and Ev(E) ≤ 2Eh(Ωv),

we may find a set Ẽ with

Eh(Ẽ) ≤ Eh(E), |Ẽ|h = 1, Ẽ∆Ωv ⊂ Uh(∂Ωv, ε0),

since then taking Ẽ as a competitor for the local minimality of Ωv, directly implies (5.2).

So, fix E ⊂M with E∆Ωv b Uh(∂Ωv,
ε0
2 ) and Eh(E) ≤ 2Eh(Ωv). Notice that

||E|h − 1| ≤ Eh(E)

Λ
≤ 2Eh(Ωv)

Λ
=

2Fh(Ωv)

Λ
≤ 2κ

Λ

Recall the dimensional constants η0, cn in Lemma 2.1. Choose η < min{η0,
ε0

8cn
} and Λ > 2κ/η. According

to Theorem 4.1, Ωv ⊂ ∪J0j=1Bh(xi, 2) for points x1, . . . xJ0 ∈ M , and thus we also have Uh(E, ε02 ) ⊂
Uh(Ωv, ε0) ⊂ ∪J0j=1Bh(xi, 4). Then, provided we choose v0 small enough so (2.9) holds with D = 4, we

can apply Lemma 2.1 to obtain a set Ẽ that, thanks to our choice of η, satisfies

Ẽ∆E ⊂ Uh(∂E,
ε0
2

) ⊂ Uh(∂Ωv, ε0) and |Ẽ|h = 1,

and

Fh(Ẽ) ≤ Fh(E)(1 + Cn ||E|h − 1|)
≤ Fh(E) + 2F(Ωv)Cn ||E|h − 1| ≤ Fh(E) + Cnκ ||E|h − 1| .

Therefore, Eh(Ẽ) = Fh(Ẽ) ≤ Fh(E) + Cnκ ||E|h − 1| ≤ Eh(E) so long as Λ > Cnκ. �

5.2. An intermediate form of Theorem 5.1. Next, we prove a slightly weaker version of Theorem 5.1:
In Theorem 5.5 below, a volume-constrained ε0-local minimizer Ωv is shown to be close to a (projected
via expx0) Wulff shape translated by some y ∈ Tx0M . The modulus of this translation, while tending to

zero as v → 0, could be very large relative to the natural length scale v1/n. In Section 5.4 we will center
to correct this translation error and prove that Ωv is connected to complete the proof of Theorem 5.1.
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Theorem 5.5. Fix a closed Riemannian n-manifold (M, g) and an anisotropic surface energy F with
integrand F . For every κ > 0, β > 0, ε0 > 0, and ρ > 0, there exists v0 = v0(g, F, κ, ε0, β, ρ) > 0
such that the following holds. Let Ωv be a volume-constrained ε0-local minimizer of volume v < v0 with
F(Ωv) ≤ κv(n− 1)/n. There are points x ∈M and y ∈ Bgx(0, ρ) ⊂ TxM such that

dH,g
(
∂Ωv, expx(∂v

1/nKx + y)
)
<
ε0v

1/n

β
and

∣∣Ωv∆ expx(v
1/nKx + y)

∣∣
g
<
ε0v

β
. (5.3)

Proof. We divide the proof in several steps:

Step 0: Setup. Supposing for the sake of contradiction that the statement is false, we find r0 ≤
injgM

2
and a sequence of numbers vi → 0 and of volume-constrained ε0-local minimizers Ωi of F with volume vi
such that

dH,g
(
∂Ωi, expx(∂v

1/n
i Kx + y)

)
≥
ε0v

1/n
i

β
or

∣∣Ωi∆ expx(v
1/n
i Kx + y)

∣∣
g
≥ ε0vi

β
(5.4)

for every x ∈ M and y ∈ Bgx(0, r0) ⊂ TxM . Let v0 be chosen according to Theorem 4.1. Since
vi < v0 for i large enough, we may apply Theorem 4.1 to find a sequence of finite families of points

