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Abstract. We prove that several definitions of superstability in
abstract elementary classes (AECs) are equivalent under the as-
sumption that the class is tame, has amalgamation, joint embed-
ding, and arbitrarily large models. This partially answers questions
of Shelah.

Theorem 0.1. Let K be a tame AEC with amalgamation, joint
embedding, and arbitrarily large models. Assume K is stable.
Then the following are equivalent:

(1) For all high-enough λ, there exists κ ≤ λ such that there is a
good λ-frame on the class of κ-saturated models in Kλ.

(2) For all high-enough λ, K has a unique limit model of cardi-
nality λ.

(3) For all high-enough λ, K has a superlimit model of cardinality
λ.

(4) For all high-enough λ, the union of a chain of λ-saturated
models is λ-saturated.

(5) There exists θ such that for all high-enough λ, K is (λ, θ)-
solvable.
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1. Introduction

In the context of classification theory for AECs, a notion analog to the
first-order notion of stability exists: it is defined as one might expect
(by counting Galois types). However it is still unclear what a parallel
notion to superstability might be. Recall that for first-order theories
we have the following:

Fact 1.1. Let T be a first-order complete theory, the following are
equivalent

(1) T is stable in every cardinal λ ≥ 2|T |.
(2) For all λ the union of an increasing chain of λ-saturated models

is λ-saturated.
(3) κ(T ) = ℵ0 and T is stable.
(4) There exists a cardinal µ ≥ |T | such that T has a saturated

model of cardinality λ for every λ ≥ µ.
(5) T is stable and Dn[x̄ = x̄, L(T ),∞] <∞.
(6) There does not exists a set of formulas Φ = {ϕn(x̄; ȳn) | n < ω}

such that Φ can be used to code the structure (ω≤ω, <,<lex)

All the implications appear in Shelah’s book [She90] with the exception
of (2) =⇒ (6) which was established by Albert and Grossberg [AG90,
Theorem 13.2].

In the last 30 years, in the context of classification theory for non
elementary classes, several notions that generalize that of first-order
superstablity have been considered. See papers by Grossberg, She-
lah, VanDieren, Vasey and Villaveces: [GS86, Gro88], [She99], [SV99],
[Van06, Van13], [GVV], [Vasa, Vasb].

In [Shea, Discussion 2.9] Shelah mentions that part of the program of
classification theory for AECs is to show that all the various notions
of first-order saturation (limit, superlimit, or model-homogeneity, see
Section 3) are equivalent under the assumption of superstablity. A
possible definition of superstability is solvability, which appears the
introduction to [She09a] and is hailed as a true counterpart to first-
order superstability. Full justification is delayed to [Sheb] but [She09a,
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Chapter IV] already uses it. Other definitions of superstability analog
to the ones in Fact 1.1 can also be formulated. The main result of this
paper is to accomplish that the above conjecture of Shelah holds for
tame AECs, and that in addition several definitions of superstability
that previously appeared in the literature are equivalent in this context.

Theorem 1.2 (Main Theorem). Let K be a tame AEC with amalga-
mation, joint embedding, and arbitrarily large models. Assume K is
stable. Then the following are equivalent:

(1) There exists µ1 ≥ LS(K) such that for every λ ≥ µ1, for all
δ < λ+, for all increasing continuous 〈Mi : i ≤ δ〉 in Kλ and
all p ∈ gS(Mδ), if Mi+1 is universal over Mi for all i < δ, then
there exists i < δ such that p does not λ-split over Mi.

(2) There exists µ2 ≥ LS(K) such that for every λ ≥ µ2, for some
κ ≤ λ, there is a good λ-frame on Kκ-sat

λ .
(3) There exists µ3 ≥ LS(K) such that for every λ ≥ µ3, K has

uniqueness of limit models in cardinality λ.
(4) There exists µ4 ≥ LS(K) such that for every λ ≥ µ4, K has a

superlimit model of cardinality λ.
(5) There exists µ5 ≥ LS(K) such that for every λ ≥ µ5, the union

of a chain of λ-saturated models is λ-saturated.
(6) There exists µ6 ≥ LS(K) such that for all λ ≥ µ6, K is (λ, µ6)-

solvable.

Proof. Combine Theorem 4.8 and Theorem 5.28. �

At present, we do not know how to prove an analogs to the last two
properties of Fact 1.1. More on this in Section 7.

Interestingly, the proof does not tell us that the threshold cardinals µ`
above are equal. In fact, it uses tameness heavily to move from one car-
dinal to the next and use e.g. that one equivalent definition holds below
λ to prove that another definition holds at λ. Showing equivalence of
these definitions cardinal by cardinals, or even just showing that we
can take µ1 = µ2 = . . . = µ6 seems much harder. In section 6, we show
that the statements are still equivalent if we require µ` < i(2LS(K))+ ,
provided that the class is (< LS(K))-tame. In a forthcoming paper
[Vanb] VanDieren gives some relationships between versions of (3) and
(5) in a single cardinal. This is done without assuming tameness using
very different technologies than in this paper.

This paper was written while the second author was working on a
Ph.D. thesis under the direction of the first author at Carnegie Mellon
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University. He would like to thank Professor Grossberg for his guidance
and assistance in his research in general and in this work specifically.

2. Preliminaries

We now review some of the basics of abstract elementary classes and
fix some notation. The reader is advised to skim through this section
quickly and go back to it as needed. We assume familiarity with a
basic text on AECs such as [Bal09] or [Gro] and refer the reader to the
preliminaries of [Vasc] for more details and motivations on the concepts
used in this paper. Throughout this section, K is an AEC. For λ an
infinite cardinal, define h(λ) := i(2λ)+ .

Shelah’s program of classification theory for Abstract Elementary Classes
started in 1977 with a circulation of a draft of [She87] (a revised version
is [She09a, Chapter I]). As a full classification theory is impossible due
to various counterexamples and immense technical difficulties of ad-
dressing some of the main conjectures, all known non-trivial results are
obtained under some additional model-theoretic or even set-theoretic
assumptions on the family of classes we try to develop structure/non-
structure results for. On July 28 2001, Grossberg and VanDieren cir-
culated a draft of a paper titled “Morley Sequences in Abstract Ele-
mentary Classes” (a revised version was published as [GV06b]). In that
paper, they introduced the assumption of tameness as a useful assump-
tion to prove existence of Morley sequence with respect to non-splitting
in stable AECs and upward stability results.

Definition 2.1 (Definitions 3.2 in [GV06b]). Let χ be an infinite car-
dinal. K is (< χ)-tame if for any M ∈ K and any p 6= q in gS(M),
there exists A ⊆ |M | such that |A| < χ and p � A 6= q � A. K is
χ-tame if it is (< χ+)-tame.

We say that K is tame provided there exists a cardinal χ such that the
class K is (< χ)-tame.

