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Abstract. We study the regularity of the interface between the disjoint supports of a pair of nonnegative sub-
harmonic functions. The portion of the interface where the Alt-Caffarelli-Friedman (ACF) monotonicity formula
is asymptotically positive forms an Hn−1-rectifiable set. Moreover, for Hn−1-a.e. such point, the two functions
have unique blowups, i.e. their Lipschitz rescalings converge in W 1,2 to a pair of nondegenerate truncated linear
functions whose supports meet at the approximate tangent plane. The main tools used include the Naber-Valtorta
framework and our recent result establishing a sharp quantitative remainder term in the ACF monotonicity for-
mula. We also give applications of our results to free boundary problems.

1. Introduction

Recent decades have seen a significant body of research focused on understanding the interplay between
the geometry of subsets of Euclidean space, their analytic properties, and the behavior of solutions to partial
differential equations on these sets. A central goal of this program is to give geometric conditions that imply
or characterize the regularity—often rectifiability—of a given set. Results of this type go back to Reifenberg
[Rei60], and since pioneering work in the nineties [Jon90, DS91, BJ94, Tor95, Leg99], there has been a steady
stream of increasingly refined results with compelling applications. Two recent and fundamental results in this
direction are Jaye, Tolsa, and Villa’s resolution to Carleson’s ε2-conjecture [JTV21] and Naber and Valtorta’s
Rectifiable Reifenberg Theorem [NV17] (see also [AT15, Tol15, ENV19] for related results), both of which give
criteria for a set to be rectifiable in terms of geometric square functions that measure flatness at all points and
scales. The latter, and the Naber-Valtorta framework more broadly, have powerful applications to singularity
analysis in various nonlinear PDE, such as (approximate) harmonic maps [NV17, NV18], stationary varifolds
[NV20], and free boundary problems [EE19], and will also play a key role here.

In this paper we give a different kind of rectifiability criterion, which relates the boundary behavior of
nonnegative subharmonic functions to the regularity of a set. The key quantity is the Alt-Caffarelli-Friedman
(ACF) monotonicity formula
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for a pair of nonnegative subharmonic functions u and v with u · v = 0. Our first main result, Theorem 1.1
below, shows that the set Γ∗ of points x in the interface Γ := ∂{u > 0} ∪ ∂{v > 0} where limr→0 Jx(r) is
positive forms an Hn−1-rectifiable set. Examples show the conclusion is in a sense optimal: this set does not
need to have an approximate tangent space at every point, and the full interface need not be rectifiable. Our
second main result, Theorem 1.2, concerns the boundary behavior of the functions u, v themselves: at Hn−1-a.e.
point x in Γ∗, the functions have unique blowups to a pair of truncated linear functions. Our hypotheses are
unconditional in that they require no a priori information about the interface, and the asymptotic positivity of
J is a condition that is easily checked in the context of free boundary problems. These two key features allow
us to apply our result to a broad class of free boundary problems, which we outline in section 2.3.
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More precisely, fix n ≥ 2 and let u, v : B10(0) → R be nonnegative continuous functions that satisfy

(1.2)

$
%&

%'

−∆u ≤ 0 in {u > 0},
−∆v ≤ 0 in {v > 0},
u · v = 0 in B10(0).

The simplest example of such a pair of functions is a pair of truncated linear functions supported on comple-
mentary half-planes meeting at a hyperplane interface, i.e.

(1.3) u(y) = a((y − x) · ν)+ and v(y) = b((y − x) · ν)−

for x ∈ Rn, constants a, b > 0 and ν ∈ Sn−1. More generally, however, the condition (1.2) is quite flexible and
allows for a rich assortment of behaviors from u, v, and the interface between their supports; see the examples
in section 2.1. One encounters the configuration (1.2) in various settings, for instance when u,v are phases of a
solution to the two-phase Bernoulli problem in models for jets and cavities [ACF84c, ACF84a, ACF84b], when
u and v are the positive and negative parts of directional derivatives of solutions to obstacle-type problems
[PSU12, Sha03], or when u,v are population densities for two species in segregation models [CKL09, TVZ19].
In all of these contexts, the regularity of the interface Γ is a priori unknown, and indeed a typical objective
is to understand its regularity. From the viewpoint of geometric measure theory and harmonic analysis, it is
natural to use the boundary behavior of (sub-)solutions to PDE as a way to understand the regularity of an
interface; this is typically studied via harmonic and elliptic measure [AHM+16, AHM+20, HMM+21, KP01].

The ACF monotonicity formula (1.1) was introduced by Alt, Caffarelli, and Friedman in [ACF84c] and since
then has found a wide variety of applications, including to the settings described in the previous paragraph.
The key feature of the quantity (1.1) is its monotonicity: given u, v as above and x ∈ B4(0), the function
r (→ Jx(r) is nondecreasing for r ∈ (0, 4). Moreover, if Jx(r1) = Jx(r2) for r1 < r2, then either one of u, v is
identically zero in Br2(x) (in which case Jx(r) ≡ 0), or else u and v are a pair of complementary truncated
linear functions as in (1.3) in Br2(x); see [CS05].

This rigidity statement contains stronger information when Jx(r1) > 0, and in particular implies that the
interface Γ is locally a hyperplane. Instead if Jx(r1) = 0, the fact that u or v vanishes identically does not
impose any interfacial structure. It is natural, then, that the subset of the interface Γ where one expects good
structure is the set of points where the ACF formula is asymptotically positive at small scales, that is, on

Γ∗ :=
(
x : Jx(0

+) > 0
)
.

Here Jx(0
+) := limr→0+ Jx(r); monotonicity guarantees the existence of the limit. The basis of this paper is to

exploit almost rigidity in the ACF monotonicity formula via our results in [AKNb] to prove structural properties
of Γ∗ and interfacial regularity of u and v on this set. Our first theorem asserts the Hn−1-rectifiability of Γ∗.

Theorem 1.1 (Rectifiability). Fix n ≥ 2 and let u, v : B10(0) → R be nonnegative continuous functions that
satisfy (1.2). Then Γ∗ ∩B1(0) is Hn−1-rectifiable.

We will see examples in section 2.1 demonstrating that on the remaining portion of the interface where
Jx(0

+) = 0, the interface can fail to have an approximate tangent plane at every point, even under the
stronger assumptions that u and v are harmonic where they are positive. Furthermore, Γ∗ is not better than
rectifiable, and in particular the assumption Jx(0

+) > 0 does not imply the existence of an approximate tangent
plane at x. Our second main theorem shows that the functions u and v have unique blowups at Hn−1-a.e. point
in Γ∗.

Theorem 1.2 (Uniqueness of blowups). Fix n ≥ 2 and let u, v : B10(0) → R be nonnegative continuous
functions that satisfy (1.2). For Hn−1-a.e. x ∈ Γ∗ ∩B1/2(0), there exist constants ax, bx > 0 and a unit vector

νx ∈ Sn−1 such that the rescaled functions

(1.4) ux,r(z) =
u(x+ rz)

r
vx,r(z) =

v(x+ rz)

r

converge locally in the strong W 1,2 topology to ℓ+(z) = ax(z ·ν)+ and ℓ−(z) = bx(z ·ν)−, respectively. Moreover,
axbx = c∗Jx(0

+), where c∗ > 0 is an explicit dimensional constant.
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1.1. Discussion of the proofs. We use two main tools to prove Theorem 1.1. The first is Naber-Valtorta’s
quantitative stratification and rectifiable Reifenberg framework. Introduced in [NV17], these techniques are
designed to study singular sets in geometric PDE and are remarkably flexible: whenever one has a solution to a
PDE with (a) a monotonicity formula with a quadratic remainder term, and (b) strong compactness properties
for sequences of solutions (usually coming from a priori estimates), one can apply the Naber-Valtorta tools to
prove rectifiability of the strata and estimates for the quantitative strata. If one additionally has an ε-regularity
theorem, this automatically gives packing and Hausdorff measure estimates for the full singular set.

The present context does not fit within this standard setup. First, we do not consider solutions to a PDE, at
least not in a conventional sense: in (1.2) we assume only that u and v are subsolutions to the Laplace equation
and impose no sort of transmission condition across the interface as one would in a free boundary problem.
While subharmonicity provides important structure, the setup in (1.2) is simply too weak of an “equation” to
expect a real regularity theory. Nonetheless, functions satisfying (1.2) do enjoy a monotonicity formula, and
this suggests some hope of applying the Naber-Valtorta ideas. However, until our recent results in [AKNb],
both key ingredients (a) and (b) described above were entirely missing in this context.

The second key tool used to prove Theorem 1.1, which equips us with ingredient (a), is the sharp quantitative
remainder term in the ACF monotonicity formula we proved in [AKNb]; see Theorem 3.3 below. Often, a
monotonicity formula’s proof automatically yields a quantitative remainder term that detects how far an object
is from a “cone” solution; this is the case, for instance, for the area ratio for minimal surfaces, the normalized
energy for harmonic maps, and the Weiss formula for Bernoulli free boundary problems. Instead, it is quite
challenging to glean from the proof of the ACF formula how far functions u, v satisfying (1.2) are from truncated
linear functions as in (1.3). The quantitative remainder term in [AKNb] uses a new type of sharp quantitative
stability estimate for the Faber-Krahn inequality on the sphere, which in turn relies on delicate free boundary
regularity results in [AKNa]. Ingredient (b) in this context is false in the strength one might hope for, but
again it is Theorem 3.3 that provides us with enough (W 1,2) compactness to adapt the Naber-Valtorta ideas.

Another difference between more typical applications of the Naber-Valtorta framework and the present setting
is that points in Γ∗ are not singular points. In classical singularity analysis, one stratifies the singular set for
a solution to a given PDE according to the number of symmetries of its blowups. On the other hand, for
x ∈ Γ∗, every blowup takes the form (1.3) and in particular is “(n − 1)-symmetric.” This allows for various
simplifications. Most notably, in Section 6.3, we give a covering argument that is significantly more streamlined
than the delicate good tree/bad tree constructions used in other settings. Throughout the proof of Theorem 1.1,
we will attempt to emphasize which steps are standard applications of Naber-Valtorta machinery and which
steps involve novel ideas or significant departures from the usual approach. As far as the global structure of
the Naber-Valtorta framework, we have in particular followed the presentation in [EE19].

Theorem 1.2 does not have an analogue in the Naber-Valtorta theory, and uniqueness of blowups is generally a
subtle question. Theorem 1.2 is proven through geometric measure theoretic arguments, using the rectifiability
of Γ∗ and the measure estimates of Theorem 1.3 below together with the precise form (1.3) of blowups and the
quantitative ACF monotonicity formula from [AKNb]. For any sequence rk → 0, the rescaled functions (1.4)
at x ∈ Γ∗ subsequentially converge to a pair of truncated linear functions as in (1.3). A priori, the slopes a
and b and the direction ν might depend on the sequence of scales — and for some points they do, as we will
see in Example 2.5 below. Using Theorem 1.1, we show that ν is determined up to a sign at Hn−1-a.e. point
by the unique approximate tangent plane to Γ∗. To prove the a.e. uniqueness of the slopes a, b, we use the
differentiation theory for measures and Theorem 1.3 to show that the distributional Laplacians ∆u and ∆v
have densities with respect to Γ∗ Hn−1 at Hn−1-a.e. point in Γ∗. The quantitative form of the ACF formula
then allows us to relate these densities (which are independent of the blowup sequence) to the slopes a, b.

1.2. Quantitative estimates. Following [CN13, NV17], we split Γ∗ into smaller pieces on which we can obtain
quantitative control. Since the ACF formula becomes degenerate when J(0+) = 0, we divide Γ∗ into pieces
where Jx(0

+) is uniformly positive, and then enlarge these pieces to include points where Jx(r) is uniformly
positive down to a definite scale. More specifically, let u, v : B10(0) → R be nonnegative continuous functions
that satisfy (1.2). Fix ε > 0 and r > 0, and define the sets

Γ∗
ε = {x ∈ Γ∗ : Jx(0

+) ≥ ε} , and Γ∗
ε,r = {x ∈ Γ∗ : Jx(r) ≥ ε} .

Observe that Γ∗
ε =

*
r>0 Γ

∗
ε,r and Γ∗ =

+
ε>0 Γ

∗
ε , and that Γ∗

ε,r ⊂ Γ∗
δ,s if δ < ε and r < s. Following [NV17], we

prove the following main quantitative estimates that will lead to Theorem 1.1.
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Theorem 1.3. Fix n ≥ 2, ε > 0, and J̄0 > 0. There is a constant C0 = C0(n, ε, J̄0) > 0 such that the
following holds. Let u, v : B8(0) → R be nonnegative continuous functions satisfying (1.2) with 0 ∈ Γ(u, v) and
supx∈B4

Jx(4) ≤ J̄0. For every r ∈ (0, 1], we can find a finite collection of balls {Br(xi)}Ni=1 such that

(1.5) Γ∗
ε,r ∩B1(0) ⊂

N,

i=1

Br(xi) with N ≤ C0 r
1−n .