{xi,j : i ∈ N, j = 1, . . . , J0} ⊂ M such that Ωi ⊂
⋃J0
j=1Bg(xi,j , 2v

1/n
i ). For fixed i ∈ N and for each

j = 1, . . . , J0, let Ωi,j be the union of all the connected components of Ωi that intersect Bg(xi,j , 2v
1/n
i )

and do not intersect any of the previous balls {Bg(xi,k, 2v
1/n
i )}j−1

k=1. In particular, we observe that

Ωi,j ⊂ Bg
(
xi,j , 4J0v

1/n
i

)
for every j = 1, . . . , J0, (5.5)

and Ωi,j are pairwise disjoint in j. Since M is compact, xi,j → xj ∈ M for every j = 1, . . . , J0 after

passing to a subsequence in i. For i large enough, Bg(xi,j , 8J0v
1/n
i ) ⊂ Bg(xj , r0) for every j = 1, . . . , J0.

Step 1: Pulling back and rescaling the problem. Fix an orthonormal basis {e1, . . . , en} for Euclidean
space, and for each j = 1, . . . , J0, let ψj : Bgeuc(0, r0)→ Bg(xj , r0) be a normal coordinate map at xj and
let zj = 17J0(j − 1)e1 ∈ Rn. For large enough i, we can define the map

φi,j : Bgeuc
(
zj , 8J0

)
⊂ Rn →M, φi,j(x) := ψj

(
v
1/n
i (x− zj) + ψ−1

j (xi,j)
)
,

which first maps its domain to Bgeuc(ψ
−1
j (xi,j), 8J0v

1/n
i ) homothetically, then maps this small ball to M

by the normal coordinate map. Identifying the J0 (a priori distinct) copies of Euclidean space via the
basis {e1, . . . , en}, we view the balls Bgeuc

(
zj , 8J0

)
as disjoint subsets of the same Euclidean space.

In particular, by (5.5) we may define the pulled-back sets

Ei,j := φ−1
i,j (Ωi,j) b Bgeuc

(
zj , 6J0

)
⊂ Rn . (5.6)

We then let

Ei :=

J0⋃
j=1

Ei,j , with Ei b X :=

J0⋃
j=1

Bgeuc
(
zj , 6J0

)
⊂ Rn .

Observe that X ⊂ Bgeuc(0, 24J0).

Let us define the rescaled metrics hi = v
− 2/n
i g, so that |Ωi|hi = 1 and Fhi(Ωi) ≤ κ for all i. Up to

passing to a subsequence with respect to i, we have

(1− 1/i)geuc ≤ φ∗i,jhi ≤ (1 + 1/i)geuc on Bgeuc
(
zj , 8J0

)
∀i ∈ N, j = 1 . . . , J0 . (5.7)

Hence, by (5.7),

||Ei|geuc − 1| → 0. (5.8)

Recall that the restriction Fxj (·) := F (xj , ·) of the anisotropic integrand defines a translation invariant

surface energy F̄xj on TxjM . The normal coordinate map ψj : Bgeuc(0, r0) → Bg(xj , r0) ⊂ M induces
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the linear map L = (dψj)|0 : Rn → TxjM , which has detL = 1. Let us denote by F∗xj the pulled-back

tangent surface energy at xj by L, i.e. for a set E ⊂ Rn we let

F∗xj (E) = F̄xj (L(E)) =

ˆ
∂∗E

F (xj , L(νE(y)) dHn−1
geuc(y).

Furthermore, for every set E ⊂ X we define

F∗(E) =

J0∑
j=1

F∗xj
(
E ∩Bgeuc(zj , 8J0)

)
.

