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Abstract. The regular N -gon provides the minimal Cheeger constant in the class of all N -gons with
fixed volume. This result is due to a work of Bucur and Fragalà in 2014. In this note, we address the

stability of their result in terms of the L1 distance between sets. Furthermore, we provide a stability

inequality in terms of the Hausdorff distance between the boundaries of sets in the class of polygons
having uniformly bounded diameter. Finally, we show that our results are sharp, both in the exponent

of decay and in the notion of distance between sets.

Given a Borel set Ω ⊂ Rn with finite measure, the Cheeger constant of Ω is defined by

h(Ω) = inf

{
P (E)

|E|

∣∣∣ E measurable, E ⊆ Ω

}
.

One can show that the infimum above is always attained, and a set E ⊆ Ω such that P (E)
|E| = h(Ω) is

called a Cheeger set of Ω.
The Cheeger constant is related to the first Dirichlet eigenvalue of the p-Laplacian of a set Ω ⊂ Rn:

λp(Ω) := inf

{∫
Ω

|∇u|p dx
∣∣∣ u ∈W 1,p

0 (Ω), ‖u‖Lp(Ω) = 1

}
. (1)

Indeed, for every set Ω and every p > 1,

λp(Ω) ≥
(
h(Ω)

p

)p

and lim
p→1

λp(Ω) = h(Ω). (2)

See, for example, [KN08] for more details about the relation between the Cheeger constant and the first
Dirichlet eigenvalue of the p-Laplacian or [But11] for more details about spectral problems. It is a well
known fact that for every p > 1, the ball provides the minimal value for λp among all sets with fixed
volume. The Cheeger inequality expresses this fact for the limit case p = 1:

|Ω| 1nh(Ω) ≥ h(B), whenever Ω is a Borel set, (3)

where B denotes the unit-area ball of Rn. A celebrated conjecture due to Pólya and Szegő, states that
if one considers the minimization problem for λp among the class of N -gons with fixed area then the
solution is given by the regular N -gon. In [PS51] the authors show the validity of the conjecture for p = 2
in the case N = 3 and N = 4.

Recent progress has been made in [BF14], where the authors prove the validity of the conjecture for the
limit case p = 1 (i.e. the Cheeger constant). In particular, they prove that for every fixed N , the regular
N -gon minimizes the Cheeger constant among all N -gons with fixed volume:√

|Ω|h(Ω) ≥ h(Ω0) for Ω ∈ PN , (4)

where here and in the sequel PN is the set of all N -gons in R2 and Ω0 denotes the unit-area regular
N -gon. Our goal in this short note is to address the stability of (4) in the class of N -gons. Namely, our
theorem is the following.

Theorem 1. For each N ≥ 3, there exist C and η > 0 depending only on N such that if Ω ∈ PN with
|Ω| = 1 and h(Ω)− h(Ω0) ≤ η, then there exists a rigid motion ρ of R2 such that

hd(∂Ω, ∂ρΩ0)2 ≤ C(h(Ω)− h(Ω0)). (5)

As a consequence, for every N ≥ 3, there exists some constant C1 depending only on N such that for any
Ω ∈ PN with |Ω| = 1, there exists a rigid motion ρ of R2 such that

|Ω∆ρΩ0|2 ≤ C1 (h(Ω)− h(Ω0)) . (6)
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Moreover, for every M > 0, there exists a constant C2 depending on N and M such that for any Ω ∈ PN

with diam(Ω) < M and |Ω| = 1, the following holds:

hd(∂Ω, ∂ρΩ0)2 ≤ C2 (h(Ω)− h(Ω0)) , (7)

where ρ is a suitable rigid motion of R2.

Here hd(·, ·) denotes the Hausdorff distance between sets. As we will show below, in general we cannot
expect to have stability in the form of (5) when h(Ω) is far from being optimal, as the Cheeger constant
does not detect the presence of small tentacles (see Figure 1), even in the class of N -gons.