In particular, for every r ∈ (0, 1],

(1.6)
--Br(Γ

∗
ε,r) ∩B1(0)

-- ≤ C0 r and Hn−1(Γ∗
ε ∩B1(0)) ≤ C0 .

2. Examples, Applications, and Further Connections

In this section, we present examples demonstrating the sharpness of our main results, discuss connections to
harmonic analysis, and give applications to free boundary problems.

2.1. Examples. Let us give some examples of different pairs of functions u and v satisfying (1.2) showing what
sort of behavior is and is not possible for such functions and their interfaces. Although given in two dimensions,
the examples extend to higher dimensions simply by defining ũ(x1, . . . , xn) = u(x1, x2) and ṽ(x1, . . . , xn) =
v(x1, x2). The first example shows that Theorem 1.1 cannot be strengthened to say that the full interface
∂{u > 0} ∪ ∂{v > 0} is rectifiable, even with the strengthened assumptions that u, v are harmonic in their
supports.

Example 2.1 (Koch Snowflake). Let Γ ⊂ R2 be the Koch snowflake, a Jordan curve that is not rectifiable,
and let Ω be the bounded region it encloses. By the Riemann mapping theorem and the conformal invariance
of the Laplacian in R2, we can find positive continuous harmonic functions u on (B10(0)∩ {x2 > 0})∩Ω and v
on (B10(0) ∩ {x2 > 0}) \ Ω that both vanish, say, on the set Γ ∩ {x2 > 0}. The interface ∂{u > 0} ∪ ∂{v > 0}
is equal to Γ ∩ {x2 > 0}. This set is not H1-rectifiable and in fact no point on ∂{u > 0} ∪ ∂{v > 0} has an
approximate tangent.

Remark 2.2. By Theorem 1.1 we see that the set Γ∗ = {Jx(0+) > 0} has H1-measure zero in Example 2.1
above. In fact, we can see more directly that Jx(0

+) = 0 for every x ∈ Γ∩ {x2 > 0}. Indeed, if it were the case
that Jx(0

+) > 0 at some x ∈ Γ ∩ {x2 > 0}, then using the rigidity in the ACF monotonicity formula, we could
deduce that every sequence of scales rk → 0 has a further subsequence along which the functions ux,rk and
vx,rk converge to a pair of complementary truncated linear functions as in (1.3). On the other hand, choosing
a point x and sequence rk along which (Γ− x)∩Brk(0)/rk looks identical for all k, we see this cannot happen.

This example also demonstrates how the vanishing of one of the functions u, v does not impose any structure
on the interface:

Example 2.3. Let Ω and u be as in Example 2.1 and let v be identically equal to zero. The ACF monotonicity
formula is constantly equal to zero at every point and scale, but as we saw above ∂{u > 0} does not have an
approximate tangent at any point.

The next example demonstrates that the existence of an approximate tangent plane at x does not imply that
Jx(0

+) > 0.

Example 2.4. Let f : R → R be C1, symmetric, nonnegative, increasing for x > 0, and f(0) = 0. Let u be
positive and harmonic in Ω = {(x, y) ∈ B1 | y > f(x)} and vanishing on the boundary Γ = {(x, y) ∈ B1 | y =
f(x)}. Similarly, let v be positive and harmonic in B1 \ Ω and vanishing on Γ. Then Γ will have a tangent at
every point. A basic computation (see [AKNb]) shows that

(log J0)
′(r) ≥ 1

r
[αu(r) + αv(r)− 2],

where αu(r),αv(r) are the characteristic constants (see Section 2.2), and in this example αu(r) = π−2 arctan(f(r)/r)
and αv(r) = π + 2arctan(f(r)/r). For r small, we then obtain

(log J0)
′(r) ≥ 1

r
[αu(r) + αv(r)− 2] ≥ [arctan(f(r)/r)]2

2r
.

By choosing f(r)/r → 0 but slowly enough so that [arctan(f(r)/r)]2 is not Dini-integrable, it follows that
J0(0

+) = 0 despite a tangent for Γ at the origin.
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The next example is a converse to the example above, was constructed by the first two authors in [AK20],
and shows that in Theorem 1.1, the existence of an approximate tangent plane at Hn−1-a.e. point in Γ∗ cannot
be improved to an approximate tangent at every point in Γ∗.

Example 2.5 (Spiraling interface with J(0+) > 0). In [AK20], the first two authors construct a pair of
continuous, nonnegative harmonic functions u, v in the plane with disjoint positivity sets such that J0(0

+) > 0
but the interface Γ = ∂{u > 0} ∪ ∂{v > 0} does not admit an approximate tangent at 0. In this example Γ is
a spiral; in any annulus B1(0) \ Br(0), Γ is a piecewise smooth connected hyperplane, but it spirals in such a
way that the closest pair of complementary truncated linear functions (1.3) at scale r has orientation ν(r) that
rotates and does not converge at r → 0.

Remark 2.6. In [AKNb, Corollary 1.4], we give a pointwise criterion ruling out behavior as in Example 2.5 at

a point x ∈ Γ∗: if
.

j log(Jx(2
−j)/Jx(0

+))1/2 < +∞, then the functions u, v have unique of blowups and Γ∗

has an approximate tangent at x. This criterion asks for very small energy drop at each dyadic scale, whereas
Jx(0

+) > 0 imposes the weaker condition
.

j log(Jx(2
−j)/Jx(2

−j−1)) < +∞ on the dyadic energy drop.

Unlike the study of singular points, when an ε-regularity result allows one to pass estimates for a small
enough ε to the entire top stratum of singular points, in our situation one cannot expect to pass the measure
estimates of Theorem 1.3 for a small fixed ε to all of Γ∗. The next example illustrates that such estimates are
not available for all of Γ∗.

Example 2.7. We modify the construction of the Koch snowflake. The heuristic idea is to retain line segments
while continuing the construction on others. In this manner, we obtain a boundary that contains straight
line segments whose union is infinite in length. Specifically, in the first iteration of the snowflake we have an
equilateral triangle whose sides have length one, so the total length of the triangle is 3 which is greater than
2. We retain two line segments whose union we label as R1 (which has total length 2 which is greater than 1),
and continue the Koch construction on the third line segment. We run enough Koch iterations on the third
line segment until the length is greater than 2, and label this piece K2, so that the resulting figure is R1 ∪K2.
We choose only one line segment of K2 on which to continue the Koch iterations, and label the union of the
remaining line segments we retain as R2 (which has total length greater than 1). We inductively continue in
the same manner as follows: suppose Ki and Ri have been chosen. We run enough Koch iterations on the one
line segment of Ki \ Ri to obtain Ki+1 with H1(Ki+1) > 2. We then choose one line segment of Kk+1 and
retain the union of the remainder of the line segments as Ri+1. Continuing inductively, we obtain a limiting
figure which we label Γ. We define Ω, u, v similarly to Example 2.1 (after possibly rotating Γ). We note that
H1(Ri) > 1 for each i, and each Ri consists of the union of finitely many line segments. The interior of each
line segment is contained in Γ∗. Also, H1(Ri) > 1, and H1(Ri \ Γ∗) = 0. Since H1(Ri ∩ Rj) = 0 for i ∕= j and
since there are infinitely many Ri, it follows that H1(Γ∗) = ∞.

2.2. Connections to harmonic analysis, Bishop’s conjecture, and Carleson’s ε2 problem. A problem
in harmonic analysis closely related to Theorem 1.1 is known as Bishop’s conjecture. Given a pair of com-
plementary domains Ω±, let ω± be the harmonic measure on ∂Ω± (with pole somewhere in Ω±). In [Bis91]
Bishop proved that in the plane, if ω+ ≪ ω− ≪ ω+ on a set E ⊂ ∂Ω+ ∩ ∂Ω−, then ω± are mutually absolutely
continuous with respect to (1-dimensional) Hausdorff measure on a subset F ⊂ E with ω±(E \ F ) = 0, and
F is 1-rectifiable. A sequence of papers [KPT09, AMT17, AMTV19] proved similar statements in arbitrary
dimensions with progressively weaker assumptions on Ω±, with [AMTV19] removing all assumptions and fully
establishing the conjecture.

At least if the u, v in Jx are a pair of Green’s functions, the hypothesis that Jx(0
+) > 0 on E is different and

to some extent stronger than the assumption that ω± are mutually absolutely continuous. Our conclusion is also
stronger in the sense that we show that the full set E is Hn−1 rectifiable, a conclusion which requires stronger
assumptions than those in Bishop’s conjecture. The proofs of the results in [KPT09, AMT17, AMTV19], while
also exploiting the monotonicity of J , are based on deep connections between rectifiability and Riesz transforms,
and are very different from the method here. Our argument is more elementary and direct, which potentially
leads to more quantitative information (such as Theorem 1.3).

Also studied in the harmonic analysis literature is the “converse” Bishop’s conjecture: if one knows that E
is Hn−1-rectifiable, are ω± mutually absolutely continuous on E? When n ≥ 3, some mild density assumptions
on Ω± are imposed, and “rectifiable” is replaced by the existence of strong tangents, this is shown in [AMT17]
(when n = 2 it is contained in [Bis91]). It is unclear to what extent this resolves the problem converse to
Theorem 1.1, namely:
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Problem 2.8. Assume that E = ∂{u > 0} ∩ ∂{v > 0} is Hn−1 rectifiable. Is Jx(0
+) > 0 for Hn−1-a.e. x ∈ E

(under some minimal assumptions on E or u, v)?

Example 2.4 shows that in Problem 2.8, Jx(0
+) need not be positive for every x ∈ E. From a slightly different

perspective: Bishop and Jones [BJ94] proved the following striking result: for a suitably nice domain Ω ⊂ R2

(e.g. one bounded by a Jordan curve), the set of points for which

β∞(x, r) = inf
L a line,

L∩Br(x) ∕=∅

sup
x∈∂Ω∩Br(x)

d(x, L)

r

satisfies the square-Dini condition
" 1

0

β2
∞(x, r)dr

r
< ∞

is precisely the rectifiable portion ∂Ω (up to sets of H1 measure 0). They pose a more general question along
these lines: for which choices of geometric “square function” (to use the term loosely, as in [JTV21]) in place of
β∞ (as well as dimension and a priori assumptions on ∂Ω) does one recover such a rectifiability criterion? There
has been substantial study of this topic ([Tol15]), and the rectifiable Reifenberg theorems of [NV17] fit naturally
into this program. A particularly striking recent result of [JTV21] is that in two dimensions β∞ can be replaced
by the quantity ε(x, r), defined as follows. Let I+(x, r) length of the longest arc contained in Ω ∩ Br(x), and
I−(x, r) the length of the longest arc contained in Br(x)\Ω̄; then ε(x, r) = max{|I+(x, r)/r−π|, |I−(x, r)/r−π|}.
This answered a question of Carleson explicitly left open in [BJ94].

The quantity ε is, of course, purely geometric, but we would like to suggest a spectral reinterpretation of
it which exposes certain connections to Theorem 1.1 as well as to higher-dimensional versions of Carleson’s
problem. A basic computation (see [AKNb]) shows that

(log J0)
′(r) ≥ 1

r
[αu(r) + αv(r)− 2] ≥ 1

r

/
|αu(r)− 1|2 + |αv(r)− 1|2

0
,

where αu represents the homogeneity of the unique nontrivial nonnegative homogeneous function on a cone G
with cross-section G∩∂Br(0) = {u > 0}∩∂Br(0) and which vanishes on the boundary of G, the “characteristic
constant.” This number can be computed directly from the first Dirichlet eigenvalue of {u > 0}∩∂Br(0), which
specifically in 2D depends only on the numbers I±(0, r). In particular, we have that

1

r

/
|αu(r)− 1|2 + |αv(r)− 1|2

0
≥ c

r
ε2(0, r).

Now, (log Jx)
′ is integrable in r if Jx(0

+) > 0, meaning (log J)′ is a natural (and stronger) square function.
If ∂Ω is a Jordan curve (or under some other assumptions, still in 2D), then the results of [JTV21] and the
argument sketched above imply Theorem 1.1.

The main interest of Theorem 1.1, though, is that it holds unconditionally and in any dimension, giving a
rectifiability criterion which is analytic in nature. It is clear from the heuristic presented above that Jx(0

+) > 0
is a stronger property than the square-summability of ε: indeed, a more careful analysis of (log J)′ shows that
it provides some mild indirect control over how αu(r) changes as a function of r, something that ε notoriously
does not. On the other hand, this suggests that of the many possible generalizations of ε to higher dimensions,
a particularly compelling one is the “spectral” square function:

λ2(x, r) = |λ1(Ω ∩ ∂Br(x))/r
2 − (n− 1)|2 + |λ1(∂Br(x) \ Ω)/r2 − (n− 1)|2,

where λ1 stands for the first Dirichlet eigenvalue of a domain on a sphere (n− 1 is λ1 of a half unit sphere).