It is easy to see that F∗ can be extended to every subset of Rn and that F∗ ≡ F∗xj for subsets of

Bgeuc(zj , 8J0) as these balls are disjoint. Let F∗i,j(E) = Fhi(φi,j(E)) be the pulled-back hi-surface energy

of a set E ⊂ Bgeuc(zj , 8J0) and let F∗i (E) =
∑J0

j=1F∗i,j(E ∩ Bgeuc(zj , 8J0)) for every set E ⊂ X. By

assumption, F∗i (Ei) ≤ κ. Moreover, by (5.7) and the continuity of F with respect to x, we have

|F∗i,j(E)−F∗xj (E)| ≤ ω(i)F∗i,j(E) (5.9)

for a modulus of continuity ω depending on F and g.

Step 2: Compactness in L1. Since F (x, ·) ≥ m, thanks to (5.9) and the assumption F∗i (Ei) ≤ κ, we see
that P (Ei) ≤ 2m−1κ for all i sufficiently large. Moreover, using (5.6), we see that up to a subsequence,

Ei,j → E0,j in L1 for sets of finite perimeter E0,j ⊂ Bgeuc(zj , 7J0) (5.10)

and we define
J0⋃
j=1

E0,j =: E b X.

By (5.8), |E|geuc = 1, and by (5.9) and the lower semi-continuity of F∗xj with respect to L1 convergence,

F∗xj (E0,j) ≤ lim inf
i→∞

F∗xj (Ei,j) = lim inf
i→∞

F∗i,j(Ei,j) . (5.11)

Step 3: Hausdorff convergence of the boundaries. For i sufficiently large and thus vi sufficiently small,
we apply Lemma 5.4; after rescaling the metric and using (5.7), we see that Ei is a local (2Λ, ε04 )-
minimizer of the energy F∗i on X. A standard adaptation of the classical argument (see for instance
[Mag12, Theorem 21.11]) shows that the sets Ei enjoy uniform volume density estimates: there exist
constants c0 and r0 depending only on g,m,M, n,Λ and ε0 such that for any r < r0 and x ∈ ∂Ei,

c0 ≤
|Ei ∩B(x, r)|geuc

ωnrn
≤ 1− c0 . (5.12)

The density estimates (5.12) let us improve L1 convergence to Hausdorff convergence of the boundaries:

dH,geuc(∂Ei, ∂E)→ 0. (5.13)

Indeed, if (5.13) does not hold, then for some r > 0 and along an unrelabeled subsequence we have either:
(a) a sequence of points xi ∈ ∂Ei such that Bgeuc(xi, r) ∩ ∂E = ∅ for all i, or else
(b) a sequence of points xi ∈ ∂E such that Bgeuc(xi, r) ∩ ∂Ei = ∅.

In case (a), first suppose Bgeuc(xi, r) ⊂ E for all i. The lower density estimate in (5.12) implies that

|E∆Ei|geuc ≥ |E \ Ei|geuc ≥ |B(xi, r) \ Ei|geuc ≥ c0r
n,

contradicting the L1 convergence. If instead Bgeuc(xi, r) ⊂ Ec for all i, the same argument using the
upper density estimate in (5.12) we again reach a contradiction.

In case (b) we argue differently since we do not yet know that E satisfies density estimates. First
suppose Bgeuc(xi, r) ⊂ Eci for all i. By compactness, up to a further subsequence, xi → x ∈ ∂E, and thus
Bgeuc(x, r/2) ⊂ Eci for all i sufficiently large. So, 1Ei(x) = 0 for all y ∈ Bgeuc(x, r/2). Since 1Ei → 1E in
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L1(Rn) and thus pointwise a.e., we see that |E ∩ Bgeuc(x, r/2)|geuc = 0, contradicting (2.2). The analo-
gous argument leads to the same contradiction when instead Bgeuc(xi, r) ⊂ Ei for all i. This proves (5.13).

Step 4: E is a local minimizer of F∗. Next, we claim that E is a volume-constrained ε0
4 -local minimizer

of the energy F∗ in Rn. To this end, take a set G ⊂ Rn with |G|geuc = 1 and E∆G ⊂ Ugeuc(∂E,
ε0
4 ).