In [GV06c] and [GV06a] Grossberg and VanDieren established several
cases of Shelah’s categoricity conjecture (which is still the best known
40 year old open problem in the field). At the time the main justifi-
cation of the tameness assumption was that it appears in all known
cases of structural results and it seems to be difficult to construct non-
tame classes. It was proposed by Grossberg that perhaps almost-free
non free abelian groups could be used for such an example. Within
short time Baldwin and Shelah [BS08] used almost free non Whitehead
groups in ℵ1 to construct such a non ℵ1-tame class. In our opinion,
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this result does not have interesting model-theoretic consequences, as
the real notion is whether K is tame, not so much what the exact
cardinal witnessing tameness (or its failure) is. In 2013, Will Boney
[Bon14b] derived from the existence of a class of strongly compact car-
dinals that all AECs are tame. In a preprint from 2014 Lieberman
and Rosický [LR] pointed out that this result of Boney follows from
a 25 year old theorem of Makkai and Paré ([MP89, Theorem 5.5.1]).
In a forthcoming paper Boney and Unger [BU] establish that if every
AEC is tame then a proper class of large cardinals exists. Thus tame-
ness (for all AECs) is a large cardinal axioms. We believe that this
is evidence for the assertion that tameness is a new interesting model-
theoretic property, a new dichotomy, that follows from categoricity in
a “high-enough” cardinal.

A definition of superstability analog to κ(T ) = ℵ0 in first-order model
theory has been studied in AECs (see [SV99, GVV, Van06, Van13,
Vasa, Vasb]). Since it is not immediately obvious what forking should
be in that framework, the simpler independence relation of µ-splitting
is used for the purpose of the definition. Moreover in AECs, types over
models are much better behaved than types over sets, so it does not
make sense in general to ask for every type to not split over a finite
set1. Thus we require that every type over the union of a chain does
not split over a model in the chain. For technical reasons (essentially
because it makes it much easier to prove that the condition holds), we
require the chain to be increasing with respect to universal extension.
This gives a reformulation of (1) in Theorem 1.2:

Definition 2.2. Let λ ≥ LS(K). We say K has (∗)λ if for any regular
δ < λ+, any 〈Mi : i < δ〉 in Kλ with Mi <univ Mi+1 for all i < δ, any
p ∈ gS(

⋃
i<δMi), there exists i < δ such that p does not λ-split over

Mi.

Remark 2.3. In the notation2 of [Vasb, Definition 3.14], (∗)λ holds if
and only if κ1(iλ-ns(Kλ), <univ) = ℵ0.

Definition 2.4 (Superstability).

(1) For M,N ∈ K, say M <univ N (N is universal over M) if
and only if M < N and whenever we have M ′ ≥ M such that
‖M ′‖ ≤ ‖N‖, then there exists f : M ′ −→

M
N . Say M ≤univ N

if and only if M = N or M <univ N .
(2) K is µ-superstable if:

1But see [Vasd, Theorem C.15].
2Of course, the κ notation has a long history, appearing first in [She70].
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(a) LS(K) ≤ µ.
(b) There exists M ∈ Kµ such that for any M ′ ∈ Kµ there is

f : M ′ →M with f [M ′] <univ M .
(c) (∗)µ holds.

Remark 2.5. It is easy to check that Condition (2b) is equivalent
to “Kµ is nonempty, has amalgamation, joint embedding, no maximal
models, and is stable in µ”. Thus if K is nonempty, has amalgamation,
joint embedding, and no maximal models, then for µ ≥ LS(K), K is
µ-superstable if and only if K is stable in µ and (∗)µ holds.

Remark 2.6. While Definition 2.4 makes sense in any AEC, here we
focus on tame AECs with amalgamation, and will not study what hap-
pens to Definition 2.4 without these assumptions (although, as said
above, the notion was first introduced in [SV99] without even amalga-
mation, and it has been further studied in [GVV] or even more generally
[Van06, Van13], see also the forthcoming [Vana]).

For the convenience of the reader, we recall some facts about supersta-
bility for tame AECs with amalgamation.

Fact 2.7. Let K be an AEC with amalgamation.

(1) [Vasb, Proposition 10.10] If K is µ-superstable, µ-tame, and
µ′ ≥ µ, then K is µ′-superstable. In particular, K≥µ has joint
embedding, no maximal models, and is stable in all cardinals.

(2) [Vasb, Theorem 10.16]3 If K is (< κ)-tame with κ = iκ >
LS(K) and categorical in a λ > κ, then K is κ-superstable.

3. Definitions of saturated

The search for a good definition of “saturated” in AECs is central.
Perhaps the most natural one is:

Definition 3.1. Let M ∈ K and let µ be a cardinal. M is µ-saturated
if for any N ≥ M , any A ⊆ |M | of size less than µ, any p ∈ gS(A;N)
is realized in M . When µ = ‖M‖, we omit it.

We write Kµ-sat for the class of µ-saturated models in K≥µ.

Remark 3.2. When µ = 0, Kµ-sat = K.

In [She01, Lemma 0.26] (see also [Gro02, Theorem 6.7] for a proof),
it is observed that (under the amalgamation property) M saturated is

3The proof uses of [SV99, Theorem 2.2.1] and indeed it turns out that this
theorem suffices to get an even stronger result, see Theorem 6.3.
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equivalent to M model-homogeneous. This provides some justification
for Definition 3.1 under amalgamation.

However when there is no amalgamation the following notion has played
a central role (their study without amalgamation really started with
[SV99] and was continued in [Van06, Van13]).

Definition 3.3 (Limit model).

(1) M ∈ K is limit over M0 if M0 ≤ M of the same cardinality
and there exists a limit ordinal δ and an increasing continuous
〈Ni : i ≤ δ〉 such that M0 = N0, M = Nδ, and Ni <univ Ni+1

for all i < δ. M is limit if it is limit over some M0.
(2) We say K has uniqueness of limit models in λ if whenever M0 ∈

Kλ and M1, M2 are limit over M0 in Kλ then M1
∼=M0 M2. We

say that K has weak uniqueness of limit models in λ if we only
require M1

∼= M2.

Even with the amalgamation property, uniqueness of limit models is a
key concept which is equivalent to superstability in first-order model
theory (see [GVV, Theorem 6.1]). In fact, limit models are saturated
precisely when this holds:

Fact 3.4. Let λ > LS(K). Assume Kλ has amalgamation, joint em-
bedding, no maximal models, and is stable in λ.

(1) For any M ∈ Kλ, there exists N ∈ Kλ such that M <univ N .
Thus there exists a limit model over M in Kλ.

(2) K has weak uniqueness of limit models in λ if and only if any
limit M ∈ Kλ is saturated.

Proof.

(1) See4 [She09a, Claim II.1.16] or [GV06b, Theorem 2.12].
(2) This is folklore, so we include a proof. The right to left direction

is by uniqueness of saturated models. For the left to right,
assume weak uniqueness of limit models in Kλ and let M ∈ K
be limit. Let A ⊆ |M | have size less than λ. Let δ := |A|+.
Note that δ ≤ λ. By weak uniqueness of limit models, there
exists 〈Mi : i ≤ δ〉 increasing continuous such that Mδ = M
and Mi <univ Mi+1 for all i < δ. Pick i < δ such that A ⊆ |Mi|.
Then any type over A is realized in Mi+1, as needed.

4The result first appeared without proofs in early versions of [She09a, Chapter
II].
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�

Another notion of saturation appears in [She87, Definition 3.1.1]5. The
idea is to encode the fact that a union of saturated models should be
saturated.

Definition 3.5. Let M ∈ K. We say M is a superlimit in λ if:

(1) M ∈ Kλ.
(2) M is “properly universal”: For any N ∈ Kλ, there exists f :

N →M such that f [N ] < M .
(3) Whenever 〈Mi : i < δ〉 is an increasing chain in Kλ, δ < λ+ and

Mi
∼= M for all i < δ, then

⋃
i<δMi

∼= M .

Again we can ask when superlimits are saturated. The next lemma is
a generalization of [Dru13, Corollary 2.3.12] (there χ = λ).