Problem 2.9. Let Ω ⊂ Rn be a connected open set. Under what minimal assumptions on ∂Ω does

1
x ∈ ∂Ω :

" 1

0

λ2(x, r)

r
dr < ∞

2

coincide with the rectifiable portion of ∂Ω, up to sets of Hn−1 measure 0?
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2.3. Applications to free boundary problems. In this section we present informally an example of how one
might apply Theorem 1.1 to gain information about a free boundary problem. We will consider a broad class
of vector-valued Bernoulli problems in (2.1) below. Problems like this derive from eigenvalue optimization and
segregation models, for instance, and have been studied in the literature only very recently. The theory is still
incomplete and progress so far has been limited to the restrictive setting of the variational formulation. Here
we apply the main results of this paper to analyze part of the free boundary without resorting to variational
techniques or any special structure of the free boundary condition.

Suppose a domain Ω and a collection {ui}Ni=1 of continuous functions ui : Ω̄ → R satisfy the overdetermined
system

(2.1)

$
%%%&

%%%'

∆ui(x) = 0 x ∈ Ω ∩B1

ui(x) = 0 x ∈ ∂Ω ∩B1

F ({|(ui)ν(x)|}) = 1 x ∈ ∂∗Ω ∩B1

F ({|∇uli|}) = F ({|∇uri |}) ≥ 1 x ∈ ∂cΩ ∩B1

Here ∂∗Ω represents the reduced boundary of Ω, while ∂cΩ is the set of “cusp points” in ∂Ω with blow-up limits
Rn \ H for a hyperplane H, i.e. points where ∂Ω has tangents but with Ω on either side of those tangents;
∇uri ,∇uli represent the derivative from either side.

In typical examples, the function F : RN → R in (2.1) will be strictly increasing in each parameter and
smooth, however the specific form is not important here. The only well-studied example is the variational one,
F (ξ) =

.
i µiξ

2
i with µi > 0, which permits viewing this problem as the stationarity condition for a certain

energy. We are deliberately vague about the sense in which the last two conditions of (2.1) hold, as the point
of the method here is that they are not used directly.

For Ω and u1, . . . , uN satisfying (2.1) (extended by zero on B1 \Ω), let v be any rational linear combination
of the u1, . . . , uN , and apply the ACF formula to v+ and v−; set

(2.2) G =
,

v

{x ∈ ∂Ω ∩B1/2 : Jx(v+, v−, 0
+) > 0}.

As a consequence of Theorems 1.1 and 1.2, we have the following.

Theorem 2.10. Consider a domain Ω and a collection of functions {ui}Ni=1 satisfying (2.1). The set G is
Hn−1-rectifiable. Moreover, for Hn−1-a.e. x ∈ G and for each i = 1, . . . , N , the blow-ups of ui converge to a
unique limiting function of the form

αi(x · ν)+ + βi(x · ν)−
with αi ≥ 0 and βi ≤ 0.

In fact, Theorem 2.10 holds for functions {ui}Ni=1 satisfying only the first two conditions in (2.1).

Proof. The Hn−1-rectifiability of G follows directly from Theorem 1.1 since the countable union of rectifiable
sets is rectifiable. For each x ∈ G, there is a v to be a rational linear combination for which Jx(v+, v−, 0

+) > 0;
by Theorem 1.2, outside of an Hn−1-null set in G, the blow-ups of every such v converge to a unique limiting
function (depending on v) of the form α(x · ν)+ + β(x · ν)− with α > 0, β < 0. For each i = 1, . . . , N and for ε
small enough (and rational), Jx((v + εui)+, (v + εui)−, 0

+) > 0. This implies that the blow-ups of each ui are
also unique functions of the same form, except with α,β ∈ R possibly 0. □

Let us explain the relevance of the set G and of Theorem 2.10. For a solution of (2.1), let E be the set of
points in ∂Ω where Ω has Lebesgue density strictly less than one, and let D = ∂Ω \ (E ∪ G). In this way, we
partition the free boundary ∂Ω into disjoint sets D,G, and E. On E, one can use blow-up and perturbative
methods to classify points as in the scalar case: E is composed of the reduced boundary, which is smooth and
relatively open, and a lower-dimensional set of singular points. While this problem is unstudied in the generality
presented here, [KL18, KL19, MTV17, CSY18] deal with particular cases and could be adapted further. Next,
Theorem 2.10 tells us that G is Hn−1-rectifiable. For a sufficiently stable solution (as described more precisely
below), the set D is expected to be empty, so in particular the entirety of ∂Ω = E ∪G is Hn−1-rectifiable. On
the other hand, for a solution where D is nonempty, then at each x ∈ D the solution must be degenerate in
one of the ways described below.

For a reasonable choice of F , one can expect to show that for a solution of (2.1), each ui is Lipschitz
continuous. This property is generally straightforward to establish for even the weakest possible interpretation of
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this problem (see [CS05], for instance). Sufficiently “stable” solutions are expected to satisfy the nondegeneracy
condition

(2.3) max
i=1,...,N

sup
Br(x)

|ui| ≥ cr ∀x ∈ ∂Ω, r < r0;

for instance, this is expected for Perron solutions, or for minimizing solutions in a variational setting. Finally,
the following secondary nondegeneracy property is not limited by stability but is expected to be true for any
sufficiently well-behaved solution: for each i = 1, . . . , N , x ∈ ∂Ω, and r < r0,

(2.4) sup
Br(x)

u±i ≤ C

3
sup

B2r(x)
u∓i + r

4
|B2r(x) \ Ω|

|B2r|

5
,

i.e. at points x with Lebesgue density close to 1, u± must have comparable size.

Theorem 2.11. Consider a domain Ω and a collection of functions {ui}Ni=1 satisfying (2.1). If (2.3) and (2.4)
hold, then D is empty.

The set G is not well understood, even in the case of minimizers to the variational form of this problem. In
the variational case F ({ξi}) =

.
i µiξ

2
i , the set G is shown to be regular in the scalar case N = 1 [DPSV21] and

in two dimensions [SV19], or rectifiable in arbitrary dimensions [DPESV21]. Theorem 2.10 gives an alternative
and rather different proof of the main result of [DPESV21], and additionally establishes the rectifiability of G
in the broader context of non-variational problems.

Let us give a second example of how our main theorems above can be applied to analyze free boundaries.
Consider a two-phase parabolic equation of Hele-Shaw type: a function u : Ω× (0, T ] → R solves

$
%&

%'

∆xu(x, t) = 0 u(x, t) ∕= 0

∂tu(x, t) = |∇u+|2 − |∇u−|2 u(x, t) = 0

u(x, t) = φ(x) x ∈ ∂Ω.

Two-phase flows of Bernoulli/Stefan type have been studied extensively in the context of heat transfer, porous
media, fluid dynamics, and other models ([CS05]). In general, the results available are either local regularity
theorems under strict starting assumptions on the flow to reduce to a perturbative starting point, or global
theorems exploiting monotonicity of u or {u > 0} in t by imposing special boundary or initial conditions. A
major difficulty in comparison to stationary problems is the lack of geometric measure theoretic results about
{u = 0}.

Here Theorem 1.1 can be applied directly to give that the set of points where Jx(u+(·, t), u−(·, t), 0+) > 0 is
rectifiable (on each time slice, independently). This suggests that at points of this type, one has a reasonable
starting configuration for perturbative results from a linearized two-phase configuration. At points where
Jx(u+(·, t), u−(·, t), 0+) = 0, one instead hopes for perturbative results from a one-phase configuration (which
is better understood, [CJK07, CJK09, CLGS19]), or some other more degenerate behavior.

3. Preliminaries

This section contains preliminary results that will be used in the paper. Section 3.1 provides the basic
notation and some initial scaling observations. In section 3.2, we recall two Reifenberg-type theorems of Naber
and Valtorta. In section 3.3, we recall our main result of [AKNb] and prove some slight variants of it that will
be applied in this paper. Finally, section 3.4 contains an important lemma that allows us to deduce convergence
of the ACF monotonicity formulas of L2-convergent sequences of functions.

3.1. Notation and Basics. We use the notation Br(x) to denote a ball of radius r > 0 centered at x ∈ Rn

and Br to denote Br(0), and let ωn denote the volume of the n-dimensional Euclidean unit ball. Given a set
E ⊂ Rn, let d(x,E) = infy∈E d(x, y) and Br(E) = ∪x∈EBr(x).

We recall that a set S ⊂ Rn is Hn−1-rectifiable if there exist countably many Lipschitz maps fj : Rn−1 → Rn

such that Hn−1(S \
+

j fj(Rn−1)) = 0, and caution the reader that this definition is sometimes called countable

Hn−1-rectifiability.
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It is worth noting how our quantities behave under rescalings. Suppose u, v are as in (1.2). For r ∈ (0, 4),
let ux,r(z) = u(x+ rz)/r and vx,r(x) = v(x+ rz)/r. Then

Jx(ρ;u, v) = J0 (ρ/r;u
x,r, vx,r) , Γ∗(u, v) ∩Br(x) = Γ∗ (ux,r, vx,r) ∩B1(0),

Γ∗
ε (u, v) ∩Br(x) = Γ∗

ε (u
x,r, vx,r) ∩B1(0), Γ∗

ε,ρ(u, v) ∩Br(x) = Γ∗
ε,ρ/r(u

x,r, vx,r) ∩B1(0) .

3.2. Reifenberg-Type Theorems. We recall two important theorems of Naber and Valtorta, the discrete
Reifenberg theorem and the rectifiable Reifenberg theorem. Given a Borel measure µ, a point x ∈ B1(0), and
a scale r ∈ (0, 1), the (n− 1)-dimensional L2 Jones’ beta number βµ(x, r) with respect to µ is defined by

(3.1) βµ(x, r)
2 = inf

L

"

Br(x)

d(y, L)2

r2
dµ(y)

rn−1
.

Here the infimum is taken over all affine hyperplanes L in Rn. This quantity measures, in a scale invariant L2

sense, how far the support of µ is to being contained in an affine hyperplane. Following Jones’ use of an L∞

analogue of (3.1), the Lp beta numbers were first introduced by David and Semmes in [DS93] and have since
been used, for instance, in [DT12, AT15] as well as [NV17].

We state the following two Reifenberg-type theorems only in the (n − 1)-dimensional case in which we will
apply them. We refer the reader to Theorems 3.4 and 3.3 in [NV17] respectively for the statements in greater
generality, as well as to the paper [ENV19] for further extensions.

Theorem 3.1 (Discrete Reifenberg Theorem). Fix n ≥ 2. There are dimensional constants δ0 = δ0(n) > 0 and
C0 = C0(n) > 0 such that the following holds. Let {Brx(x)} be a collection of disjoint balls with x ∈ B1(0) and
rx ∈ (0, 1], and let µ =

.
x r

n−1
x δx be the associated (n− 1)-dimensional packing measure. If

" 2r

0

"

Br(x)
βµ(z, s)

2 dµ(z)
ds

s
≤ δ0 r

n−1

for all x ∈ B1(0) and all r ∈ (0, 1], then
6

x

rn−1
x ≤ C0.

We will apply Theorem 3.1 in Section 4 to establish packing estimates. Later, in Section 6.3 we will apply
the rectifiable Reifenberg theorem to prove that Γ∗

ε is Hn−1-rectifiable.

Theorem 3.2 (Rectifiable Reifenberg Theorem). Fix n ≥ 2. There are constants δ0 = δ0(n) and C0 = C0(n)
such that the following holds. Let S ⊂ Rn be a set and let µS = Hn−1 S. If

" 2r

0

"

Br(x)
βµ(z, s)

2 dµ(z)
ds

s
≤ δ0 r

n−1

for all x ∈ B1(0) and all r ∈ (0, 1], then S ∩B1(0) is Hn−1-rectifiable, and for each x ∈ B1(0) and 0 < r < 1,

µS(Br(x)) ≤ C0r
n−1.

3.3. Quantitative remainder for the ACF monotonicity formula. In [AKNb] we proved a sharp quan-
titative version of the ACF monotonicity formula, which will play an important role here. The estimate will
be used at various different points throughout the paper; the optimal exponent in our quantitative estimate is
crucial in the L2 subspace approximation theorem, Theorem 4.1.