Thanks to (5.13), we also have E∆Ei ⊂ Ugeuc(∂Ei, ε04 ) for all i sufficiently large. In turn, by the triangle
inequality property of the symmetric difference (2.1), we have

Ei∆G ⊂ (Ei∆E) ∪ (E∆G) ⊂ Ugeuc(∂Ei,
ε0
4

) ∪ Ugeuc(∂E,
ε0
4

) ⊂ Ugeuc(∂Ei,
ε0
2

).

Letting Gj := G ∩ B(zj , 8J0), note that Gj ⊂ B(zj , 7J0) for every j = 1, . . . , J0. Hence, we can define

Ĝi,j = φi,j(Gj) ⊂ M and Ĝi := ∪J0j=1Ĝi,j . Letting hi = v
− 2/n
i g, we see that Ωi∆Ĝi ⊂ Uhi(∂Ωi, ε0) and

thanks to (5.7), up to passing to a subsequence, ||Ĝi|hi − 1| < 1/i. Thus, applying Lemma 2.1, we obtain

sets G̃i ⊂ M with |G̃i|hi = 1, i.e. |G̃i|g = vi and F(G̃i) ≤ (1 + 1/i)F(Ĝi). In particular, G̃i is an

admissible competitor for the minimality of Ωi, i.e. F(Ωi) ≤ F(G̃i) ≤ (1 + 1/i)F(Ĝi). Pulling the sets
and energies back in charts and applying (5.9), we find that

F∗i (Ei) ≤ (1 + 1/i)F∗i (G) ≤ (1 + 2/i)F∗(G).

Taking the limit infimum and recalling (5.11), we conclude that F∗(E) ≤ F∗(G), proving the claim.

Step 5: E has one connected component. We claim that E has just one connected component. We will
prove this by contradiction. Assume without loss of generality that E has two connected components E1

and E2, and that 1 = |E|geuc = |E1|geuc + |E2|geuc .
First we observe that E1 and E2 cannot be tangent to each other, as otherwise a simple neck at the

tangent point would decrease the energy F∗ and increase the volume.

Denote by αi := F∗(Ei) and vi := |Ei| for i = 1, 2. For t small enough, we define

Et := (1 + t)E1 ∪ g(t)E2 ⊂ X,

where g(t) is defined by the constraint of volume (1 + t)nv1 + g(t)nv2 = v1 + v2. Simple algebraic
manipulations of this volume constraint shows that

g(t) =
(

1− ((1 + t)n − 1)
v1

v2

)1/n
,

from which we compute

g′(0) = −v1

v2
, g′′(0) = (1− n)

v1

v2

(
1 +

v1

v2

)
.

We use these values to compute the derivatives of

f(t) := F∗(Et) = (1 + t)n−1α1 + g(t)n−1α2.

Via simple calculus and the local minimality of E, we compute

0 = f ′(0) = (n− 1)
(
α1 −

v1

v2
α2

)
,

which is equivalent to α1/α2 = v1/v2. Using this equality in computing f ′′(0), and again by local
minimality of E, we obtain the following contradiction

0 ≤ f ′′(0) = −α1(n− 1)
(

1 +
v1

v2

)
< 0.

We conclude that E has only one connected component. In particular, E must be contained in only
one of the balls Bgeuc(zj , 8J0). We will assume, without loss of generality, that E ⊂ Bgeuc(0, 8J0) and in
particular that E is a volume-constrained ε0-local minimizer of the energy F∗x1 in Rn.
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Step 6: E is a Wulff shape for F∗x1. Through the choice of basis for Tx1M via the normal coordinate
map, we have identified Tx1M with Rn and therefore may identify the volume-1 tangent Wulff shape
Kx1 ⊂ Tx1M with a subset of Rn, which we again denote by Kx1 ⊂ Rn, that is the (Euclidean) unit-
volume Wulff shape for the translation invariant surface energy F∗x1 on Rn defined above.