Before moving on to the proof of Theorem 1, for sake of completeness we briefly retrieve results, definitions,
and terminology that we use from [KLR06] and [BF14]. For a convex subset Ω ⊆ R2 there exists a unique
Cheeger set C with the following characterization: C = Ω(i) ⊕BR, where R = 1

h(Ω) and

Ω(i) = {x ∈ Ω | dist(x, ∂Ω) > R}
is called the inner parallel set of Ω. Here, given two sets E and F , E ⊕ F = {x + y | x ∈ E, y ∈ F}.
An N -gon Ω is called Cheeger regular if the boundary of its Cheeger set touches all N sides of Ω. In
[KLR06], it is shown that if a set Ω ∈ PN is convex and Cheeger regular, then

h(Ω) =
P (Ω) +

√
P (Ω)2 − 4τ(Ω)|Ω|

2|Ω|
, (8)

where

τ(Ω) =

N∑
i=1

[
tan

(
π − γi

2

)
−
(
π − γi

2

)]
and where {γi}Ni=1 are the inner angles of the polygon. In the general case, the stability of the Cheeger
inequality was obtained in [FMP09] as a consequence of the quantitative isoperimetric inequality for sets
of finite perimeter ([FMP08], [FMP10], [CL12]). As in the general case, Theorem 1 is a consequence of
the stability of the polygonal isoperimetric inequality, proved in [IN14]. More precisely, we make use of
the following proposition proved in [CM14] as a consequence of [IN14].

Proposition 2. For every N ≥ 3, there exists a positive constant C depending only on N with the
following property: for every convex unit-area Ω ∈ PN , there exists a rigid motion ρ of R2 such that

hd(∂Ω, ∂ρΩ0)2 ≤ C
(
P (Ω)2 − P (Ω0)2

)
. (9)

Finally, we recall the isoperimetric inequality for convex polygons, which states that, for every convex
polygon Ω,

P (Ω)2

4|Ω|
≥ τ(Ω) + π, (10)

with equality if and only if Ω is a circumscribed polygon (namely a polygon for which the largest inscribed
circle touches all of its sides).

In their paper, Bucur and Fragalà remark that in the case of simple convex polygons, the proof of
their theorem becomes straightforward by exploiting the characterization of the Cheeger set for a convex
bounded Borel set Ω contained in [KLR06]. The same compactness argument used in [BF14] for the
existence of minimizers shows that a minimizing sequence of the Cheeger constant converges in L1

loc to
the minimizer, and by the Bucur and Fragalà inequality, namely (4), this minimizer is the regular N -gon.
We are then able to take our sets to be convex, and tracing through the argument of Bucur and Fragalà
in [BF14] and making use of Proposition 2, we achieve the proof.

Proof of Theorem 1. Notice that |Ω∆ρΩ0| ≤ 2 for all Ω ⊂ R2 with |Ω| = 1 and for every rigid motion
ρ of R2, so inequality (6) follows immediately from (5) by choosing the constant to be sufficiently large.
Furthermore, (7) is a consequence of (5). Indeed,

hd(∂E, ∂F ) ≤ diam(E) + diam(F ),

for two generic closed sets E and F in R2 such that

∂E ∩ ∂F 6= ∅. (11)
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Up to a translation, (11) holds for Ω and Ω0; this and the boundedness of the diameter imply that

hd(∂Ω, ∂Ω0) ≤M + diam(Ω0),

so by choosing the constant large enough depending on M , we obtain (7). Therefore let us focus on the
proof of (5). We divide the proof into two steps.

Step 1: Qualitative stability. We prove that for every fixed ε > 0 there exists η0 such that if Ω is a
unit-area N -gon with h(Ω)−h(Ω0) < η0, then for some rigid motion ρ of R2, we have hd(∂Ω, ∂ρΩ0) < ε.
Indeed, consider a sequence of unit-area N -gons Ωk such that h(Ωk)→ h(Ω0). Following the compactness
argument in Proposition 9 in [BF14], we obtain a subsequence of Ωk converging in L1

loc to a limit Π with

|Π| ≤ 1. We let Π0 =
√
|Π|−1Π. Then, as shown in [BF14],

h(Π0) =
√
|Π|h(Π) ≤ lim inf

k→∞

√
|Π|h(Ωk) ≤ h(Ω0).

On the other hand, by (4),

h(Ω0) ≤ h(Π0).

Therefore, Π0 = Ω0 up to a rigid motion, and so Π is a regular N -gon. Consider a ball BR such that
Π ⊂⊂ BR and suppose that there is some subsequence of Ωk such that each Ωk has a vertex not contained
in BR. Then we conclude that Π must have at most N − 1 vertices, contradicting the fact that Π is a
regular N -gon. Thus Ωk ⊂ BR for k large, and, in particular, Ωk → Π in L1. Therefore |Π| = 1 and thus
Π = ρΩ0 for some rigid motion ρ. If a bounded sequence of N -gons converges in L1 to an N -gon, then
the boundaries converge in the Hausdorff distance, so

hd(∂Ωk, ∂ρΩ0)→ 0

and we achieve the proof of Step 1.