Theorem 3.3. Fix n ≥ 2. There is a dimensional constant C > 0 such that the following holds. Let u, v :
B2(0) → R be nonnegative continuous functions that satisfy (1.2). For any ρ ∈ [0, 1/2], there exist a, b > 0 and
a direction ν ∈ Sn−1 such that

"

B1\Bρ

7
u− a(x · ν)+

82
+

7
v − b(x · ν)−

82 ≤ C log

9
J0(1)

J0(ρ)

:"

B1

7
u2 + v2

8
.

There is a dimensional constant κ0 such that if log(J(1)/J(0+)) < κ20, then a, b, and ν can be chosen indepen-
dently of ρ.
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In [AKNb], Theorem 3.3 is stated with the additional assumption that u(0) = v(0) = 0, i.e. that the point
where the ACF monotonicity formula is centered lies in the mutual zero set {x : u(x) = v(x) = 0}. This
assumption can be removed with the following observation and notational caveat. Suppose u, v are as in the
statement of Theorem 3.3 and v(0) > 0. By continuity, there is a radius r0 such that v(x) > 0, and thus
u(x) = 0, for all x ∈ Br0(0). In turn, J0(r) = 0 for all r < r0. Let us adopt the convention that, if J0(r) = 0,
then log(J0(R)/J0(r)) = +∞ for any R ≥ r. With this convention in place, Theorem 4.1 holds and the proof
goes through without modification without the assumption that u(0) = v(0) = 0.

We will use Theorem 3.3 in the form above as well as in the form of the following corollary:

Corollary 3.4. Fix n ≥ 2. There are dimensional constants ρ0(n), κ0(n), and C = C(n) such that the
following holds. Let u, v : B8(0) → R be nonnegative continuous functions that satisfy (1.2) and suppose
log(J(1)/J(ρ)) ≤ κ20. Suppose further that a = b in the conclusion of Theorem 3.3. Then for any ρ < ρ0,

(3.2)

"

B1\Bρ

;u
a
− (x · ν)+

<2
+

;v
b
− (x · ν)−

<2
≤ C log

9
J(1)

J(ρ)

:
.

Proof. Without loss of generality, suppose ‖u‖L2(B1) ≥ ‖v‖L2(B1). By Theorem 3.3 and the triangle inequality,

(3.3)
---‖u‖L2(B1\Bρ) − ‖a (x · ν)+‖L2(B1\Bρ)

--- ≤ Cκ0‖u‖L2(B1)

for a dimensional constant C. Since u is nonnegative and subharmonic, u2 is subharmonic and by the mean
value property,

=
Bρ

u2 ≤ ρn
=
B1

u2. As such,
--‖u‖L2(B1\Bρ) − ‖u‖L2(B1)

-- ≤ ρn/2‖u‖L2(B1). The analogous

estimate holds for a (x · ν)+ as well (since it is subharmonic, or by direct calculation). So, (3.3) implies that
---‖u‖L2(B1) − ‖a (x · ν)+‖L2(B1)

--- ≤ C
;
κ0 + ρn/2

<
‖u‖L2(B1) .

Provided ρ0 and κ0 are chosen to be small enough, the coefficient on the right-hand side is bounded above by
1/2. So, dividing through by a in Theorem 3.3, we have

"

B1\Bρ

;u
a
− (x · ν)+

<2
≤ C‖(x · ν)+‖2L2(B1)

log

9
J(1)

J(ρ)

:
= C log

9
J(1)

J(ρ)

:

for a dimensional constant C. The same argument can now be repeated with v in place of u and with ‖a(x ·
ν)+‖L2(B1) on the right-hand side of (3.3). □

3.4. Continuity properties for the ACF monotonicity formula. The Alt-Caffarelli-Friedman monotonic-
ity formula is continuous in x for fixed r > 0, and it is upper semicontinuous in the sense that for any sequence
xi → x0 and ri → 0+, we have

(3.4) lim sup
i→∞

Jxi(ri) ≤ Jx0(0
+) .

We leave the proofs of these facts to the reader. A less immediate continuity property of the ACF monotonicity
formula is given in Corollary 3.6 below: if a pair of functions (u, v) as in (1.2) converges in L2(BR) to a pair of
complementary truncated linear functions, then their ACF formulas converge as well up to scale R. This key
fact will follow from the next lemma.

Lemma 3.5. Fix R > 0. Let {uj} ⊂ W 1,2(BR) be a sequence of nonnegative subharmonic functions and let
u ∈ W 1,2(BR) satisfy u∆u = 0, i.e. u is harmonic where it is positive. If uj ⇀ u in W 1,2(BR) and uj → u in
L2(BR), then uj → u in W 1,2(BR) and

lim
j→∞

"

BR

|∇uj |2
|x|n−2

=

"

BR

|∇u|2
|x|n−2

.

Proof. Fix a nonnegative function φ ∈ C1
c (BR(0)). Because uj is subharmonic and ujφ ≥ 0, we have

"

BR

|∇uj |2φ = −
"

BR

uj ∇uj ·∇φ+

"

BR

∇uj ·∇(ujφ) ≤ −
"

BR

uj∇uj ·∇φ.

Now, since uj∇φ → u∇φ strongly in L2(BR) and ∇uj ⇀ ∇u weakly in L2(BR), it follows that

lim sup
j→∞

"

BR

|∇uj |2φ ≤ − lim
j→∞

"

BR

uj ∇uj ·∇φ = −
"

BR

u∇u ·∇φ =

"

BR

|∇u|2φ .
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Here the final identity comes from integration by parts and the fact that u∆u = 0. On the other hand, by
lower semicontinuity of the energy with respect to W 1,2 weak convergence,

lim inf
j→∞

"

BR

|∇uj |2φ ≥
"

BR

|∇u|2φ .

These two inequalities together tell us that, for any nonnegative φ ∈ C1
c (BR(0)),

lim
j→∞

"

BR

|∇uj |2φ =

"

BR

|∇u|2φ .

The first conclusion of the lemma follows from taking a sequence of functions φk that approximate the charac-
teristic function of BR, while the second conclusion follows from taking φk = |x|n−2ψk where ψk ∈ C1

c (BR(0))
vanishes in B1/k(0) and approximates the characteristic function of BR in L2(BR). □

As we mentioned above, Lemma 3.5 has the following useful corollary that will allow us to upgrade L2

convergence of sequences to convergence of their ACF formulas.

Corollary 3.6. Let uj , vj : B2(0) → R be sequences of nonnegative continuous functions that satisfy (1.2) with
supj J0(1;uj , vj) < +∞ and suppose uj → a(x · ν)+ and vj → b(x · ν)− in L2(B1(0)) for some a, b > 0 and

ν ∈ Sn−1. Then, setting c∗ = n2ω2
n/16, we have

lim
j→∞

J0(r;uj , vj) = c∗ a
2 b2 for all r ∈ (0, 1] .

The constant c∗ is such that J0(r; a(x · ν)+, b(x · ν)−) = c∗ a
2 b2 for any r > 0.

Proof. The assumption supj J0(1; uj , vj) < +∞ implies that after passing to a subsequence, either

(3.5) sup
j

"

B1

|∇uj |2
|x|n−2

dx < +∞ or sup
j

"

B1

|∇vj |2
|x|n−2

, dx < +∞

or both; we assume without loss of generality it holds for uj . The weight |x|2−n is bounded below by 1 on
B1(0), so supj

=
B1(0)

|∇uj |2 dx < +∞ and thus up to a further subsequence, uj ⇀ a(x · ν)+ in W 1,2(B1(0)).

The truncated linear function a(x · ν)+ is harmonic where it is positive, so Lemma 3.5 implies that

lim
j→∞

"

B1(0)

|∇uj |2
|x|n−2

dx =

"

B1(0)

|∇ a(x · ν)+|2
|x|n−2

dx = a2
√
c∗ .

Here c∗ is the dimensional constant defined in the corollary statement and the final equality is an elementary
calculation. Now, since a2

√
c∗ > 0, the assumption supj J0(1; uj , vj) < +∞ now tells us that (3.5) holds for v

along the same subsequence. Repeating the same argument shows that

lim
j→∞

"

B1(0)

|∇vj |2
|x|n−2

dx = b2
√
c∗

and we reach the conclusion of the corollary along a subsequence. Any subsequence has a further subsequence
for which the conclusion of the corollary holds, so it holds for the full sequence. □

4. The L2 Subspace Approximation and Packing Estimates

This section has two main goals. First, we prove an estimate known as the L2 subspace approximation
in Theorem 4.1 below. This estimate quantitatively relates the Jones’ L2 beta numbers and the drop in the
monotonicity formula from one scale to the next, and plays a key role in the Naber-Valtorta framework. The
statement of Theorem 4.1 is analogous to L2 subspace approximations in other contexts. However, our proof is
different from the standard one and in particular circumvents the use of the eigenvalues and eigenvectors of the
“inertia matrix” associated to a measure. The proof (as well as an adaptation of the standard proof) crucially
relies on the sharp quantitative remainder term in for the ACF monotonicity formula of [AKNb].

Theorem 4.1 (L2 Subspace Approximation). Fix n ≥ 2. There exist positive dimensional constants κ and C
such that the following holds. Let u, v : B10(0) → R be nonnegative continuous functions satisfying (1.2). Let
µ be a finite Borel measure. For any r ∈ (0, 1) and x ∈ B1(0) such that log(Jx(8r)/Jx(r)) < κ, we have

(4.1) βµ(x, r)
2 ≤ C

rn−1

"

Br(x)
log

9
Jy(8r)

Jy(r)

:
dµ(y).
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Here βµ(x, r)
2 is the (n − 1)-dimensional L2 Jones’ beta number defined in (3.1). Following [NV17], Theo-

rem 4.1 will be applied twice: when µ is the packing measure associated to a cover to prove the Proposition 4.2
below, and with µ = Hn−1 Γ∗

ε in section 6.3 in the proof of Theorem 1.1.
The second main goal of this section is to prove the packing estimates of the following proposition. Roughly

speaking, this proposition says that if a Γ∗
ε,r has a Vitali cover by balls with small drop in the ACF monotonicity

formula at the centers, then the cover has a uniform (n − 1)-dimensional packing bound. The statement and
proof of Proposition 4.2 are a standard part of the Naber-Valtorta framework.

Proposition 4.2 (Packing Estimate). Fix n ≥ 2 and 0 < ε < 1/2. There exist η̄ = η̄(n, ε) > 0 and C(n) such
that the following holds. Let u, v : B10(0) → R be nonnegative continuous functions satisfying (1.2) and let
J̄ = supy∈B1(0) Jy(4). If {B2rp(p)}p is a collection of disjoint balls with p ∈ B1(0) satisfying

(4.2) Jp(η̄ rp) ≥ J̄ − η̄, p ∈ Γ∗
ε,R ∩B1(0), R ≤ rp ≤ 1,

then

(4.3)
6

p

rn−1
p ≤ C(n).

4.1. Two initial lemmas. We prove two initial lemmas in preparation for the proof of Theorem 4.1. The first
one will be applied when η is small, and says that if two pairs of complementary truncated linear functions are
close in an L2 sense on an annulus, then their hyperplane interfaces are also close in a quantitative way.

Lemma 4.3. There exists a positive dimensional constant C such that the following holds. Let y1, y2 ∈ B1(0)
and ν1, ν2 ∈ Sn−1. Let

ℓ+1 = a1[(x− y1) · ν1]+, ℓ−1 = b1[(x− y1) · ν1]−,
ℓ+2 = a2[(x− y2) · ν2]+, ℓ−2 = b2[(x− y2) · ν2]−.

Assume that max{a1, b1} ≥ c. For any η ≤ 1/16, if
"

B6(0)\B2(0)
(ℓ+1 − ℓ+2 )

2 + (ℓ−1 − ℓ−2 )
2 ≤ η,

then d(y2, L) ≤ C
c

√
η, where L = {x ∈ Rn : (x− y1) · ν1 = 0} is the mutual zero set of ℓ+1 and ℓ−1 .

Proof. Let
√
η = d(y2, L). We will prove the lemma by showing that

(4.4)

"

B6(0)\B2(0)
(ℓ+1 − ℓ+2 )

2 + (ℓ−1 − ℓ−2 )
2 ≥ c2η.

Up to a rotation we may assume that ν1 = en, a1 ≥ c, and ν2 is a linear combination of e1 and en. Since
y1, y2 ∈ B1(0), it suffices to replace the domain of integration in (4.4) by the smaller set B5(y1) \ B3(y1) ⊂
B6(0) \B2(0); up to a translation, we may take y1 to be the origin and y2 ∈ B2(0). After these normalizations,
L = {x ∈ Rn : x · en = 0}. Since we are only finding d(y2, L) ≤ C

√
η, we may assume that the i-th coordinates

of y2 satisfy yi2 = 0 for 1 ≤ i < n. For simplicity we will treat the case when yn2 ≥ 0; the case in which yn2 < 0 is
similar. By relabeling a2 and b2 if necessary, we may assume ν2 · en ≥ 0. Finally, by symmetry we will assume
ν2 · e1 ≥ 0. With these assumptions we have the following simplifications:

ℓ+1 = a1x
n
+, ℓ−1 = b1x

n
−,

ℓ+2 = a2[(x−√
ηen) · (γ1e1 + γ2en)]

+, ℓ−2 = b2[(x−√
ηen) · (γ1e1 + γ2en)]

−.