The set E ⊂ Bgeuc(0, 8J0) is a set of finite perimeter that is a local minimizer of the smooth, uniformly
elliptic, translation invariant anisotropic surface energy F∗x1 . According to the Alexandrov-type theorem
of the first author, Kolasiński, and Santilli [DRKS20, Corollary 6.8], we deduce that E is the union of
finitely many Wulff shapes with equal volume. In the previous step we showed that E is connected, so E
comprises exactly one Wulff shape, i.e.

E = Kx1 + y for some y ∈ Rn. (5.14)

Moreover, keeping in mind that 0 ∈ Kx1 and E ⊂ Bgeuc(0, 8J0), we see that |y|geuc ≤ 8J0.

Step 7: Contradiction to the initial claim. Together, (5.10), (5.13) and (5.14) show that for i sufficiently
large,

dH,geuc
(
∂Ei, ∂Kx1 + y

)
< ε0/β and

∣∣Ei∆(Kx1 + y)
∣∣
geuc

< ε0/β. (5.15)

Mapping these sets onto M by φi,1, (5.15) implies that

dH,g
(
∂Ωi, expx1

(
∂(v

1/n
i Kx1) + yi

))
<
ε0 v

1/n
i

β
, and

∣∣Ωi∆ expx1(v
1/n
i Kx1 + yi)

∣∣
g
<
ε0vi
β
.

By Step 1, yi = v
1/n
i y + ψ−1

1 (xi,1) ∈ Bgx1 (0, r0). This contradicts (5.4) and completes the proof. �

5.3. Recentering. We now improve Theorem 5.5, simply recentering our parametrization to correct the
translation y, by means of Proposition 3.1, to obtain the following:

Theorem 5.6. Fix a closed Riemannian n-manifold (M, g) and an anisotropic surface energy F with
integrand F . For every κ > 0, ε0 > 0, and β > 0, there exists v0 = v0(g, F, κ, ε0, β) > 0 such that
the following holds. Let Ωv be a volume-constrained ε0-local minimizer of volume v < v0 with F(Ωv) ≤
κv(n− 1)/n. There is a point x ∈M such that

dH,g

(
∂Ωv, expx(∂(v

1/nKx)
)
<
ε0v

1/n

β
and

∣∣∣Ωv∆ expx(v
1/nKx)

∣∣∣
g
<
ε0v

β
. (5.16)

Proof of Theorem 5.6. We apply Theorem 5.5 with κ = κ, ε0 = ε0, β = 2β and ρ = ε0
2Cβ . Notice that v0

will now depend only on g, F, κ, ε0, β, as ρ depends just on ε0 and β. We deduce the validity of (5.3). We

now apply Proposition 3.1 choosing x0 = x, x1 = expx(y), z1 = y, ρ = ρ, r = v1/n, to deduce (5.16). �

5.4. Conclusion of the proof. Finally, we can conclude the proof of Theorem 5.1. We need only to
show that a volume-constrained ε0-local minimizer is connected.

Proof of Theorem 5.1. Choose β = β0 and let v0 be as in Theorem 5.6. Since β0 depends just on n, κ, F, ε0,
we deduce that v0 depends only on n, g, κ, F, ε0. Applying Theorem 5.6, we deduce the validity of (5.1).
We are now left to prove that Ωv has one connected component. To prove this, we first claim that the
volume of every connected component U of Ωv satisfies the following lower bound:

|U |g ≥ min

{( m

2Λ
nω

1/n
n

)n
,
εn0 ωn
2n+1

}
v. (5.17)

Otherwise, denote by U a connected component such that

|U |g < min

{( m

2Λ
nω

1/n
n

)n
,
εn0 ωn
2n+1

}
v. (5.18)

We wish to apply the local quasi-minimality (without volume constraint) from Lemma 5.4 with the

competitor Ωv \U . To this end, we argue along the lines of Lemma 4.6 to see that U ⊂ Ug(∂U, ε02 v
1/n): if
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x ∈ U \ Ug(∂U, ε02 v
1/n), then Bg(x,