Lemma 3.6. Assume K has amalgamation, joint embedding, and no
maximal models. Let λ > LS(K) be such that:

• There is a saturated model in Kλ.
• There exists a regular χ ≤ λ such that for any increasing 〈Mi :
i < χ〉 in Kλ, if Mi is saturated for all i < χ, then

⋃
i<χMi is

saturated.

The following are equivalent:

(1) There is a superlimit model in Kλ.
(2) In Kλ, the union of a chain of saturated models is saturated.

Proof. If in Kλ the union of a chain of saturated models is saturated,
then the saturated model of size λ is a superlimit. Conversely, if K
has a superlimit M in λ, it is enough to show that M is saturated. We
build 〈Mi : i < χ〉, 〈Ni : i < χ〉 increasing in Kλ such that for all i < χ,
Mi ≤ Ni ≤ Mi+1, Mi

∼= M is superlimit, and Ni is saturated. In the
end,

⋃
i<χMi =

⋃
i<χNi is superlimit since it is a union of superlimit

and saturated by definition of χ. Moreover, it is isomorphic to M ,
hence M is saturated. �

Thus (by the proof) under the assumptions of the lemma, superlimit
and saturated coincide if chains of saturated models are saturated (an-
other equivalent definition of superstability in the first-order case). In
the remainder of this sections, we establish more implications between

5We use the definition in [She09a, Definition 2.4.4] which requires in addition
that the model be universal.
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uniqueness of limit models, union of saturated being saturated, and
existence of a superlimit. We assume:

Hypothesis 3.7. K is a stable (< LS(K))-tame AEC with amalga-
mation, joint embedding, and arbitrarily large models.

Results on uniqueness of limit models can be related to chains of sat-
urated models as follows6:

Lemma 3.8. Let λ > LS(K) be a limit cardinal. Assume that for
unboundedly many µ < λ, K is stable in µ and has weak uniqueness
of limit models in µ. Then any increasing chain of saturated models in
Kλ is saturated.

Proof. Let 〈Mi : i < δ〉 be an increasing chain of λ-saturated models
in Kλ with (without loss of generality) δ = cf(δ) < λ and let Mδ :=⋃
i<δMi. We want to see that Mδ is λ-saturated. Let A ⊆ |Mδ| have

size less than λ. Let µ0 := (δ + LS(K) + |A|)+. Since λ is limit,
µ0 < λ. Let µ ≥ µ0 be such that µ < λ, K is stable in µ, and K has
weak uniqueness of limit models in µ. Let 〈M ′

i : i ≤ δ〉 be increasing
continuous in Kµ such that for all i < δ, M ′

i ≤ Mi, (A ∩ |Mi|) ⊆
|M ′

i |, and M ′
i <univ M

′
i+1. Then M ′

δ is (µ, δ)-limit, so by uniqueness of
limit models is also (µ, µ0)-limit. Also, M ′

δ contains A, so by cofinality
consideration, it must realize all types over A. AsM ′

δ ≤Mδ, Mδ realizes
all types over A. �

We now want to relate chains of saturated models and superlimit using
Lemma 3.6. For this, we recall that the assumptions of this lemma
hold in our context:

Fact 3.9 (Theorem 6.10 in [BV]). There exists χ < h(LS(K)) such
that if 〈Mi : i < δ〉 is an increasing chain of λ-saturated models and:

(1) cf(δ) ≥ χ.
(2) K is stable in unboundedly many µ < λ.

Then
⋃
i<δMi is λ-saturated.

Fact 3.10 (Theorem 4.13 in [Vasc]). There exists χ < h(LS(K)) such
that K is stable in any λ = λ<χ.

Lemma 3.11. There exists a regular χ < h(LS(K)) and unboundedly
many cardinals λ such that:

(1) K is stable in λ

6The argument appears already as [Bal09, Theorem 10.22]



10 RAMI GROSSBERG AND SEBASTIEN VASEY

(2) Any M ∈ Kλ extends to a saturated N ∈ Kλ.
(3) If 〈Mi : i < χ〉 is an increasing chain of saturated models in Kλ,

then
⋃
i<χMi is saturated.

Proof. Fix χ < h(LS(K)) regular satisfying the conclusions of both
Fact 3.9 and Fact 3.10. Let λ = λ<χ be such that µ<χ < λ for all
µ < λ. There are unboundedly many such limit λ by an easy “catching
your tail” argument. Then K is stable in λ and in unboudedly many
µ < λ. Thus it is easy to check that any M ∈ Kλ extends to a saturated
model of size λ. �

Theorem 3.12. Assume either of the following conditions hold:

(1) K has weak uniqueness of limit models in all high-enough car-
dinals.

(2) K has a superlimit model in all high-enough cardinals.

Then for unboundedly many λ, K is stable in λ and has a saturated
superlimit model in λ.

Proof. If the first condition holds, then by Lemma 3.8, in any limit
cardinal λ a chain of saturated models is saturated. In particular we
can take λ as given by Lemma 3.11. Then K has a saturated model in
λ and it is clearly superlimit. If the second condition holds, let again
λ be high-enough satisfying the conclusion of Lemma 3.11. By Lemma
3.6, the union of a chain of saturated models in Kλ is saturated, and
thus the saturated model in Kλ is superlimit. �

In the next section we show how existence of a saturated superlimit
implies superstability.

4. Chain local character over saturated models

Hypothesis 4.1. K is an AEC with amalgamation.

For background, we cite the following result, proven in [MS90, Propo-
sition 4.12] for models of an Lκ,ω theory, κ strongly compact, and in
[BG, Theorem 8.2.2] for AECs.

Fact 4.2. Let κ > LS(K) be strongly compact. Let 〈Mi : i ≤ δ〉 be an
increasing continuous chain of κ-saturated models (so Mi is κ-saturated
also for limit i, including i = δ). Let p ∈ gS(Mδ). If Mδ is κ-saturated,
then there exists i < δ such that p is (< κ)-satisfiable over Mi.
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The assumption above that Mδ is κ-saturated is crucial (otherwise we
would have proven superstability from just stability, which is impossible
even in the first-order case). The proof uses the strongly compact to
build an appropriate ultrafilter and taking an ultraproduct of the chain
〈Mi : i ≤ δ〉 in which p is realized. Here, we give a simpler proof that
does not need that κ is strongly compact but only that κ is regular
uncountable.

Lemma 4.3. Let κ > ℵ0 be a regular cardinal. Let 〈Mi : i ≤ δ〉 be
increasing continuous. Let p ∈ gSα(Mδ) with |α|+ < κ. If for all i ≤ δ,
p � Mi is (< κ)-satisfiable over Mi and α < cf(δ), then there exists
i < δ such that p is (< κ)-satisfiable over Mi.

Proof. Without loss of generality, δ = cf(δ). Suppose for a contra-
diction that the conclusion fails, i.e. for every i < δ, p is not (< κ)-
satisfiable over Mi. We consider two cases:

• Case 1: δ < κ Build 〈Ai : i < δ〉 increasing such that for all
i < δ:
(1) Ai ⊆ |Mδ|.
(2) |Ai| < κ.
(3) p � Ai is not realized in Mi.