So, we may find constants c1, c2 ≥ 0 such that ℓ+2 can be expressed as

ℓ+2 = a2[(x−√
ηen) · (γ1e1 + γ2en)]

+ = [c1a1(x
n −√

η) + c2a1
√
ηx1]+.

It will also suffice to integrate over the set

Ã = (B5(y1) \B3(y1)) ∩ {xn >
√
η} ∩ {x1 > 0}.

We note on Ã that ℓ−1 = ℓ−2 = 0 . We will show that |ℓ+1 − ℓ+2 | ≥ a1
√
η/8 pointwise on a subset of Ã with

measure universally bounded below. To do this, it will suffice to have either

a1x
n − c1a1(x

n −√
η)− c2a1

√
ηx1 ≥ a1

√
η/8,
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or

a1x
n − c1a1(x

n −√
η)− c2a1

√
ηx1 ≤ −a1

√
η/8,

on a sufficiently large subset of Ã. The above inequalities simplify to

(4.5)
1− c1√

η
xn ≥ 1

8
− c1 + c2x

1,

and

(4.6)
1− c1√

η
xn ≤ −1

8
− c1 + c2x

1.

We again note that xn ≥ √
η and x1 ≥ 0. We break up the proof into several cases.

Case 1a: 0 ≤ c1 ≤ 1 and c2 ≤ 3/8. If 0 ≤ x1 ≤ 1 (and since xn/
√
η ≥ 1), then (4.5) holds.

Case 1b: 0 ≤ c1 ≤ 1 and c2 ≥ 3/8 and 1− c1 ≥ c2
√
η. If 0 ≤ x1 ≤ 1 and xn ≥ 2, then (4.5) holds.

Case 1c: 0 ≤ c1 ≤ 1 and c2 ≥ 3/8 and 1− c1 ≤ c2
√
η. If x1 ≥ 4 and xn ≤ 1, then (4.6) holds.

Case 2a: c1 > 1 and c2 ≥ 3/8. If x1 ≥ 3 (and since xn/
√
η ≥ 1), then (4.6) holds.

Case 2b: c1 > 1 and c2 ≤ 3/8 and 1− c1 ≥ −c1
√
η. If xn ≤ 1/2 and 0 ≤ x1 ≤ 1, then (4.5) holds.

Case 2c: c1 > 1 and c2 ≤ 3/8 and 1− c1 ≤ −c1
√
η. If xn ≥ 2, then (4.6) holds.

In each of the above exhaustive cases, we obtain a subset of Ã with positive measure bounded below so that
either (4.5) or (4.6) holds. Thus, the result is proven. □

The next lemma shows that if an admissible pair u, v are normalized on B8(0), then the best-approximating
truncated linear functions chosen with respect to any z ∈ B1(0) will be nondegenerate.

Lemma 4.4. Let u, v be an admissible pair on B9(0) with ‖u + v‖L2(B8) = 1. Then there exist positive
dimensional constants c0 and κ such that if log(J0(8)/J0(1)) ≤ κ, and if z ∈ B1 with log(Jz(8)/Jz(1)) ≤ κ and

(4.7)

"

B7(z)\B1(z)
[u(y)− az((y − x) · νz)+]2 + [v(y)− bz((y − x) · νz)−]2 dy < κ,

then az + bz ≥ c.

Proof. Since u, v are both subharmonic (and consequently u2, v2 are also subharmonic), we have that

"

B8(0)\B1(0)
u2 + v2 ≥ 7

8
.

From Theorem 3.3 we have the existence of a0, b0 > 0 and a direction ν0 ∈ Sn−1 satisfying the conclusion
of Theorem 3.3 at the origin. It then follows that for κ chosen small enough we have ‖a0(x · ν)+ + b0(x ·
ν)−‖L2(B8(0)\B1(0)) ≥ 3/4. From Theorem 3.3 we also have the existence of az, bz and νz satisfying (4.7). From
the structure of affine functions we have that

"

B5(0)\B3(0)
a0(x · ν)+ + b0(x · ν)− ≥ c(n),

and "

B5(0)\B3(0)
az(x · ν − z)+ + b0(x · ν − z)− ≥ c(n)

"

B7(z)\B1(z)
az(x · ν − z)+ + b0(x · ν − z)−.

Using now the triangle inequality, we conclude that

"

B5(0)\B3(0)
az(x · ν − z)+ + b0(x · ν − z)− ≥ c(n)

for a new dimensional constant c(n). The conclusion then follows for a new dimensional constant c0. □
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4.2. Proof of the L2 Subspace Approximation. With Lemmas 4.3 and 4.4 in hand, we can now prove
Theorem 4.1. The key ingredient is the quantitative remainder term for the ACF formula, Theorem 3.3.

Proof of Theorem 4.1. By scaling and translation we may assume without loss of generality that r = 1 and
x = 0. We may divide by a positive constant leaving the quotient on the right-hand side of (4.1) invariant, so
we may assume that that ‖u+ v‖2L2(B8)

= 1.

We select a good competitor hyperplane L in the definition of βµ(0, 1) in the following way. Let

x̄ = argmin

1
log

9
Jx(8)

Jx(1)

:
: x ∈ B1(0)

2
.

This exists because x (→ Jx(r) is continuous and B1(0) is compact. By assumption log(Jx̄(8)/Jx̄(1)) < κ.
Notice that B7(x̄) ⊂ B8, and so our normalization implies that

=
B7(x̄)

u2 + v2 ≤ 1. So, applying Theorem 3.3

on B7(x̄), we find a pair of truncated linear functions ℓ± supported on complementary half-planes such that

(4.8)

"

B7(x̄)\B1(x̄)

7
u− ℓ+

8
+

7
v − ℓ−

82 ≤ C log

9
Jx̄(7)

Jx̄(1)

:"

B7(x̄)
u2 + v2 ≤ C log

9
Jx̄(8)

Jx̄(1)

:
.

In the final inequality we also used the monotonicity of the ACF formula. Let L = {ℓ± = 0} be the hyperplane
interface between the supports of ℓ±. By the same reasoning, for each z ∈ sptµ∩B1(0), we apply Theorem 3.3
to obtain a pair of truncated linear functions ℓ±z (x) supported on complementary half-planes such that

(4.9)

"

B7(z)\B1(z)

7
u− ℓ+z

8
+

7
v − ℓ−z

82 ≤ C log

9
Jz(7)

Jz(1)

:"

B7(z)
u2 + v2 ≤ C log

9
Jz(8)

Jz(1)

:
.

Now, since the domains of integration in (4.8) and (4.9) both contain the annulus B6 \B2, we use the triangle
inequality and the choice of x̄ to deduce that

(4.10)

"

B6\B2

--7ℓ+ + ℓ−
8
−

7
ℓ+z + ℓ−z

8--2 ≤ 2

"

B6\B2

(ℓ+ − u)2 + (ℓ− − v)2 + (ℓ+z − u)2 + (ℓ−z − v)2

≤ C

9
log

9
Jx̄(8)

Jx̄(1)

:
+ log

9
Jz(8)

Jz(1)

::
≤ C log

9
Jz(8)

Jz(1)

:

for any z ∈ B1(0). Now, let us split the support of µ into two pieces, letting

Gµ = {z ∈ spt µ ∩B1(0) : log(Jz(8)/Jz(1)) ≤ κ} ,
Aµ = {z ∈ spt µ ∩B1(0) : log(Jz(8)/Jz(1)) > κ}

If z ∈ Gµ, then from Lemma 4.4 and (4.9) we have that az+bz ≥ c0, where az and bz are the slopes of ℓ
+
z and ℓ−z

respectively. So, we can apply Lemma 4.3; together with (4.10) this tells us that d(z, L)2 ≤ C log(Jz(8)/Jz(1))
for any z ∈ Gµ. Integrating this inequality over Gµ with respect to the measure µ, we have

(4.11)

"

Gµ

d(z, L)2 dµ(z) ≤ C

"

Gµ

log

9
Jz(8)

Jz(1)

:
dµ(z).

On Aµ, the analogous estimate holds for trivial reasons: for any z ∈ B1(0), d(z, L) ≤ Cn, and thus d(z, L) ≤
Cnκ
κ ≤ Cn

κ log(Jz(8)/Jz(1)) for any z ∈ Aµ. Integrating over Aµ with respect to µ tells us that

(4.12)

"

Aµ

d(z, L)2 dµ(z) ≤ C

"

Aµ

log

9
Jz(8)

Jz(1)

:
dµ(z).

The conclusion of the theorem follows by summing up (4.11) and (4.12) and using the definition of βµ(0, 1):

βµ(0, 1)
2 ≤

"

B1(0)
d(z, L)2dµ(z) ≤ C

"

B1(0)
log

9
Jz(8)

Jz(1)

:
dµ(z) .

This completes the proof. □
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4.3. Packing Estimates. Next, we apply the L2 estimate of Theorem 4.1 to prove Proposition 4.2. The proof
is an adaptation to our setting of a by-now standard induction argument using the L2 subspace approximation
and the Discrete Reifenberg Theorem.

Proof of Proposition 4.2. Step 1: Let η ∈ (0, 1) be a fixed number depending on n to be specified later in the
proof, and set η̄ = η ε/2. Basic algebra shows that any p and rp satisfying (4.2) will also satisfy

(4.13) log

9
Jp(2)

Jp(η rp)

:
≤ η, p ∈ Γ∗

ε,R ∩B1(0), R ≤ rp ≤ 1,

Indeed, our choice guarantees that J̄ − η̄ ≥ 2/ε = η/η̄, and so from the definitions of J̄ and Γ∗
ε,R,

Jp(2)

Jp(η rp)
≤ Jp(2)

Jp(η̄ rp)
≤ J̄

J̄ − η̄
= 1 +

η̄

J̄ − η̄
≤ 1 + η;

then the first part of (4.13) follows from the concavity of the logarithm. The second and third parts of (4.13)
are the same as (4.2) and thus hold by assumption. So, to establish the proposition, it suffices to show there
exists η(n) such that (4.3) holds for any collection of disjoint balls {B2rp(p)}p satisfying (4.13).

Step 2: Let κ > 0 be chosen according to Theorem 4.1, and let η ≤ κ. We let ri = 2−i. For each integer
i ∈ N, define the packing measure

µi =
6

rp≤ri

rn−1
p δp ,

and let βi(x, r) := βµi(x, r) denote the corresponding (n− 1)-dimensional L2 Jones beta number as defined in
(3.1). In this notation, the conclusion (4.3) of the lemma is µ0(B1(0)) ≤ c(n). In order to prove this, we will
argue inductively to prove that " 2r

0

"

Br(x)
βµ(z, s)

2 dµ(z)
ds

s
≤ δ0 r

n−1

for all x ∈ B1(0) and all r ∈ (0, 1], at which point we can apply Theorem 3.1. More specifically, we argue by
induction to show that, for ri ≤ 2−4

(∗i)
6

rj≤2ri

"

B2ri
(x)

βi(z, rj)
2dµi(z) ≤ δ0 r

n−1
i for all x ∈ B1(0).

By the Discrete Reifenberg Theorem 3.1, whenever (∗i) holds we have

(4.14) µi(Bri) ≤ C0r
n−1
i for all x ∈ B1(0).

Here δ0 and C0 are the dimensional constants from Theorem 3.1. Notice that (∗i) vacuously holds for i large
enough such that ri < R, as in this case µi ≡ 0. Also, if x ∈ sptµj and j ≥ i, then by disjointness we have

(4.15) βi(x, rj) =

>
βj(x, rj) if x ∈ sptµj ,

0 otherwise.

Thanks to (4.13), we can apply Theorem 4.1 to µi whenever ri < 2−4, finding that for any x that is a center of
a ball in our collection, we have

(4.16) βi(x, ri)
2 ≤ C

rn−1
i

"

Bri (x)
log

9
J(8ri, y)

J(ri, y)

:
dµi(y) .