ε0
2 v

1/n) ⊂ U and |U |g ≥ ε0nωnv/2n+1 (provided v0 is sufficiently small
in terms of g and n), contradicting (5.18). So, by Lemma 5.4 we have that

F(Ωv \U) + Λ v−
1/n|Ωv∆(Ωv \U)|g ≥ F(Ωv) = F(U) +F(Ωv \U)

(2.8)

≥
(m

2
nω

1/n
n

)
|U |(n− 1)/n

g +F(Ωv \U),

from which we deduce the following contradiction:

m

2
nω1/n

n

(5.18)
> Λ v−

1/n|U |1/ng ≥
m

2
nω

1/n
n .

Since (5.18) leads to contradiction, we deduce the validity of (5.17).

We also observe that, by (5.1), for every connected component U of Ωv:

∂U ⊂ ∂Ωv ⊂ Ug(expx(∂(v
1/nKx) + y), ε0v

1/n/β0).

We deduce that either

(Case 1) expx(v1/nKx + y) \ Ug(expx(∂(v1/nKx) + y, ε0v
1/n

β0
) ⊂ U , or

(Case 2) U ⊂ Ug(expx(∂(v1/nKx) + y), ε0v
1/n

β0
).

Given the L1 estimate in (5.3), there can be only one connected component satisfying (Case 1). Moreover,
(5.17) implies that no connected component can satisfy (Case 2), because (Case 2) provides the following
volume upper bound for U :

min

{( m

2Λ
nω

1/n
n

)n
,
εn0 ωn
2n+1

}
v ≤ |U |g ≤ 4

ε0v
1/n

β0
P (v

1/nKx + y)
(2.7)

≤ 4
ε0v

1/n

β0
Cv

(n− 1)/n =
4Cε0
β0

v

which contradicts the definition of

β0(n, κ, F, ε0) :=
8Cε0

min
{(

m
2Λnω

1/n
n

)n
,
εn0 ωn
2n+1

} .
We conclude that Ωv has just one connected component. �

6. Quantitative closeness to a Wulff shape

In this section we complete the proof of Theorem 1.1. To begin, in Corollary 6.1, we prove a quantita-
tive version of Theorem 5.1 through an application of Figalli-Maggi-Pratelli’s quantitative Wulff inequal-
ity [FMP10]. This application originates with [FM11] in the context of global minimizers of a related
anisotropic variational problem on Euclidean space. A fundamental difference in the present setting of
local minimizers is that it was essential to first prove the qualitative Theorem 5.1 in order to use a
(projected) tangent Wulff shape as a competitor for local minimality.

Corollary 6.1. Fix a Riemannian n-manifold (M, g) and an anisotropic surface energy F . For every
κ > 0 and ε0 > 0, there exists v0 = v0(g, F, κ, ε0) and C(g, F, κ, ε0) such that the following holds. Let Ωv

be a volume-constrained ε0-local minimizer Ωv of volume v < v0 with F(Ωv) ≤ κv(n− 1)/n. Then Ωv has
one connected component and there is a point x0 ∈M such that

dH,g

(
∂Ωv, expx0(∂v1/nKx0)

)
v1/n

< Cv
1/2n2

and

∣∣∣Ωv∆ expx0(v1/nKx0)
∣∣∣
g

v
< Cv

1/2n . (6.1)

Proof. Let v0, β0 and x0 ∈ M be as in Theorem 5.1, and let ψ = expx0 . To lighten notation, we

let K = Kx0 and F̄ = F̄x0 . By Remark 5.3 we may define Gv = ψ−1(Ωv) ⊂ Bgx0 (0, Rv1/n) where
R = R(n, g, F ) > 0. On Bgx0 (0, 10R) we have