This is possible by the assumption on p and δ (we are also
using that κ is regular to ensure that |Ai| < κ is preserved
at limit steps). This is enough: let A :=

⋃
i<δ Ai. Note that

|A| < κ since δ < κ = cf(κ). As p is (< κ)-satisfiable over Mδ,
p � A is realized in Mδ, say by b̄. As `(b̄) = α < δ, there exists
i < δ such that b̄ ∈ α|Mi|. But then p � A, and therefore p � Ai,
is realized in Mi by b̄, contradicting (3).
• Case 2: δ ≥ κ Let γ := |α|+ + ℵ0. Note that γ is regular and

(since κ is uncountable and |α|+ < κ), γ < κ. Build 〈ij :
j ≤ γ〉 increasing continuous in δ such that for all j < γ,
p � Mij+1

is not (< κ)-satisfiable over Mij . This is possible by
the assumption on p and δ (and the fact that whenever a type
is not (< κ)-satisfiable, there is a witness of size less than κ).
This is enough: by construction, p �Miγ is not (< κ)-satisfiable
over Mij for all j < γ. Since γ = cf(γ) < κ, this contradicts the
first part.

�

Recall that in [Vasb, Definition 3.14] (or Definition 2.2), the locality
cardinal for chain was defined without assuming that the union of the
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chain was in the class. The above results shows that this is a necessary
choice: Otherwise we could get strictly stable elementary classes in
which κ1 = ℵ0. This also outlines the subtle difference between the
chain and set local character cardinals, even in the elementary context.
For example:

Corollary 4.4. Let T be a stable first-order theory. If 〈Mi : i ≤ δ〉
is an increasing continuous chain of ℵ1-saturated models (so Mi is ℵ1-
saturated also for limit i, including i = δ), p ∈ S(Mδ), then there exists
i < δ such that p does not fork over Mi.

Proof. Set κ = ℵ1 and (K,≤) = (Mod(T ),�) in Lemma 4.3. �

Remark 4.5. This gives a quicker, more general, proof of [AG90, The-
orem 13.2].

Question 4.6. Does Corollary 4.4 say anything nontrivial? For ex-
ample, let T be a countable first-order theory and assume it is stable
but not superstable. Let λ ≥ ℵ1. When can we build an increasing
continuous chain 〈Mi : i ≤ δ〉 of ℵ1-saturated models of T of size λ?

We can now prove most conditions in the main theorem. For a start,
we point out that among the definitions in the statement of Theorem
1.2, the first one has been used as a starting hypothesis many times
previously. In [Vasa], λ-superstability was shown to imply the existence
of a good λ+-frame on the class of saturated models of size λ+, except
that this class may not be an AEC. The result was later generalized in
[Vasb]. Building on these papers, [BV] gave conditions under which a
chain of saturated models is saturated, culminating in:

Fact 4.7 (Theorem 7.1 in [BV]). If K is µ-superstable (for some µ),
then in all high-enough cardinals λ, Kλ-sat

λ has a type-full good λ-frame,
K has uniqueness of limit models, has a saturated superlimit model,
and any chain of λ-saturated models is λ-saturated.

Thus the first condition in Theorem 1.2 implies all the other ones,
except perhaps solvability (examined in Section 5).

We now restate and prove Theorem 1.2 with more conditions added
(but without solvability):

Theorem 4.8. Let K be a nonempty tame AEC with amalgamation,
joint embedding, and no maximal models. Assume K is stable. Then
the following are equivalent:

(1) For all high-enough λ, (∗)λ holds.
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(2) For all high-enough cardinal λ, for some κ ≤ λ, there is a good
λ-frame on Kκ-sat

λ .
(3) K has uniqueness of limit models in all high-enough cardinals.
(4) K has a superlimit model in all high-enough cardinals.
(5) For all high-enough cardinal λ, the union of a chain of λ-saturated

models is λ-saturated.
(6) For unboundedly many λ, K is stable in λ and has a saturated

superlimit model in λ.

Proof. Without loss of generality, K is (< LS(K))-tame. Note that
with our background assumptions, (∗)λ together with stability in λ is
equivalent to K being λ-superstable (Remark 2.5).

First assume (1). Since K is stable, we can pick λ ≥ LS(K) such that
K is stable in λ and satisfies (∗)λ, and hence is λ-superstable. By Fact
4.7, (2)-(6) all follow. Assume (2). By [She09a, Lemma II.4.8] (or
see [Bon14a, Theorem 9.2]), (3) holds. Also, (5) directly implies (4).
Moreover by Theorem 3.12, both (3) and (4) imply (6). To sum up, we
have shown:

• (1) implies (5).
• (1) implies (2) implies (3) implies (6).
• (5) implies (4) implies (6).

Thus all the conditions imply (6) and (1) implies all the conditions, so it
only remains to show (6) implies (1). Assume (6), fix a κ > LS(K) such
that κ = iκ and let λ > κ witness (6). Let 〈Mi : i < δ〉 be an increasing
chain of saturated models in Kλ, δ < λ+. Then Mδ :=

⋃
i<δMi is

saturated. Therefore by Lemma 4.3 (with κ there standing for κ+ here),
any p ∈ gS(Mδ) is (< κ+)-satisfiable (and hence (< κ)-satisfiable) over
some Mi, i < δ. By [Vasb, Fact 3.17.2d, Fact 3.20.3], any p ∈ gS(Mδ)
does not λ-split over Mi for some i < δ. Thus (∗)λ holds so K is λ-
superstable. By Fact 2.7, K is also λ′-superstable for all λ′ ≥ λ, so (1)
holds. �

Remark 4.9. In (2), we do not assume that the good frame is type-full
(i.e. it may be that there exists some nonalgebraic types which are not
basic, so fork over their domain). However if (1) holds, then the proof
shows we can take the frame to be type-full. Therefore, in the presence
of tameness, the existence of a good frame implies the existence of a
type-full good frame (in a potentially much higher cardinal, and over
more saturated models).



14 RAMI GROSSBERG AND SEBASTIEN VASEY

5. Solvability

Solvability appears as a possible definition of superstability for AECs
in [She09a, Chapter IV]. In the introduction to the book, Shelah claims
(without proof) that it is equivalent to first-order superstability. We
give a proof here and actually show (assuming amalgamation, stability,
and tameness) that solvability is equivalent to any of the definitions in
the main theorem. This partially answers some questions of Shelah on
[She09a, p. 56].

Definition 5.1. Let K be an AEC and let θ ≤ λ be such that LS(K) ≤
θ.

(1) [She09a, Definition IV.0.8.2] Let Υθ[K] be the set of Φ proper
for linear orders with:
(a) |L(Φ)| ≤ θ.
(b) For I a linear order, EM(I,Φ)L(K) ∈ K.
(c) For I ⊆ J linear orders, EM(I,Φ)L(K) ≤ EM(J,Φ)L(K).

(2) [She09a, Definition IV.1.4.1] We say that Φ witnesses (λ, θ)-
solvability if:
(a) Φ ∈ Υθ[K].
(b) If I is a linear order of size λ, then EM(I,Φ)L(K) is super-

limit of size λ.
K is (λ, θ)-solvable if there exists Φ witnessing (λ, θ)-solvability.

(3) K is uniformly (λ, θ)-solvable if there exists Φ such that for all
µ ≥ λ, Φ witnesses (µ, θ)-solvability.

Remark 5.2. IfK is uniformly (λ, θ)-solvable, thenK is (µ, θ)-solvable
for all µ ≥ λ.

Fact 5.3. LetK be an AEC and let θ ≥ LS(K). ThenK has arbitrarily
large models if and only if Υθ[K] 6= ∅.

We start by giving some more manageable definitions of solvability.
Shelah already mentions one of them on [She09a, p. 53] (but does not
prove it is equivalent).