Suppose now that the inductive hypothesis (∗j) holds for all j ≥ i+ 1. Fix x ∈ B1(0). We first claim that

(4.17) µi−1(B4ri(x)) ≤ Mrn−1
i and for all x ∈ B1(0),

where M = C(n)C0 with C(n) a dimensional constant. To prove this claim, note that we have µi−1(B4ri(x)) =
µi+1(B4ri(x)) +

.
rn−1
p where we sum over p ∈ B4ri(x) having ri+1 < rp ≤ ri−1. Since the B2rp(p) are disjoint

we sum over at most C(n) points. Also, there are at most C(n) points in B4ri(x) that are pairwise ri+1 distant
from each other, so we can cover B4ri(x) with C(n) balls with center at points p. We then use our induction
hypothesis with i+ 1 and (4.14) to conclude that

µi+1(B4ri(x)) ≤
6

µi+1(Bri+1(y)) ≤ C(n)C0(n)r
n−1
i+1 ,
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which finishes the claim (4.17). Now, for any j ≥ i− 1, i.e. for rj ≤ 2ri, we have by (4.15), (4.16), and Fubini
respectively that

"

B2ri
(x)

βi(z, rj)
2dµi(z) =

"

B2ri
(x)

βj(z, rj)
2dµj(z) ≤

C

rn−1
j

"

B2ri
(x)

"

Brj (z)
log

9
Jy(8rj)

Jy(rj)

:
dµj(y)dµj(z)

≤ C

rn−1
j

"

B2ri+rj
(x)
µj(Brj (y)) log

9
Jy(8rj)

Jy(rj)

:
dµj(y) .

Now, applying (4.17) and the ordering of the measures we have µj(Brj (y))/r
n−1
j ≤ M . So, summing over the

expression above over all rj ≤ 2ri and recalling (4.13), we find that

6

rj≤2ri

"

B2ri

βi(z, rj)
2dµi(z) ≤ CM

6

rj≤2ri

"

B4ri
(x)

log

9
Jy(8rj)

Jy(rj)

:
dµj(y)

≤ CM

"

B4ri
(x)

6

rj≤2ri

log

9
Jy(8rj)

Jy(rj)

:
dµi−1(y)

≤ CM

"

B4ri
(x)

log

9
Jp(2)

Jp(rp)

:
dµi−1(y) ≤ CMη µi−1(B4ri(x)).

Applying (4.17) again and then choosing η small enough, this establishes the induction step and so (∗i) holds
for all i. Now, recalling (4.15), from (∗i) we find that for all x ∈ B1(0) and all i ∈ N,

6

rj≤2ri

"

B2ri
(x)

βµ(z, rj)
2dµ(z) ≤ δ0 r

n−1
i .

In particular, we can apply the Discrete Reifenberg Theorem 3.1 to µ and conclude. □

5. The Dichotomy

In this section, we establish a key dichotomy: either all points in Γ∗
ε,η have small drop in the ACF monotonicity

formula down to a small scale, or else all such points have a definite drop in their ACF formula at a smaller
scale. This is simpler than the analogous dichotomy in other settings: a typical statement would say that either
all points have small energy drop, or else the set of points with small energy drop looks lower dimensional in a
quantitative sense. The reason behind this difference is that all blowup configurations for the ACF monotonicity
formula have the same number of symmetries. The main form of the dichotomy is the following proposition:

Proposition 5.1. Fix an integer n ≥ 2 and positive constants ε, η̄, ρ̄, and J̄0. There exists η depending on
these parameters such that the following holds. Fix r ∈ (0, 2], let u, v : B10(0) → R be nonnegative continuous
functions satisfying (1.2) with x0 ∈ Γ∗ ∩ B2(0) and supx∈B4r(x0) Jx(4) ≤ J̄ ≤ J̄0. Then at least one of the two
possibilities occurs:

(1) For all x ∈ Γ∗
ε,ηr ∩B2r(x0), we have Jx(ρ̄ r) > J̄ − η̄, or

(2) For all x ∈ Γ∗
ε,ηr ∩B2r(x0), we have Jx(4η r) ≤ J̄ − η.

Proposition 5.1 is a direct consequence of the following lemma, which in turn is based on compactness and
the quantitative estimates of Theorem 3.3 and Corollary 3.4.

Lemma 5.2. Fix n ≥ 2 and positive constants ε, η̄, ρ̄ and J̄0. There exist η > 0 and τ > 0 depending on
these parameters such that the following holds. Suppose u, v : B8(0) → R are nonnegative continuous functions
satisfying (1.2) with supx∈B4(0) Jx(4) ≤ J̄ ≤ J̄0. If there is some point y ∈ B2(0) such that

(5.1) Jy(4η) ≥ J̄ − η,

then there is an affine hyperplane L containing y such that for every x ∈ Bτ (L) ∩B2(0), we have

(5.2) Jx(ρ̄) > J̄ − η̄ and Γ∗
ε,η ∩B2(0) ⊂ Bτ (L).

In particular, Jx(ρ̄) > J̄ − η̄ for all x ∈ Γ∗
ε,η ∩B2(0).
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Proof. We argue by way of contradiction. Suppose the first condition in (5.2) fails. We may thus find admissible
pairs of functions (uj , vj) with supx∈B4(0) Jx(4; uj , vj) ≤ J̄j ≤ J̄0 and points yj ∈ B2(0) satisfying (5.1) with
ηj → 0 in place of η, such that, for a sequence τj → 0 and for every affine hyperplane Lj containing yj , there
are points xj in B2(0) ∩Bτj (Lj) such that

(5.3) 0 ≤ Jxj (ρ̄; uj , vj) ≤ J̄j − η̄

Up to a subsequence, J̄j → J̄ ∈ [η̄, J̄0]. A basic calculation shows that log(Jyi(1)/Jyi(4ηj)) ≤ 4ηj/η̄. So, by
Theorem 3.3, for each j there exist aj , bj > 0, and νj ∈ Sn−1 such that

(5.4)

"

B4(yj)\B2ηj
(yj)

/
uj − aj ((x− yj) · νj)+

02
+

/
vj − bj((x− yj) · νj)−

02 ≤ C ηj

"

B4(yj)
(u2j + v2j )

for a constant C depending on n and η̄. Without loss of generality, we can multiply uj and vj by constants
whose product is equal to 1 so that aj = bj , since this leaves J unchanged. We may also assume that we have
precomposed uj and vj with a rotation so that νj = en for all j.

We want to show that uj and vj converge in L2 to a pair of nondegenerate truncated linear functions, and
so we must verify that the slopes aj do not degenerate to zero or blow up to infinity along the sequence. To
this end, set ûj = uj/aj and v̂j = vj/aj . For j sufficiently large, we have 4ηj ≤ max{ρ0,κ20/J̄}, where ρ0 and
κ0 are the constants from Corollary 3.4. So, applying Corollary 3.4, (5.4) becomes

"

B4(yj)\B2ηj
(yj)

7
ûj − ((x− yj) · en)+

82
+

7
v̂j − ((x− yj) · en)−

82 ≤ C ηj ,

for a constant C depending on n and η̄. Up to a subsequence, yj → y0 ∈ B2(0). So, letting ℓ̂1(x) = ((x−y0)·en)+
and ℓ̂2(x) = ((x− y0) · en)−, we see that ûj → ℓ̂+ and v̂j → ℓ̂− in L2(B4(y0)). Corollary 3.6 then tells us that

lim
j→∞

α−4
j Jy0(4; uj , vj) = lim

j→∞
Jy0(4; ûj , v̂j) = Jy0(4; ℓ̂+, ℓ̂−) = c∗ .

On the other hand, by (5.1) and continuity, we see that limj→∞ Jy0(4; uj , uj) = J̄ , and so it follows that

limj→∞ aj = a0 := (J̄/c∗)
1/4 > 0. Now, set ℓ+ = a0 ℓ̂+ and ℓ− = a0 ℓ̂−, so

(5.5)

"

B4(y0)
(uj − ℓ+)

2 + (vj − ℓ−)
2 → 0,

and Jx(r, ℓ+, ℓ−) = J̄ for each r > 0 and x ∈ {x · en = 0}.
Now, we aim to reach a contradiction to (5.3). For each j, choose xj corresponding to the affine hyperplane

Lj = {(x−yj) · en = 0}. After passing to a subsequence, xj converges to a point x0 ∈ B2(0)∩{(x−y0) · en = 0}.
Since y0 ∈ B2(0) as well, we have Br(x0) ⊂ B4(y0) for any r ≤ 1. So, thanks to Lemma 3.5 once again, we have

lim
j→∞

Jxj (r; uj , vj) → Jx0(r; ℓ+ ℓ−) = J̄

for all r ∈ (0, 1). On the other hand, by continuity and monotonicity, (5.3) implies that

lim
j→∞

Jxj (r; uj , vj) ≤ J̄ − η̄,

for r ∈ (0, ρ̄), leading us to a contradiction. This establishes the first part of (5.2).

Next, let us prove that the second part of (5.2) holds, with the same τ > 0 determined in the proof of (5.2)
above and up to further decreasing the parameter η > 0 from the value determined above. Once again, we argue
by way of contradiction and suppose that the second part of (5.2) fails for our fixed choices of n, ε, η̄, ρ̄, J̄0 and
τ . We may find sequences (uj , vj), yj , and ηj → 0 as above, satisfying the hypotheses of the lemma with ηj in
place of η, and a sequence of points xj violating the second part of (5.2), i.e. xj ∈ Γ∗

ε,ηj ∩B2(0)\Bτ ({x·en = 0}).
Repeating the argument above, we find that (5.5) holds and, up to a subsequence, xj → x0 with dist(x0, {x·en =
0}) ≥ τ. Without loss of generality, we can assume that x0 · en > 0 and thus x0 · en ≥ τ . By continuity and the
assumption that xj ∈ Γ∗

ε,ηj we have, for any fixed r ∈ (0, 1),

ε ≤ lim
j→∞

Jxj (r ; uj , vj) = Jx0(r ; ℓ+, ℓ−) .

On the other hand, Jx0(r ; ℓ+ , ℓ−) for r ≤ τ/2 since ℓ− vanishes identically in Br(x0), giving us a contradiction.
We conclude that the second part of (5.2) holds. □
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Proposition 5.1 is an easy consequence of Lemma 5.2.

Proof of Proposition 5.1. Let η be chosen according to Lemma 5.2. By scaling, it suffices to prove the propo-
sition with r = 1 and x0 = 0. Suppose we are not in case (2) in the statement of the proposition, so there is
some y ∈ Γ∗

ε,η ∩B2(0) such that Jy(4η) > J̄ − η. Applying Lemma 5.2, we then find that Jx(ρ̄) > J̄ − η̄ for all
x ∈ Γ∗

ε,η ∩B2(0), i.e. we are in case (1). □

The following direct corollary is how Proposition 5.1 will be applied in the next section.

Corollary 5.3. Fix an integer n ≥ 2 and positive constants ε, J̄0, η̄, and ρ̄. There exists η depending on
n, ε, J̄0, η̄, and ρ̄ such that the following holds. Fix R ∈ (0, 1]. For any x ∈ B2(0) and r ∈ [R, 2], let u, v :
B10(0) → R be nonnegative continuous functions satisfying (1.2) with supx∈B4r(x0) Jx(4) ≤ J̄ ≤ J̄0. Then at
least one of the two possibilities occurs:

(1) For all y ∈ Γ∗
ε,ηR ∩B2r(x0), we have Jy(ρ̄ r) > J̄ − η̄, or

(2) For all y ∈ Γ∗
ε,ηR ∩B2r(x0), we have Jy(4ηr) ≤ J̄ − η.

Proof. Choose η > 0 according to Proposition 5.1. Suppose we are not in case (1) of the corollary. So, there
is some y ∈ Γ∗

ε,ηR ∩ B2r(x0) with Jy(ρ̄ r) ≤ J̄ − η̄. Since r ≥ R and Γ∗
ε,ηR ⊂ Γ∗

ε,ηr, we see that y ∈ Γ∗
ε,ηr.

Proposition 5.1 applied at scale r then implies Jy(4η r) ≤ J̄ − η for all y ∈ Γ∗
ε,ηr ∩ B2r(x0), and thus for all

y ∈ Γ∗
ε,ηR ∩B2r(x0) thanks again to the containment Γ∗

ε,ηR ⊂ Γ∗
ε,ηr. We are thus in case (2) of the corollary. □

6. Quantitative estimates for Γ∗
ε and Rectifiability

The main goal of this section is to prove Theorem 1.3 and Theorem 1.1. In Section 6.1 we construct a good
covering of Γ∗

ε,ηR with estimates by balls of radius at least R, and in Sections 6.2 and 6.3 we prove Theorem 1.3
and 1.1 respectively. In the previous section, we saw how Proposition 5.2’s dichotomy took a simple form
thanks to the fact that every “cone” for the Alt-Caffarelli-Friedman monotonicity formula is translationally
invariant along some (n− 1)-dimensional affine subspace. Thanks to this fact, in Section 6.1 we give a covering
construction that is substantially simpler than the covering used in many applications of the Naber-Valtorta
machinery to singularity analysis. In particular, we can avoid entirely the “good tree/bad tree construction”
and instead prove Lemma 6.1 below with a fairly straightforward stopping time argument.