(1− cv2/n)gx0 ≤ ψ∗g ≤ (1 + cv
2/n)gx0 (6.2)
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for a constant c = c(g), and so (6.2)∣∣|Gv|gx0 − v∣∣ ≤ cv1+2/n and
∣∣|ψ(v

1/nK)|g − v
∣∣ ≤ cv1+2/n . (6.3)

So, just as in the proof of Lemma 2.1 we can choose a dilation factor λ > 0 with |λ− 1| ≤ cv2/n such that

the set E := ψ(λv1/nK) has |E|g = |Ωv|g. Moreover, up to further decreasing v0 depending on g, F, n and

applying (2.1) and Theorem 5.1, we have Ωv∆E ⊂ Ug(∂Ωv, ε0v
1/n). So, E is an admissible competitor for

the local minimality of Ωv and thus F(Ωv) ≤ F(E). On the other hand, thanks to (6.2) and (2.4),

F(E) ≤
(
1 + cv

1/n
)
F̄(λv

1/nK)

=
(
1 + cv

1/n
)
λn−1v

(n− 1)/nF̄(K) ≤
(
1 + cv

1/n
)
v
(n− 1)/nF̄(K),

and F(Ωv) ≥ (1− cv1/n)F̄(Gv) for c = c(F, g). Together these yield F̄(Gv) ≤ (1 + cv1/n)v(n− 1)/nF̄(K). In
particular, additionally using (6.3), we estimates the scale-invariant deficit in the Wulff inequality (2.6):

δ(Gv) =
F̄(Gv)

|Gv|
n−1
n

gx0
F̄(K)

− 1 ≤ Cv1/n

for C = C(n, g, F ). By the quantitative Wulff inequality [FMP10], there exists y ∈ Rn such that

|Gv∆(y + v1/nK)|2gx0
v2

≤ Cδ(Gv) ≤ Cv
1/n.

Moreover, |y| ≤ Cv1/n (5.1). Using the scale-invariantly uniform density estimates for Ωv as in Step 3 of
Theorem 5.5, we obtain the estimate

dH,g(∂Ωv, ψ(∂(y + v
1/nK))

n ≤ C|Ωv∆ψ(∂(y + v
1/nK))|g < Cv1+1/2n.

It remains to eliminate that translation y. To this end we apply Proposition 3.1 choosing x0 = x0,
x1 = expx0(y), z1 = y, ρ = Cv1/n, r = v1/n. Since ρr ≤ Cv1/nv1/n ≤ Cv1/nv1/2n2

, we obtain:

|Ωv∆ expx1(v1/nKx1)|2g
v2

≤ Cv1/n, and
dH,g(∂Ωv, expx1(∂(v1/nKx1))

v1/n
< Cv

1/2n2

.

Up to relabelling the point x1, this is exactly the desired claim (6.1). �

Finally, we conclude the proof of Theorem 1.1.

Proof of Theorem 1.1. Let v0 and x0 be as in Corollary 6.1. The quantitative estimate (6.1) and the
assumed regularity of F can be used as in the proof of [FM11, Theorem 2] to show that Ωv is of class
C2,α and to obtain the following almost anisotropic umbilicality estimate on the anisotropic second
fundamental form of ∂ exp−1

x0 (Ωv):

‖D2Fx0(νexp−1
x0

(Ωv))Dνexp−1
x0

(Ωv) − Id‖C0(∂ exp−1
x0

(Ωv)) ≤ C(g, F, κ, ε0, α)v
2α

n+2α . (6.4)

Anisotropic almost umbilical surfaces enjoy higher order quantitative closeness to the Wulff shapes, see
for instance [DRG19, DRG21].