Proposition 5.4. Let K be an AEC and let LS(K) ≤ θ ≤ λ. The
following are equivalent.

(1) K is [uniformly] (λ, θ)-solvable.
(2) There exists L′ ⊇ L(K) with |L′| ≤ θ and ψ ∈ L′θ+,ω such that:

(a) ψ has arbitrarily large models.
(b) [For all µ ≥ λ], if M |= ψ and ‖M‖ = λ [‖M‖ = µ], then

M � L(K) is in K and is superlimit.
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(3) There exists L′ ⊇ L(K) and an AEC K ′ with L(K ′) = L′,
LS(K ′) ≤ θ such that:
(a) K ′ has arbitrarily large models.

For all µ ≥ λ , if M ∈ K and ‖M‖ = λ [‖M‖ = µ], then M � L(K) is in
K and is superlimit.

Proof.

• (1) implies (2): Let Φ witness (λ, θ)-solvability. Let Φ = {pn |
n < ω}. Let L′ := L(Φ) ∪ {P,<}, where P , < are symbols
for a unary predicate and a binary relation respectively. Let
ψ ∈ L′θ+,ω say:

(1) (P,<) is a linear order.
(2) For all n < ω and all x0 < · · · < xn−1 in P , x0 . . . xn−1

realizes pn.
(3) For all y, there exists n < ω, x0 < · · · < xn−1 in P , and τ

an n-ary term of L(Φ) such that y = τ(x0, . . . , xn−1).
Then if M |= ψ, M � L = EM(PM ,Φ). Conversely, if

M = EM(I,Φ), we can expand M to an L′-structure by let-
ting (PM , <M) := (I,<). Thus ψ is as desired.
• (2) implies (3): Given L′ and ψ as given by (2), Let Ψ be a

fragment of L′ containing ψ of size θ and let K ′ be Mod(ψ)
ordered by �Ψ. Then K ′ is as desired for (3).
• (3) implies (1): Directly from Fact 5.3.

�

Let K be an AEC and assume there exists θ such that K is (λ, θ)-
solvable for all high-enough λ, then in particular K has a superlimit
in all high-enough λ, so we obtain one of the conditions in the main
theorem. We now work toward a converse.

Hypothesis 5.5. K is an LS(K)-superstable AEC with amalgamation
which is (< κ)-tame, where κ := LS(K).

We will use without much comments results about Galois-Morleyization
and averages as defined in [Vasc, BV]. Still we have tried to give a
syntax-free presentation. Unless otherwise noted, the definitions below
all take place inside a fixed model N ∈ K. The letters I, J will denote
sequences of tuples of length less than κ. We will use the same conven-
tions as in [BV, Section 5]. Note that the sequences may be indexed by
arbitrary linear orders. Recall:



16 RAMI GROSSBERG AND SEBASTIEN VASEY

Definition 5.6 (Definition V.A.2.1 in [She09b]). I is χ-convergent if
|I| ≥ χ and for any p ∈ gS<κ(A), |A| < κ, the set of elements of
I realizing p either has fewer than χ elements or its complement has
fewer than χ elements.

Definition 5.7 (Definition V.A.2.6 in [She09b]). For I a sequence, χ
an infinite cardinal such that |I| ≥ χ, and A a set, define Avχ(I/A) to
be the set of p0 ∈ gS<κ(A0) such that A0 ⊆ A has size less than κ and
the set {b̄ ∈ I | b̄ 6|= p0} has size less than χ. When there is a unique
p ∈ gS<κ(A) such that p � A0 is in Avχ(I/A) for all A0 ⊆ A of size less
than κ, we identify the average with p.

Definition 5.8. p ∈ gS<κ(B) does not syntactically split over A ⊆ B if
it does not split in the Galois Morleyization. That is, for all b̄, b̄′ ∈ <κB,
if gtp(b̄/A)E<κgtp(b̄′/A), then (p � b̄)E<κ(p � b̄′). Here, q1E<κq2 if and
only if q1 � A0 = q2 � A0 for all A0 of size less than κ.

Remark 5.9. We are only assuming tameness for types of length one,
so E<κ may not be equality for longer types.

It turns out that Morley sequences (defined below) are always conver-
gent. The parameters represent respectively a bound on the size of the
domain, the degree of saturation of the models, and the length of the
sequence. They will be assigned default values shortly.

Definition 5.10 (Definition 5.14 in [BV]). We say 〈āi : i ∈ I〉 a 〈Ni :
i ∈ I〉 is a (χ0, χ1, χ2)-Morley sequence for p over A if:

(1) χ0 ≤ χ1 ≤ χ2 are infinite cardinals, I is a linear order, A is a
set, p is a Galois type with `(x̄) < κ, and there is α < κ such
that for all i < δ, āi ∈ αN .

(2) For all i ∈ I, A ⊆ |Ni| and |A| < χ0.
(3) 〈Ni : i ∈ I〉 is increasing, and each Ni is χ1-saturated.
(4) For all i ∈ I, āi realizes7 p � Ni and for all j > i in I, āi ∈ αNj.
(5) i < j in I implies āi 6= āj.
(6) |I| ≥ χ2.
(7) For all i < j in I, gtp(āi/Ni) = gtp(āj/Ni).
(8) For all i ∈ I, gtp(āi/Ni) does not syntactically split over A.

When p or A is omitted, we mean “for some p or A”. We call 〈Ni : i ∈ I〉
the witnesses to I := 〈āi : i ∈ I〉 being Morley, and when we omit them
we simply mean that I a 〈Ni : i ∈ I〉 is Morley for some witnesses
〈Ni : i ∈ I〉.

7Note that dom(p) might be smaller than Ni.
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Remark 5.11 (Monotonicity). Let 〈āi : i ∈ I〉 a 〈Ni : i ∈ I〉 be
(χ0, χ1, χ2)-Morley for p over A. Let χ′0 ≥ χ0, χ′1 ≤ χ1, and χ′2 ≤ χ2.
Let I ′ ⊆ I be such that |I ′| ≥ χ′2, then 〈āi : i ∈ I ′〉 a 〈Ni : i ∈ I ′〉 is
(χ′0, χ

′
1, χ

′
2)-Morley for p over A.

Remark 5.12. By the proof of [She90, Lemma I.2.5], a Morley se-
quence is indiscernible (this will not be used).

The next result is key in the treatment of average of [BV]:

Fact 5.13 (Theorem 5.21 in [BV]). Let χ0 ≥ 2LS(K) be such that N
does not have the order property of length χ+

0 . Let χ :=
(
22χ0

)+
.

If I is a (χ+
0 , χ

+
0 , χ)-Morley sequence, then I is χ-convergent.

Hypothesis 5.14. χ0, χ are as in Fact 5.13. The default parameters
for Morley sequences are (χ+

0 , χ
+
0 , χ), χ is the default parameter for

average and convergence.

Remark 5.15. We can take χ0 < χ < h(LS(K)).

Fact 5.16 (V.A.1.12 in [She09b]). If p ∈ gS(M) andM is χ+
0 -saturated,

there exists A ⊆ |M | of size at most χ0 such that p does not syntacti-
cally split over A.

Fact 5.17 (Lemma 6.9 in [BV]). Let λ > χ+:

(1) If 〈Mi : i < δ〉 is an increasing chain of λ-saturated models,
then

⋃
i<δMi is λ-saturated.

(2) There is a good (≥ χ++)-frame with underlying class Kχ++-sat.