6.1. Main covering construction. This section is dedicated to Lemma 6.1, which is the main covering
construction that will be iterated to prove the quantitative estimates of Theorem 1.3. Given ε > 0 and
R ∈ (0, 1], this lemma gives a covering, with estimates, of the (ε, ηR) stratum for some η ≪ 1, by balls of
radii at least R. The two key ingredients in the proof are the key dichotomy of Proposition 5.1 and the
packing estimates of Proposition 4.2. The basic idea, which of course requires some technical modification,
is the following. At each point in x ∈ Γ∗

ε,ηR ∩ B1(0), choose the smallest scale rx ∈ [R, 1] such that Jx(ρ rx)
stays uniformly large, and take a Vitali subcover of the corresponding cover. By design, the hypotheses of
Proposition 4.2 are satisfied by this cover, and this gives us the packing estimates in part (2) of the lemma
below. Then, the dichotomy of the previous section gives us part (3): either the drop in the ACF monotonicity
formula stays small all the way down to scale rx = R, or else the drop becomes large at some scale rx > R and
we can apply Proposition 5.1.

Lemma 6.1. Fix n ≥ 2, ε > 0, and J̄0 > 0. There are positive constants C and η depending on n, ε, and J̄0
such that the following holds. Let u, v : B10(0) → R be nonnegative continuous functions satisfying (1.2) with
J̄ := supB4(0) Jx(4) ≤ J̄0, and fix R ∈ (0, 1]. There is a collection of balls {Brx(x)}x∈C with rx ∈ [R, η] and

x ∈ Γ∗
ε,ηR ∩B1(0) satisfying the following properties:

(1) The balls form a covering of the (ε, ηR) stratum in B1(0), that is,

Γ∗
ε,ηR ∩B1(0) ⊂

,

x∈C
Brx(x) .

(2) The balls satisfy the packing estimates
6

x∈C
rn−1
x ≤ C.
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(3) For every x ∈ C, either rx = R or

sup
y∈B4rx (x)

Jy(4rx) ≤ J̄ − η.

Proof. Step 0: Let us begin by fixing parameters. Let η̄ = η̄(n, ε) be chosen according to Proposition 4.2 and
let ρ̄ = η̄/10. Choose η according to the dichotomy of Corollary 5.3, depending on n, ε, J̄0, η̄, and ρ̄ and thus
on n, ε, and J̄0. Up to possibly further decreasing η, we may assume that η ≤ η̄ and η ≤ 1/10.

Step 1: We construct the collection of balls and show that it forms a cover of Γ∗
ε,ηR ∩ B1(0). For each

x ∈ Γ∗
ε,ηR ∩B1(0), define the stopping time

(6.1) r̂x := inf
(
r ∈ [R, 1] : Jx(ρ̄ r) > J̄ − η̄

)
,

with the convention that r̂x = 1 if Jx(ρ̄) ≤ J̄−η̄. The collection {Br̂x/5(x)}x∈Γ∗
ε,ηR∩B1(0) is a cover of Γ

∗
ε,ηR∩B1(0).

We apply the Vitali covering lemma to find a subset Ĉ ⊂ Γ∗
ε,ηR such that the balls {Br̂x/5(x)}x∈Ĉ are disjoint

and the collection {Br̂x(x)}x∈Ĉ forms a cover of Γ∗
ε,ηR. We split this set of ball centers into three subsets:

G := {x ∈ Ĉ : r̂x = R} , Â := {y ∈ Ĉ : r̂y ∈ (R, 1)} , V̂ := {y ∈ Ĉ : r̂y = 1} .

For x ∈ G, let rx = r̂x = R. The balls Brx(x) for x ∈ G will be included the final cover. The balls Br̂y(y) for

y ∈ Â∪ V̂ need to be further subdivided in the following simple way. For y ∈ Â∪ V̂, set ry = max{R, η r̂y} and

take a maximal ry/2 disjoint set {xi,y}Ny

i=1 in Br̂y(y). There are at most Cnη
−n such points, i.e. Ny ≤ Cnη

−n,

and the collection {Bry(xi,y)}
Ny

i=1 is a cover of Br̂y(y). Let

A = {xi,y : y ∈ Â, i = 1, · · ·Ny}, V = {xi,y : y ∈ V̂, i = 1, · · ·Ny}.

If x ∈ A∪V, then x = xi,y for at least one y ∈ Â∪V̂; set rx = ry for the smallest such ry. Now, let C = G∪A∪V.
The collection {Brx(x)}x∈C is, by construction, a cover of Γ∗

ε,ηR ∩B1(0), so part (1) of the lemma holds.

Step 2: We now verify the condition (2) of the lemma, using Proposition 4.2’s packing estimate as the main
tool. First, if x ∈ G, then Jx(ρ̄ rx) ≥ J̄ − η̄ by the stopping time definition and the continuity of the ACF
formula with respect to r. Since we have chosen our parameters so that ρ̄ ≤ η̄/10, the monotonicity of Jx
guarantees that Jx(η̄ rx/10) ≥ J̄ − η̄. The balls {Brx/5(x)}x∈G are disjoint by construction. So, we may apply
Proposition 4.2, with R/10 in place of R, to {Brx/10(x)}x∈G to find that

(6.2)
6

x∈G
rn−1
x = Rn−1#(G) ≤ C(n).

We prove the packing estimate for x ∈ A in a similar way. If y ∈ Â, then by continuity J(ρ̄ r̂y) = J̄− η̄. Again
by the choice of ρ̄ and η̄ and by monotonicity, Jy(η̄ r̂y/10) ≥ J̄− η̄, and the balls in the collection {Br̂y/5(y)}y∈Â
are pairwise disjoint by construction. So, once more we apply Proposition 4.2 to {Br̂y/10(y)}y∈Â to find that
.

y∈Â r̂n−1
y ≤ C(n). Since rx ≤ r̂y for any x = xi,y ∈ A and Ny ≤ C(n)η−n for all y ∈ Â, this directly implies

(6.3)
6

x∈A
rn−1
x ≤ C(n)η−n

6

y∈Â

r̂n−1
y ≤ C(n, η) .

Finally, the packing estimate for V is easy. The balls {B1/5(x)}x∈V̂ are pairwise disjoint, so #V̂ ≤ C(n) and

#V ≤ C(n)η−n. Since rx = η for each x ∈ V, this implies that

(6.4)
6

x∈V
rn−1
x = ηn−1#(V) ≤ C(n, η).

Since η depends on n, ε, and J̄0, together (6.2), (6.2), and (6.4) show that condition (2) of the lemma holds
with a constant C depending on n, ε, and J̄0.

Step 3: Now we verify the third condition: either rx = R or there is a definite energy drop in all of B4rx(x).
The main tool is Corollary 5.3, which we recall states that for any x ∈ B2(0) and r ∈ [R, 2], at least one of

Jy(ρ̄ r) > J̄ − η̄ for all y ∈ Γ∗
ε,ηR ∩B2r(x),

or Jy(4η r) ≤ J̄ − η for all y ∈ Γ∗
ε,ηR ∩B2r(x)
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holds. If x ∈ G, then rx = R and condition (3) of the lemmas holds. Next, as we observed in step 2, if y ∈ Â,
then by the definition of r̂y and continuity, Jy(ρ̄ r̂y) = J̄ − η̄. By Corollary 5.3 applied with r = r̂y, we have

(6.5) Jx(4η r̂y) ≤ J̄ − η for all x ∈ Γ∗
ε,ηR ∩B2r̂y(y) .

In particular, for each x ∈ A that came from subdividing Br̂y(y), we have B4rx(x) = B4ηr̂y(x) ⊂ B2r̂y(y). So,
keeping in mind that rx ≤ ηr̂y, (6.5) implies that

sup
z∈B4rx (x)

Jz(4rx) ≤ J̄ − η for all x ∈ A .

Thus condition (3) of the lemma holds for all x ∈ A. Finally, if y ∈ V̂, then Jy(ρ̄) ≤ J̄ − η̄ by the definition of
r̂y. The exact same argument given for A above shows that

sup
y∈B4rx (x)

Jy(4rx) ≤ J̄ − η for all x ∈ V.

So, condition (3) holds for all x ∈ V. This completes the proof of the lemma. □

6.2. Proof of the quantitative estimates. We can now iteratively apply Lemma 6.1 finitely many times to
prove Theorem 1.3 in a standard way.

Proof of Theorem 1.3. First, let us note how the estimate (1.5) of Theorem 1.3 implies the two estimates in
(1.6). If (1.5) holds, then for every x ∈ Br

7
Γ∗
ε,r ∩B1(0)

8
, there is an index i ∈ {1, . . . , N} such that x ∈ Br(xi)

and thus Br(x) ⊂ B2r(xi), with N ≤ C r1−n as in (1.5). So,

Br

7
Γ∗
ε,r ∩B1(0)

8
⊂

N,

i=1

B2r(xi)

and in particular |Br

7
Γ∗
ε,r ∩B1(0)

8
| ≤ Nωn(2r)

n ≤ C(n, ε, J̄0) r. This proves the first estimate in (1.6). Next,

since Γ∗
ε ⊂ Γ∗

ε,r, the estimate (1.5) gives the upper bound Hn−1
r (Γ∗

ε ) ≤ C(n, ε, J̄0) for each r ∈ (0, 1]. Passing
r → 0 establishes the Hausdorff measure bound in the second estimate of (1.6).

Now, fix R ∈ (0, 1]. We will construct a collection of balls satisfying (1.5) with r = R by inductively applying
Lemma 6.1. Let η = η(n, ε, J̄0) be as in Lemma 6.1. If the covering {Brx(x)}x∈C provided by Lemma 6.1 has
rx = R for every x ∈ C, then (1.5) follows directly from the packing estimate (2), since Γ∗

ε,ηR ⊂ Γ∗
ε,R. So, it

suffices to construct a covering as in Lemma 6.1 where in part (3), we always have rx = R. The key observation
is that the definite energy drop of (3) can only occur on ⌈ J̄/η ⌉ scales by monotonicity, and so after ⌈ J̄/η ⌉
iterations of the lemma, we can only have rx = R.

More specifically, we claim that there exist a (finite) sequence of covers {Brx(x)}x∈Ci , whose centers are
C1, C2, . . . , satisfying the following properties:

(Ai) Covering: Γ∗
ε,ηR ∩B1(0) ⊂

+
x∈Ci Brx(x),

(Bi) Packing:
.

x∈Ci r
n−1
x ≤ C

;
1 +

.
x∈Ci−1

rn−1
x

<
for a contant C = C(n, ε, J̄).

(Ci) Energy drop: for each x ∈ Ci, we either have rx = R or supB4rx (x)
Jy(4rx) ≤ J̄ − iη.

Observe (Ci) guarantees that one of the collections {BR(x)}x∈Ci for i ∈ {1, . . . , ⌈η/J̄⌉} satisfies (1.5), and so
the theorem will follow directly from the claim.

Lemma 6.1 gives us such a covering in the base case i = 1. Suppose we have constructed a covering Ci−1

satisfying (Ai−1), (Bi−1), and (Ci−1). We construct Ci satisfying (Ai), (Bi), and (Ci) in the following way. If
x ∈ Ci−1 has rx = R, then we include it in Ci. If x ∈ Ci−1 has rx > R, then we apply Lemma 6.1 to Brx(x).
This gives us a collection of balls {Bry(y)}y∈Cx,i such that

Γ∗
ε,ηR ∩Brx(x) ⊂

,

y∈Cx,i

Bry(y),

that satisfy the packing estimates

(6.6)
6

y∈Cx,i

rn−1
y ≤ Crn−1

x
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for a constant C = C(n, ε, J̄0). Moreover, thanks to (Ci−1) and condition (3) of Lemma 6.1, for each y ∈ Cx,i,
either ry = R, or else

(6.7) sup
z∈B4ry

Jz(4ry) ≤ sup
B4rx (x)

Jz(4rx) ≤ J̄ − (i− 1)η − η = J̄ − iη.

We let

Ci = {x ∈ Ci−1 : rx = R} ∪
,

x∈Ci−1,rx>R

Cx,i.

By construction, {Brx(x)}x∈Ci is a cover of Γ∗
ε,ηR ∩ B1(0), and so (Ai) holds, and (Ci) follows from (6.7) and

the construction. Finally, by (Bi−1) and (6.6), we have for a constant C = C(n, ε, J̄0),
6

x∈Ci

rn−1
x =

6

x∈Ci−1,
rx=R

rn−1
x +

6

x∈Ci−1,
rx>R

; 6

y∈Cx,i

rn−1
y

<

≤
6

x∈Ci−1,
rx=R

rn−1
x + C

6

x∈Ci−1,
rx>R

rn−1
x ≤ C

6

x∈Ci−1

rn−1
x .