Since the proof of (6.4) is obtained repeating the arguments that are laid out in detail in [FM11], we
simply outline the steps and highlight the differences:

• The first step—analogous to [FM11, Theorem 8]—is to show that exp−1
x0 (∂Ωv) ⊂ Tx0M is locally

the graph of a C1,α function over an affine hyperplane in Tx0M . The idea is to show the hypotheses
of the ε-regularity theorem ([Alm68, Bom82, SSA77, SS82, DS02]) are satisfied at each point on
exp−1

x0 (∂Ωv) and at a small enough scale by constructing a competitor from the projection of

exp−1
x0 (∂Ωv) locally onto a disk.
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• The proof of [FM11, Theorem 8] goes through in a nearly identical fashion in the present context
with the following two substituted ingredients: use Corollary 6.1 in place of [FM11, Corollary 1] to
show that Ωv is uniformly close to a Wulff shape, and use Lemma 5.4 and (2.8) in place of [FM11,
Lemma 9] to obtain the non-volume-constrained quasi-minimality property akin to [FM11, Eqn.
(C.162)] (which is applied only to local competitors as in Lemma 5.4).
• The next step is to used Schauder estimates to improve the local estimates to C2,α estimates

for the functions locally parametrizing exp−1
x0 (∂Ωv), as in [FM11, Theorem 12]. Here we use the

assumption that F is C2,α in x and ν.
• Finally (6.4) follows from interpolating between the Hausdorff estimates of Corollary 6.1 and the
C2,α estimates arguing just as in [FM11, Theorem 13].

We are left to prove that Ωv is geodesically convex. Let ψ be the normal coordinate map at x0 and
observe that by (6.1) there exists η(g, F, κ, ε0) > 0 such that

Bgeuc(0, ηv
1
n ) b Ev := ψ−1(Ωv) ⊂ Rn (6.5)

and that by (6.4) Ev is uniformly convex. In particular, we have the following lower bound on the smallest
eigenvalue λ1 of the second fundamental form of Ev:

λ1 ≥ C(F )v−
1
n . (6.6)

This implies that, given two points a, b ∈ ∂Ev, any curve connecting a, b that is contained in Rn \Ev has

length at least |b− a|+ C(F )v
1
n
|b−a|2

2 .

Assume by way of contradiction that Ωv is not geodesically convex and so there exists a minimizing
geodesic γ̃ : [0, `] → M parametrized by arclength with end points ã, b̃ ∈ ∂Ωv and such that γ̃(0, `) ⊂
M \ Ωv. Let a := ψ−1(ã), b := ψ−1(b̃), and γ = ψ−1 ◦ γ̃ : [0, `]→ Rn.

If |a− b| ≥ ηv1/n/4, then the observation above, together with (6.5), shows that the image through ψ

of the segment [a, b] has smaller length than any curve contained in M \Ωv joining ã with b̃ provided v0

(and hence v) is chosen sufficiently small depending only on g, F, ε0, and κ.

Thus we must have |a − b| < ηv1/n/4. Let z = (a + b)/2 be the midpoint and for t ∈ [0, 1] set

at := a − tz, bt := b − tz and Γt = Im(γ) − tz. We have Γ0 ⊂ Bgeuc(z, ηv
1/n) provided again v0 is

chosen sufficiently small depending only on g, F, ε0, and κ, otherwise the straight-line competitor violates
the minimality of γ. So, Γ1 ⊂ Bgeuc(z, ηv

1/n) b Ev. Furthermore, by strict convexity, at, bt ∈ Ev for
all t ∈ (0, 1]. So, s0 := inf{s ∈ [0, 1] : Γt ⊂ Ev} lies in (0, 1) and there exists t0 ∈ (0, `) such that
γ(t0)− s0z ∈ Γs0 ∩ ∂Ev. This implies that at corresponding point γ(t0), the curvature of γ with respect

to geuc is at least C(F )v−1/n by (6.6). On the other hand, estimating the metric coefficients gij and

Christoffel symbols Γkij , we see that for v0 sufficiently small this contradicts the fact that γ satisfies the

geodesic equation d2

dt2
γk + Γkij

d
dtγ

i d
dtγ

j = 0. Hence Ωv is geodesically convex. �
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