Therefore taking χ0 bigger if necessary we also assume:

Hypothesis 5.18.

(1) If λ ≥ χ0 and 〈Mi : i < δ〉 is an increasing chain of λ-saturated
models, then

⋃
i<δMi is λ-saturated.

(2) There is a good (≥ χ0)-frame with underlying class Kχ0-sat.

We obtain a characterization of forking that adds to those proven in
[Vasb]. A form of it already appears in [She09a, Observation IV.4.6].

Lemma 5.19. Let p ∈ gS(M) and let M0 ≤ M be χ-saturated. The
following are equivalent:

(1) p does not fork over M0.
(2) There exists M ′

0 ≤M0 of size χ0 such that p does not syntacti-
cally split over M ′

0.
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(3) There exists I a Morley sequence for p, with all the witnesses
inside M0, such that Av(I/M) = p.

Proof.

• (1) implies (2): By Fact 5.16, we can find M ′
0 ≤ M0 such

that p � M0 does not syntactically split over M ′
0 and ‖M ′

0‖ ≤
χ0. Taking M ′

0 bigger if necessary, we can assume M ′
0 is χ0-

saturated and p � M0 does not fork over M ′
0. Thus p does not

fork over M ′
0. As in [BV, Lemma 6.9], there exists a splitting-

like notion R such that p does not R-split over M ′
0. Let I be

a Morley sequence for p � M0 over M ′
0 inside M0. Then it is

a Morley sequence for p over M ′
0 and by [BV, Lemma 5.25],

Av(I/M0) = p so as I is based on M ′
0, p does not syntactically

split over M ′
0.

• (2) implies (3): As in the proof above (here, the splitting-like

notion is just syntactic splitting).
• (3) implies (2): This is given by the proof above: I is based on

some M ′
0 ≤M0 of size χ0.

• (2) implies (1): Without loss of generality, we can choose M ′
0 to

be such that p � M0 also does not fork over M ′
0. Now, build a

Morley sequence I for p over M ′
0 inside M0. If q is the nonforking

extension of p � M0 to M , then I is also a Morley sequence for
q over M ′

0 so by the previous parts we must have Av(I/M) = q,
but also Av(I/M) = p, since p does not split over M ′

0. Thus
p = q.

�

Thus taking χ0 even bigger, we can assume:

Hypothesis 5.20. If p ∈ gS(M) does not fork over M0 ≤ M , then p
does not syntactically split over M0.

The advantage of considering Morley sequences indexed by arbitrary
linear orders is that they are closed under unions:

Lemma 5.21. Let 〈Iα : α < δ〉 be an increasing (with respect to
substructure) sequence of linear orders and let Iδ :=

⋃
α<δ Iα. Let

p ∈ gS(M), M0 ≤ M , and for α < δ, let Iα := 〈ai : i ∈ Iα〉 together
with 〈Nα

i : i ∈ Iα〉 be Morley for p over M0, with Nα
i ≤M for all i < δ,

α < δ. Let Iδ := 〈ai : i ∈ Iδ〉, 〈N δ
i : i ∈ Iδ〉 be defined by continuity.

If p does not fork over M0, then Iδ a 〈N δ
i : i ∈ Iδ〉 is Morley for p over

M0.
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Proof. By Hypothesis 5.20, p does not syntactically split over M0.
Therefore the only problematic clauses in Definition 5.10 are (4) and
(7). Let’s check (4): let i ∈ Iδ. By hypothesis, āi realizes p � Nα

i

for all sufficiently high α < δ. By local character of forking, there
exists α < δ such that gtp(āi/N

δ
i ) does not fork over Nα

i . Since
gtp(āi/N

δ
i ) � Nα

i = p � Nα
i and p does not fork over M0 ≤ Nα

i , we
must have that p � N δ

i = gtp(āi/N
δ
i ). The proof of (7) is similar. �

The next result is a version of [She90, Theorem III.3.10] in our context.
It is implicit in the proof of [BV, Theorem 5.27].

Lemma 5.22. Let M ∈ Kχ-sat. Let λ ≥ χ. The following are equiva-
lent.

(1) M is λ-saturated.
(2) If q ∈ gS(M) is not algebraic and does not syntactically split

over A ⊆ |M | with |A| ≤ χ0, there exists a Morley sequence I
for p over A inside M with |I| = λ.

Proof. (1) implies (2) is trivial using saturation. Now assume (2). Let
p ∈ gS(B), |B| < λ, B ⊆ |M |. Let q ∈ gS(M) extend p. If q is
algebraic, we are done so assume it is not. Let A ⊆ |M | have size at
most χ0 such that q does not fork over A. By Hypothesis 5.20, it does
not syntactically split over A. Now by (2), there exists a Morley I for
q over A of size λ inside M . Now by [BV, Lemma 5.25], Av(I/B) = p
and it is realized by an element of I. �

We can now prove solvability (in fact even uniform solvability). We
will use condition (3) in Proposition 5.4.

Definition 5.23. We define a class of models K ′ and a binary relation
≤K′ on K ′ as follows.

• K ′ is a class of L′ := L(K ′)-structures, where:

L′ := L(K) ∪ {N0, N, F,R | i < χ}
and for all i < χ:
– N0, R, are binary relations symbols.
– N is a tertiary relation symbol.
– F is a binary function symbol.

• An L′-structure M is in K ′ if and only if:
(1) M � L(K) ∈ Kχ-sat.
(2) RM is a linear ordering on |M |. We write I for this linear

ordering.
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(3) For8 all a ∈ |M | and all i ∈ I, NM(a, i) ≤ M � L(K)
(where we see NM(a, i) as an L(K)-structure. In partic-
ular, NM(a, i) ∈ K), NM

0 (a) ≤ NM(a, i), NM
0 (a) is χ0-

saturated.
(4) There exists a map a 7→ pa from |M | onto the non-algebraic

Galois types over M � L(K) such that for all a ∈ |M |:
(a) pa does not fork9 over NM

0 (a).
(b) 〈FM(a, i) : i ∈ I〉 a 〈NM(a, i) : i ∈ I〉 is a Morley

sequence for pa over NM
0 (a).

• M ≤K′ M ′ if and only if:
(1) M ⊆M ′.
(2) M � L(K) ≤M ′ � L(K).
(3) For all a ∈ |M |, NM

0 (a) = NM ′
0 (a).

Before checking that K ′ is an AEC, we show that this accomplishes
what we want:

Lemma 5.24. Let λ ≥ χ.

(1) If M ∈ Kλ is saturated, then there exists an expansion M ′ of
M to L′ such that M ′ ∈ K ′.

(2) If M ′ ∈ K ′ has size λ, then M ′ � L(K) is saturated.

Proof.

(1) Let RM ′
be a well-ordering of |M | of type λ. Identify |M |

with λ. By stability, we can fix a bijection p 7→ ap from
gS(M) onto |M |. For each p ∈ gS(M) which is not alge-
braic, fix Np ≤ M such that p does not syntactically split
over Np and ‖Np‖ ≤ χ0 (possible by Fact 5.16). Then use
saturation to build 〈aip : i < λ〉 a 〈N i

p : i < λ〉 Morley for

p over Np (inside M). Let NM ′
0 (ap) := Np, N

M ′
(ap, i) := N i

p,

FM ′
(a, i) := aip. For p algebraic, pick p0 ∈ gS(M) nonalge-

braic and let NM ′
0 (ap) := NM ′

0 (ap0), N
M ′

(ap0) := NM ′
(ap0),

FM ′
(ap) := FM ′

(ap0).
(2) By Lemma 5.22.