Thus (Bi) holds as well. This proves the inductive step, and thus concludes the proof of the theorem. □

6.3. Rectifiability. We now prove Theorem 1.1, which says that Γ∗∩B1(0) is Hn−1-rectifiable. This proof is a
standard step in the Naber-Valtorta framework: combining the upper Ahlfors regularity of Hn−1 Γ∗

ε shown in
Theorem 1.3 and the L2 subspace approximation of Theorem 4.1, we show the hypotheses of Naber-Valtorta’s
Rectifiable Reifenberg Theorem 3.2 hold, and thus Γ∗

ε is Hn−1-rectifiable. In fact, instead of arguing on Γ∗
ε

directly, we will break each Γ∗
ε into countably many smaller pieces, each of which we will show is rectifiable.

Since the countable union of rectifiable sets is again rectifiable, it follows that Γ∗ is rectifiable as well.

Proof of Theorem 1.1. Let J̄0 = supx∈B4(0) Jx(4). Fix any ε > 0. Let σ = σ(n, ε, J̄0) > 0 be a small fixed
number to be specified later in the proof, and let

S = Sε,σ = {x ∈ B1(0) : J(0
+) ∈ [ε, ε exp{σ}] } ⊂ Γ∗

ε ∩B1(0) .

We will prove that S is Hn−1-rectifiable. To this end, we first claim that for all x0 ∈ S, there is a scale r > 0
depending on x0 such that

(6.8) log

9
Jy(8r)

Jy(0+)

:
≤ 2σ for all y ∈ S ∩Br(x0).

Suppose by way of contradiction that we can find a sequence of points yj ∈ S with yj → x0 and scales rj → 0
for which log(Jyj (8rj)/Jyj (0

+)) > 2σ. In other words, exponentiating and multiplying through by Jyj (0
+),

Jyj (8rj) > Jyj (0
+) exp{2σ} ≥ ε exp{2σ} ,

where the final inequality holds because S ⊂ Γ∗
ε . Taking the lim sup of both sides as j → ∞, we deduce from

the upper semicontinuity property (3.4) that Jx0(0
+) ≥ ε exp{2σ}. On the other hand Jx0(0

+) ≤ ε exp{σ} by
virtue of being in S. We reach a contradiction and see that (6.8) holds for r > 0 sufficently small.

To prove that S is Hn−1-rectifiable, it suffices to show that S ∩ Br(x0) is rectifiable for any x0 ∈ S and for
r > 0 such that (6.8) holds. Let µ = Hn−1 S. Applying Theorem 4.1, we then see that, letting rj = 2−j ,

6

rj≤r

"

Br(x0)
βµ(z, rj)

2 dµ(z) ≤
6

rj≤r

C

rn−1
j

"

Br(x0)

"

Brj (z)
log

9
Jy(8rj)

Jy(rj)

:
dµ(y) dµ(z)(6.9)

Now applying Fubini’s theorem, for any rj ≤ r.
"

Br(x0)

"

Brj (z)
log

9
Jy(8rj)

Jy(rj)

:
dµ(y) dµ(z) =

"

Rn

log

9
Jy(8rj)

Jy(rj)

:
µ(Brj (y) ∩Br(x0)) dµ(y)

≤ C

"

B2r(x0)
log

9
Jy(8rj)

Jy(rj)

:
µ(Brj (y)) dµ(y) .
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Next, by the Ahlfors upper bound in (1.6) in Theorem 1.3, we know that µ(Bs(y)) ≤ C(n, ε, J̄0)s
n−1 for all

y ∈ B2r(x0) and s ≤ 2r. This together with (6.9) implies

6

rj≤r

"

Br(x0)
βµ(z, rj)

2 dµ(z)≤
6

rj≤r

C

"

B2r(x0)
log

9
Jy(8rj)

Jy(rj)

:
dµ(y)

= C

"

B2r(x0)

6

rj≤r

log

9
Jy(8rj)

Jy(rj)

:
dµ(y)

= C

"

B2r(x0)
log

9
Jy(8r)

Jy(0+)

:
dµ(y) ≤ Cσ rn−1 .

In the final line we used (6.8) and the Ahlfors upper bound in (1.6) once again. Now, let us choose σ > 0
small enough so that Cσ < δ0, where δ0 is the dimensional constant from the rectifiable Reifenberg theorem,
Theorem 3.2. So, by Theorem 3.2, S ∩Br(x0) is rectifiable. □

7. Uniqueness of Function Blowups

This section is dedicated to the proof of Theorem 1.2. The basic idea is the following. Theorems 1.1 and
Theorem 1.3 imply that Hn−1 Γ∗

ε is a Radon measure and has an approximate tangent plane at Hn−1-a.e.
point. Together with the differentiation theory for measures, we prove the existence of limits of ∆ux,r and ∆vx,r

as distributions as r → 0. Using the quantitative form of the Alt-Caffarelli-Friedman monotonicity formula
of Theorem 3.3, we directly relate these distributional limits to the truncated linear functions arising as the
blowup limits of ux,rk and vx,rk along a sequence rk → 0. The independence of the former from the sequence
rk → 0 allows us to prove the uniqueness of the latter.

Proof of Theorem 1.2. Step 1: Fix ε > 0. We will prove the theorem under the assumption that x ∈ Γ∗
ε∩B1/2(0).

As the statement is purely qualitative and Γ∗ = ∪εΓ
∗
ε , this will imply the conclusion.

By Theorems 1.1 and 1.3, ν := Hn−1 Γ∗
ε ∩B1(0) is a Radon measure, and for Hn−1-a.e. x ∈ Γ∗

ε ∩B1(0),

(7.1) lim
r↘0

ν(Br(x))

ωn−1rn−1
= 1 and νx,r(E)

∗
⇀ Hn−1 {z · νx = 0} for some νx ∈ Sn−1 .

Here we set νx,r(E) := ν(x+rE)
rn−1 for r > 0 and convergence is in the weak-∗ topology for measures as r → 0. See

[Mag12, Theorem 10.2] for proofs of these properties of Hn−1-rectifiable sets with locally finite Hn−1 measure.
The distributional Laplacian ∆u (defined by acting on φ ∈ C∞

c (Rn) by ∆u(φ) =
=
u∆φ) is positive in

the sense that ∆u(φ) ≥ 0 for any nonnegative test function φ ∈ C∞
c (Rn). It is easy to show that any such

distribution is a bounded linear functional on C0
c (Rn), so by the Riesz representation theorem (see for instance

[Mag12, Theorem 4.7]), we may express ∆u(φ) =
=
φ dµu for a Radon measure µu. In the same way, the

distributional Laplacian ∆v of v is identified with a Radon measure µv.
Applying the Lebesgue-Besicovitch differentiation theorem (see for instance [Mag12, Theorem 5.8]) to µu

(resp. µv) and ν, we see that for Hn−1-a.e. x ∈ Γ∗
ε , the limits

(7.2) ζu(x) := lim
r↘0

µu(Br(x))

ν(Br(x))
, ζv(x) := lim

r↘0

µv(Br(x))

ν(Br(x))
exist and are finite ,

and we may write µu = ζudν + µs
u and µv = ζvdν + µs

v, where µs
u (resp. µs

v) and ν are mutually singular. Let
us restrict our attention, then, to those x ∈ Γ∗

ε such that both (7.1) and (7.2) hold. For any such x, we have

µx,r
u (E) :=

µu(x+ rE)

r

∗
⇀ ζu(x)Hn−1 {z · νx = 0} ,

µx,r
v (E) :=

µv(x+ rE)

r

∗
⇀ ζv(x)Hn−1 {z · νx = 0}

(7.3)

in the weak-∗ topology for measures. Notice that the rescaled measures correspond to the distributional
Laplacians of the rescaled functions ux,r and vx,r, i.e. µx,r

u = ∆ux,r and µx,r
v = ∆vx,r.

Step 2: We claim that

(7.4) lim sup
r↘0

(
‖ux,r‖L2(B1) + ‖vx,r‖L2(B1)

)
< ∞.
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To this end, set

qu,r = max{‖ux,r‖L2(B1), 1}, qv,r = max{‖vx,r‖L2(B1), 1}.

Since x ∈ Γ∗
ε , we have ε ≤ Jx(0

+) = limr↘0 Jx(r), and so limr↘0 log
Jx(r)
Jx(0+)

= 0. So, we can apply the stability

inequality, Theorem 3.3, to ûr := ux,r/qu,r and v̂r := vx,r/qv,r (as usual, noting that dividing by positive
constants leaves the ratio J0(1)/J0(0

+) unchanged) to obtain

(7.5)

"

B1

--ûr − ar(z · νr)+
--2 +

"

B1

--v̂r − br(z · νr)−
--2 ≤ C log

Jx(r)

Jx(0+)

for positive constants ar, br and vectors νr ∈ Sn−1. (These depend on x as well as r, but we suppress the
dependence in the notation since x is fixed throughout this step). Clearly ar, br < C uniformly for all r
sufficiently small. Assume by way of contradiction that qu,rk → ∞ along a sequence rk ↘ 0. Up to a
subsequence, ark → a∗ ∈ [0, C], brk → b∗ ∈ [0, C], and νrk → ν∗ ∈ Sn−1, and thus (7.5) tells us that
ûrk → û∗ := a∗(z · ν∗)+ and v̂rk → b∗(z · ν∗)− in L2(B1). Moreover, a∗ > 0 since ‖ûrk‖L2(B1) = 1 for all k large
enough.

From (7.2) we have that ∆ux,rk(B1) → ωn−1 ζu(x) < ∞ and ∆vx,rk(B1) → ωn−1 ζv(x) < ∞. Since qu,r, qv,r ≥
1, we must have

lim sup
r↘0

∆ûr(B1) ≤ ωn−1ζu(x) < ∞ and lim sup
r↘0

∆v̂x,r(B1) ≤ ζv(x) < ∞ .

Up to passing to a further subsequence, this implies that ∆ûrk → ∆û∗ in the sense of distributions on B1/2.
Thanks to (7.3) and the definition of ûr, we have

∆û∗ =

9
lim
k→∞

1

qu,rk

:
ζu(x)Hn−1 {z · νx = 0}.

This implies, in particular, that ∆û∗ = 0, i.e. that û∗ is harmonic on B1/2. But this clearly contradicts the
expression û∗ = a∗(z · ν∗)+ with a∗ > 0 obtained above. This proves (7.4).

Step 3: With this in mind, we may repeat the blowup argument in Step 2 above except this time without
normalizing by qu,r, qv,r. This shows that, along every sequence of radii rk ↘ 0, there exists a subsequence
with ux,rk → u∗ := a∗(z · ν∗)+ and vx,rk → v∗ := b∗(z · ν∗)− in L2(B1), for some a∗, b∗ ∈ [0, C] and ν∗ ∈ Sn−1,
and moreover ∆ux,rk → ∆u∗ and ∆vx,rk → ∆v∗ as distributions. To complete the proof of the theorem, we
must show that a∗, b∗, and ν∗ do not depend on the sequence rk. The convergence (7.3) implies that a∗ = ζu(x)
and b∗ = ζv(x), and that ν∗ is either νx or −νx (but either is possible). We must, then, show that ν∗ is one
or the other independent of subsequence. Before doing so, however, note that a direct application of Corollary
3.6 implies that c∗ζu(x)ζv(x) = Jx(0

+), so in particular both ζu(x) and ζv(x) are nonzero.
To show that ν∗ is independent of subsequence, observe that as ±νx are the only two limit points for νx,r,

for any δ > 0, there exists an r0 > 0 such that min{|νx,r − νx|, |νx,r + νx|} < δ for all r < r0. If ν
x,r has more

than one limit point, then there must be a sequence rk ↘ 0 and another sequence sk < rk with 1 − sk
rk

→ 0

such that |νx,rk − νx| < δ and |νx,sk + νx| < δ. The first of these implies that

lim sup
k→∞

"

B1

|ux,rk1 − ζ1(x)(x · νx)+|2 ≤ lim sup
k→∞

"

B1

|ux,rk1 − ζ1(x)(x · νx,rk)+|2 + Cδ ≤ Cδ.

Restricting to Bsk/rk and rescaling,

"

B1

|ux,sk1 − ζ1(x)(x · νx)+|2 ≤ Cδ

9
rk
sk

:n−2

≤ Cδ.

On the other hand, νx,sk is close to −νx, so
"

B1

|ux,sk1 + ζ1(x)(x · νx)+|2 ≤ Cδ.

This implies that ζ1(x) ≤ C
√
δ for any δ > 0, which contradicts that ζ1(x) > 0. Finally, thanks to Lemma 3.5,

the L2 convergence immediately implies W 1,2 convergence. □
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