Step 2: Quantitative stability. Fix ε > 0, let η0 be the constant given from the Step 1 and let Ω be a
unit-area N -gon such that h(Ω)− h(Ω0) < η for some η < η0 to be fixed. Thanks to Step 1 and because
Ω0 is convex, up to choosing an ε small enough, Ω must be convex as well. Moreover, since Ω0 is Cheeger
regular, Ω will also be Cheeger regular up to further decreasing ε and with a suitable choice of η. Indeed,
we note that a sufficient condition for an N -gon to be Cheeger regular is for its inner parallel set to also
be an N -gon. The inner parallel set Ω(i) have boundary given by

∂Ω(i) =

{
x ∈ Ω

∣∣∣ d(x, ∂Ω) =
1

h(Ω)

}
.

Therefore, since hd(∂Ω, ∂Ω0) ≤ ε and h(Ω)− h(Ω0) < η up to a rigid motion of R2:

hd
(
∂Ω(i), ∂Ω

(i)
0

)
≤ ω(ε+ η),

for a continuous function ω such that ω(0+) = 0. In particular, since the inner parallel set of Ω0 is an
N -gon, by choosing ε and η < η0(ε) small enough, the previous arguments and Step 1 prove that Ω is
a convex, Cheeger regular N -gon. We are thus in the position to exploit (8), the characterization of the
Cheeger constant for convex, Cheeger regular sets. We obtain the following:

2(h(Ω)− h(Ω0)) = P (Ω) +
√
P (Ω)2 − 4τ(Ω)− P (Ω0)−

√
P (Ω0)2 − 4τ(Ω0)

= P (Ω)− P (Ω0) +
√
P (Ω)2 − 4τ(Ω)−

√
4π

≥ P (Ω)− P (Ω0),

(12)

where the final two lines both follow from (10). Moreover, we have

P (Ω)− P (Ω0) ≥ c(P (Ω)2 − P (Ω0)2) (13)

for ε small enough, because hd(∂Ω, ∂Ω0) ≤ ε and thus P (Ω) < 2P (Ω0). Finally, Proposition 2 combined
with (12) and (13) yields

h(Ω)− h(Ω0) ≥ c hd(∂Ω, ∂ρΩ0)2

for c > 0 where c depends only on N . �

3



Figure 1. A sequence of hexagons with Cheeger constants uniformly bounded and diameters
unbounded. In this case, the Cheeger deficit cannot control the Hausdorff distance from a
unit-area regular hexagon.

Remark 3. We point out that (5) fails to hold when h(Ω) − h(Ω0) is large, as the Cheeger constant
does not detect behavior of the set away from where the Cheeger set lies. Consider N = 6 for the sake
of simplicity, and consider the following construction as in Figure 1. First obtain Ω̃k by cutting away a
triangle of base 1

k from a corner of a unit-area square S and replacing it with another triangle having

the same base but with height k. Set Ωk := Ω̃k

|Ω̃k|
and note that their Cheeger constants are uniformly

bounded. Indeed, if C0 is the Cheeger set of S, then by construction, C0 ⊂ Ω̃k for all k, and thus
h(Ω̃k) ≤ h(S), so

h(Ωk) =

√
|Ω̃k|h(Ω̃k) ≤

√
|Ω̃k|h(S) ≤

√
3

2
h(S).

On the other hand, clearly

inf{hd(∂Ωk, ∂ρΩ0) | ρ rigid motion of R2} → ∞.

Figure 2. We choose a small perturbation of the regular hexagon H in an area-fixing way.
Some easy calculations show that h(Hε) − h(H) ≈ c0A(ε)2 = c1|Hε∆H|2 ≈ c2 hd(∂Hε, ∂H)2,
where A(ε) denotes the areas bounded by the dotted lines. Thus yields the sharpness of (6)

and (7).

Remark 4. We also underline that the exponent 2 in (6) and (7) cannot be improved, due to the
sharpness of the quantitative isoperimetric inequality for polygons. Indeed, suppose that, for example,
inequality (6) were to hold as

f(|Ω∆ρΩ0|) ≤ C1 (h(Ω)− h(Ω0)) , (14)

for some f(x). Then by testing the inequality on a small area-fixing perturbations of the regular N -gon
(as in figure 2) we immediately find that f(|Ωε∆ρΩ0|) ≤ c|Ωε∆ρΩ0|2.
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