�

Lemma 5.25. (K ′,≤K′) is an AEC with LS(K ′) = χ.

8For a binary relation Q we write Q(a) for {b | Q(a, b)}, similarly for a tertiary
relation.

9With respect to the good frame introduced in Hypothesis 5.18.
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Proof. It is straightforward to check that K ′ is an abstract class with
coherence. Moreover:

• K ′ satisfies the chain axioms: Let 〈Mi : i < δ〉 be increasing in
K ′. Let Mδ :=

⋃
i<δMi.

– M0 ≤K′ Mδ, and if N ≥K′ Mi for all i < δ, then N ≥K′ Mδ:
Straightforward.

– Mδ ∈ K ′: Mδ � L(K) is χ++-saturated by Fact 5.17. More-
over, RMδ is clearly a linear ordering of Mδ. Write Ii for
the linear ordering (Mi, Ri). Condition 3 in the definition
of K ′ is also easily checked. We now check Condition 4.
Let a ∈ |Mδ|. Fix i < δ such that a ∈ |Mi|. Without loss of
generality, i = 0. By hypothesis, for each i < δ, there exists
pia ∈ gS(Mi � L(K)) not algebraic such that 〈FMi(a, j) |
j ∈ Ii〉 a 〈NMi(a, j) | j ∈ Ii〉 is a Morley sequence for
pia over NMi

0 (a) = NM0
0 (a). Clearly, pia � N

M0
0 (a) = p0

a �
NM0

0 (a) for all i < δ. Moreover by assumption pia does
not fork over NM0

0 . Thus for all i < j < δ, pja � Mi =
pia � Mi. By extension and uniqueness, there exists pa ∈
gS(Mδ � L(K)) that does not fork over NM0

0 (a) and we
have pa � Mi = pia for all i < δ. Now by Lemma 5.21,
〈FMδ(a, j) | j ∈ Iδ〉 a 〈NMδ(a, j) | j ∈ Iδ〉 is a Morley
sequence for pa over NM0

0 (a).
Moreover, the map a 7→ pa is onto the nonalgebraic Galois
types over Mδ � L(K): let p ∈ gS(Mδ � L(K)) be nonal-
gebraic. Then there exists i < δ such that p does not fork
over Mi. Let a ∈ |Mi| be such that 〈FMi(a, j) | j ∈ Ii〉 a
〈NMi(a, j) | j ∈ Ii〉 is a Morley sequence for p � Mi over
NMi

0 (a). It is easy to check it is also a Morley sequence for
p over NMi

0 (a). By uniqueness of the nonforking extension,
we get that the extended Morley sequence is also Morley
for p, as desired.

• LS(K ′) = χ: An easy closure argument.

�

Corollary 5.26. K is uniformly (χ, χ)-solvable.

Proof. By Lemma 5.25, K ′ is an AEC with LS(K ′) = χ. Now combine
Lemma 5.24 and Proposition 5.4. Note that saturated models of size
at least χ0 are superlimit by Hypothesis 5.18, and K has arbitrarily
large saturated models by superstability. �
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For the next theorems, we drop our hypotheses.

Theorem 5.27. If K is LS(K)-superstable with amalgamation and (<
LS(K))-tame, then there exists θ < h(LS(K)) such that K is uniformly
(θ, θ)-solvable.

Proof. By Remark 5.15 and Corollary 5.26 . �

Theorem 5.28. Let K be a stable tame AEC with amalgamation.
The following are equivalent.

(1) For all high-enough λ, K is λ-superstable.
(2) There exists θ such that K is uniformly (θ, θ)-solvable.
(3) There exists θ such that for all high-enough λ, K is (λ, θ)-

solvable.

Proof. (1) implies (2) is Theorem 5.27, (2) implies (3) follows directly
from the definition of solvability, and (3) implies (1) is because (3)
implies that there is a superlimit in all high-enough λ and by Theorem
4.8, this implies superstability. �

6. Superstability below the Hanf number

In this section, we show that we can require “LS(K) ≤ µ` < h(LS(K))”
in Theorem 1.2 (provided the class is (< LS(K))-tame). While this
improves on some bounds e.g. in section 4, the arguments are harder.

Theorem 6.1. Let K be a (< LS(K))-tame AEC with amalgamation,
joint embedding, and arbitrarily large models. Assume K is stable.
Then the following are equivalent:

(1) There exists µ1 < h(LS(K)) such that for every λ ≥ µ1, for all
δ < λ+, for all increasing continuous 〈Mi : i ≤ δ〉 in Kλ and
all p ∈ gS(Mδ), if Mi+1 is universal over Mi for all i < δ, then
there exists i < δ such that p does not λ-split over Mi.

(2) There exists µ2 < h(LS(K)) such that for every λ ≥ µ2, for
some κ ≤ λ, there is a good λ-frame on Kκ-sat

λ .
(3) There exists µ3 < h(LS(K)) such that for every λ ≥ µ3, K has

uniqueness of limit models in cardinality λ.
(4) There exists µ4 < h(LS(K)) such that for every λ ≥ µ4, K has

a superlimit model of cardinality λ.
(5) There exists µ5 < h(LS(K)) such that for every λ ≥ µ5, the

union of a chain of λ-saturated models is λ-saturated.
(6) There exists µ6 < h(LS(K)) such that for all λ ≥ µ6, K is

(λ, µ6)-solvable.
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Proof sketch. By Theorem 5.27 (and being slightly more careful with
the bounds, i.e. using [BV, Remark 6.12]), (1) implies (6). Moreover
(6) implies (4) by definition. Thus it is enough to show the equivalence
of (1)-(5).

We now revisit the proof of Theorem 4.8. Now the proofs of (1) implies
(2)-(5) there show that we can take µ2, . . . , µ5 < h(LS(K)). Similarly
for (2) implies (3) and (5) implies (4). Now we show that both (3) and
(4) imply (5−), which is the following statement:

(5−) For unboundedly many cardinals λ < h(LS(K)), the union of a
chain of λ-saturated models is λ-saturated.

If (3), then Lemma 3.8 gives (5−). If (4), then let χ < h(LS(K)) be
as given by Fact 3.9. Without loss of generality, χ ≥ µ4. Let λ be a
successor cardinal such that λ = λ<χ (note that there are unboundedly
many such λ below h(LS(K))). By Fact 3.10, K is stable in λ and in
unboundedly many µ < λ (namely in its predecessor). By regularity,
K must have a saturated model of size λ. By Lemma 3.6, we get (5−).

It remains to show that (5−) implies (1). We follow section 5 and note
that Facts 5.13 and 5.16 hold assuming only stability. Let χ0, χ be
as there. Without loss of generality, K is stable in χ and in any µ
such that µ = µ<χ. By [BV, Fact 2.22], there is a forking-like notion
on Kχ+-sat which satisfies base monotonicity, transitivity, uniqueness,
and so that any type does not fork over a model of size χ. Now take
λ > χ+ such that (5−) holds. Restrict the independence relation to
λ-saturated models of size at least λ′ := (λ<χ)+. Note that by the
choice of λ, Kλ-sat is an AEC and it is easy to check that any type does
not fork over a model of size λ′.

In other words, we have an analog of Fact 5.17 where we can still
find a (≥ λ′)-frame with underlying class Kλ′-sat that satisfies base
monotonicity, transitivity, uniqueness, and so that any type does not
fork over a model of size λ′. By the proof of [Vasb, Theorem 7.5],
we also have a local version of extension: If p ∈ gS(M), M ≤ N are
saturated of the same size, then p has a nonforking extension to N .
Taking χ0 and λ bigger if necessary, the proof of Lemma 5.19 now
goes through if M0 and M are saturated of the same size (we use local
extension in the proof).

Now let δ < (λ′)+ be regular and let 〈Mi : i < δ〉 be an increasing chain
of saturated models in Kλ′ . Let Mδ :=

⋃
i<δMi. Let p ∈ gS(Mδ). As in

the proof of Theorem 4.8, it is enough to show that there exists i < δ
such that p does not fork over Mi. If δ ≥ χ this is easy by construction
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of the frame (again adjusting χ0 or λ), so assume δ < χ. By definition
of λ, we have that Mδ is λ-saturated. We also have that p does not fork
over Mδ so by the proof of Lemma 5.19, there exists M ′

0 ≤ M0 of size
χ0 and I inside Mδ a Morley sequence for p over M ′

0 with |I| ≥ χ. Let
Ii := Mi ∩ I. Since δ < χ, there must exists i < δ such that |Ii| ≥ χ.
By [BV, Lemma 5.10] (where χ here is χ0 there, again increasing χ0

if necessary), Ii is based on a set of size χ0, i.e. Av(Ii/Mδ) does not
syntactically split over some M ′

i ≤Mi with ‖M ′
i‖ = χ0. By the proof of

Lemma 5.19, this means that p does not fork over Mi, as desired10. �

The proof does not tell us if there is a Hanf number for superstability,
namely:

Question 6.2. Let K be a (< LS(K))-tame AEC with amalgamation
which is λ-superstable for some λ ≥ h(LS(K)). Is K µ-superstable for
some µ < h(LS(K))?

We end by improving Fact 2.7.(2). Recall that this tells us that (in
tame AECs with amalgamation) superstability follows from categoric-
ity in a high-enough cardinal. We give an improvement that does not
use tameness and improves the bound on the categoricity cardinal.
Even though all the ingredients are contained in [SV99], this has not
appeared in print before.

Theorem 6.3 (The ZFC Shelah-Villaveces theorem). Let K be an
AEC with arbitrarily large models and amalgamation in LS(K)11. Let
λ > LS(K) be such that K<λ has no maximal models. If K is categor-
ical in λ, then K is LS(K)-superstable.

Proof. Set µ := LS(K). In the proof of [SV99, Theorem 2.2.1], in
(c), ask that σ = χ, where χ is the least cardinal such that 2χ > µ.
The proof that (c) cannot happen goes through, and the rest only uses
amalgamation in µ. �

Corollary 6.4. Let K be an AEC with amalgamation in LS(K). If K
is categorical in a λ ≥ h(LS(K)), then there exists λ0 < h(LS(K)) such
that K is µ-superstable in all µ ∈ [λ0, λ) where Kµ has amalgamation.

Proof. Combine Theorem 6.3 with [Vasb, Proposition 10.13] (the argu-
ment uses only amalgamation in LS(K)). �

10A similar argument already appears in the proof [She09a, Theorem IV.4.10].
11In [SV99], this is replaced by GCH.
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We can use the ZFC Shelah-Villaveces theorem to prove the follow-
ing interesting result, showing that the solvability spectrum satisfies
an analog of Shelah’s categoricity conjecture in tame AECs (Shelah
conjectures that this should hold in general, see Question 4.4 in the
introduction to [She09a]). For notational purpose, we introduce one
more definition:

Definition 6.5. K is λ-solvable if it is (λ, θ)-solvable for some θ <
h(LS(K)).

Theorem 6.6. Let K be a (< LS(K))-tame AEC with amalgama-
tion. If K is λ-solvable for some λ ≥ h(LS(K)), then there exists
θ < h(LS(K)) such that:

(1) K is θ-superstable.
(2) K is (µ, θ)-solvable for all µ ≥ θ.

Proof. Let θ0 < h(LS(K)) be such that K is (λ, θ0)-solvable. First
observe that Kλ has joint embedding, as any superlimit model is uni-
versal. Therefore (e.g. by [Vasb, Proposition 10.13]), there exists χ0 <
h(LS(K)) such that K≥χ0 has joint embedding and no maximal models.
Without loss of generality, χ0 = θ0. By the standard argument (see
for example [Bal09, Theorem 8.21]), K≥θ0 is stable in all µ < λ. By
the proof of Theorem 6.3, K is θ0-superstable, and thus by Fact 2.7.(1)
θ-superstable for any θ ≥ θ0. By Theorem 5.27 (we have to be slightly
more careful with the bound on χ, see [BV, Remark 6.12]), there exists
θ < h(LS(K)) with θ ≥ θ0 such that K is uniformly (θ, θ)-solvable,
hence by definition (µ, θ)-solvable for all µ ≥ θ. �

Remark 6.7. Since we required the starting solvability parameter θ0

to be below h(LS(K)), this does not quite answer Question 6.2.

7. Future work

While we managed to prove that some analogs of the conditions in
Fact 1.1 are equivalent, much remains to be done. For example, even
in tame AECs with amalgamation, we do not know whether stability
on a tail of cardinals or having a saturated model on a tail of cardinals
should imply superstability (although superstability certainly implies
these).

Another direction would be to make precise what the analog to (5)
and (6) in 1.1 should be in tame AECs. One possible definition for (6)
would be:
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Definition 7.1. Let λ and µ be cardinal numbers. We say that K
has the (λ, µ)-tree property provided there exists {pn(x; yn) | n < ω}
Galois-types such that |dom(pn)| < µ and there exists {Mη | η ∈ ≤ωλ}
such that for all n < ω, ν ∈ nλ and every η ∈ ωλ:

〈Mη,Mν〉 |= pn ⇐⇒ ν is an initial segment of η.

We say that K has the tree property if it has it for all high-enough µ
and all high-enough λ (where the “high-enough” quantifier on λ can
depend on µ).

We can ask whether superstability implies that K does not have the
tree property, or at least obtain many models from the tree property as
in [GS86]. This is conjectured in [She99] (see the remark after Claim
5.5 there).

As for the D-rank in (5), perhaps a simpler analog would be the U -rank
defined in terms of (< κ)-satisfiability in [BG, Definition 7.2] (another
candidate for a rank is Lieberman’s R-rank, see [Lie13])

Definition 7.2. LetK be a (< LS(K))-tame AEC with amalgamation.
Let κ > LS(K) be least such that κ = iκ (for concreteness). We define
a map U with domain a type over κ-saturated models and codomain
an ordinal or ∞ inductively by, for p ∈ gS(M):

(1) Always, U [p] ≥ 0.
(2) For α limit, U [p] ≥ α if and only if U [p] ≥ β for all β < α.
(3) U [p] ≥ β + 1 if and only if there exists a κ-saturated M ′ ≥ M

with ‖M ′‖ = ‖M‖ and an extension q ∈ gS(M ′) of p such that
q is not (< κ)-satisfiable over M and U [q] ≥ β.

(4) U [p] = α if and only if U [p] ≥ α and U [p] 6≥ α + 1.
(5) U [p] =∞ if and only if U [p] ≥ α for all ordinals α.

By [BG, Theorem 7.9], superstability implies that the U -rank is bounded
but we do not know how to prove the converse. Perhaps it is possible
to show that U =∞ implies the tree property.
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