
DEPENDENCE RELATION IN PREGEOMETRIES

RAMI GROSSBERG AND OLIVIER LESSMANN

ABSTRACT. The aim of this paper is to set a foundation to separate geometric model
theory from model theory. Our goal is to explore the possibility to extend results from
geometric model theory to non first order logic (e.g.Lω1,ω). We introduce a dependence
relation between subsets of a pregeometry and show that it satisfies all the formal properties
that forking satisfies in simple first order theories. This happens when one is trying to lift
forking to nonelementary classes, in contexts where there exists pregeometries but not
necessarily a well-behaved dependence relation (see for example [HySh]). We use these to
reproduce S. Buechler’s characterization of local modularity in general. These results are
used by Lessmann to prove an abstract group configuration theorem in [Le2].

1. INTRODUCTION

The notion of forking is at the center of stability theory. Forking is a dependence
relation discovered by S. Shelah. It satisfies the following properties in the first order stable
case, see [Sh b]:

(1) (Finite character) The typep does not fork overB if and only if every finite subtype
q ⊆ p does not fork overB.

(2) (Extension) Letp be a type which does not fork overB. LetC be given containing
the domain ofp. Then there existsq ∈ S(C) extendingp such thatq does not fork
overB;

(3) (Invariance) Letf ∈ Aut(C) andp be a type which does not fork overB. Then
f(p) does not fork overf(B).

(4) (Existence) The typep does not fork over its domain;
(5) (Existence ofκ(T )) For every typep, there exists a setB ⊆ dom(p) such thatp

does not forkB;
(6) (Symmetry) Letp = tp(ā/Bc̄). Suppose thatp does not fork overB. Then

tp(c̄/Bā) does not fork overB;
(7) (Transitivity) LetB ⊆ C ⊆ A. Let p ∈ S(A). Thenp does not fork overB if and

only if p does not fork overC andp ¹ C does not fork overB.

Already in the introduction of Chapter III of [Sh b], S. Shelah states what is im-
portant about the forking relation is that it satisfies properties (1)–(7). S. Shelah stated
another property named by S. Buechler [Bu] the Pairs Lemma (see Proposition 17 for the
statement) as one of the basic properties of forking, which was proved in [Sh b] using the
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Finite Equivalence Relation Theorem. Later Baldwin in his book [Bl] presented an ax-
iomatic treatment of forking in stable theories. This allowed Baldwin to derive abstractly
Shelah’s Pairs Lemma from the other properties of forking. Following these ideas, it has
now become common to characterize various stability conditions in terms of the axiomatic
properties that forking satisfies.

One of the most difficult directions of pure model theory is the area called by She-
lah classification theory for nonelementary classes. A major problem is to find a depen-
dence relation which is as well-behaved as forking for first order theories. See for exam-
ple [Gr 1], [Gr 2], [GrHa], [GrLe1], [GrLe2], [GrSh 1], [GrSh 2], [HaSh], [HySh], [Ki],
[KlSh], [Le1], [MaSh], [Sh3], [Sh47], [Sh 87a], [Sh 87b], [Sh 88], [Sh tape], [Sh 299],
[Sh 300], [Sh 362], [Sh 394], [Sh 472], [Sh 576] and [Sh h]. The situation in nonelemen-
tary classes is very different from the first order case. In the first order case, the Extension
property for forking comes for free; it holds for any theory and is a consequence of the
Compactness Theorem. This is in striking contrast with the nonelementary cases; the Ex-
tension property is usually among the most problematic and does not hold over sets in
general for any of the dependence relations introduced thus far.

A general dependence relation satisfying all the formal properties of forking has
thus not been found yet for nonelementary classes. There are, however, several cases where
pregeometries appear; i.e. sets with a closure operation satisfying the properties of linear
dependence in a vector space. In the first order case, the pregeometries are the sets of
realizations of aregular type, and the dependence is the one induced by forking and thus
satisfies automatically many additional properties. In nonelementary classes the situation
is different.

Here are several nonelementary examples: The first three examples have in com-
mon that there exists a rank, giving rise to a reasonable dependence relation. However the
Extensionproperty and theSymmetryproperty fail in general (they hold over sufficiently
“rich” sets). The rank introduced for these classes are generalizations of what S. Shelah
callsR[·, L, 2]. Intuitively, a formula has rankα + 1 if it can be partitioned intwo pieces
of rankα with some additional properties that are tailored to each context. It is noteworthy
that extensions of Morley rank are inadequate, as partitioning a formula in countably many
pieces makes sense only when the compactness theorem holds. In the last example, no
rank is known, but pregeometries exist.

Categorical sentences inLω1ω(Q): S. Shelah started working on this context [Sh47]
to answer a question of J.T.Baldwin: Can a sentence inL(Q) have exactly one un-
countable model? Shelah answers this question negatively usingV=L (and later
using different methods within ZFC) while developing powerful concepts. A main
tool is the introduction of a rank. This rank is bounded under the parallel toℵ0-
stability. It gives rise to a dependence relation and pregeometries. Later, H. Kier-
stead [Ki] uses these pregeometries to obtain some results on the countable models
of these sentences.

Excellent Scott sentences:In [Sh 87a] and [Sh 87b] Shelah introduces a simplifica-
tion of the rank of [Sh47]. Shelah identifies the concept ofexcellent Scott sentences
and proves (among many other things) the parallel to Morley’s Theorem for them.
Again, this rank induces a dependence relation on the subsets of the models. Later,
R. Grossberg and B. Hart [GrHa] proved the existence of pregeometries (regular



DEPENDENCE RELATION IN PREGEOMETRIES 3

types) for this dependence relation and used it to prove the main gap for excellent
Scott sentences.

Totally transcendental diagrams: In [Le1] Lessmann introduced a rank forℵ0-stable
diagrams. Finite diagrams were introduced by S. Shelah [Sh3] in 1970 (see also
[GrLe1] for an exposition). They are classes of models omitting a prescribed set of
types, with an additional condition. We call a finite diagramtotally transcenden-
tal when the rank is bounded. The rank gives rise to a dependence relation on the
subsets of the models and pregeometries exist often. This is used to give a proof of
categoricity generalizing the Baldwin-Lachlan Theorem. In a work in preparation,
[GrLe2], we prove the main gap for totally transcendental diagrams.

Superstable diagrams: In [HySh], Hyttinen and Shelah study stable finite diagrams
([Sh3] or [GrLe1]) under the additional assumption thatκ(D) = ℵ0. Such diagrams
are calledsuperstable. They introduce a relation between setsA,B and an element
a, writtena ↓B A. The main result is that the parallel of regular types exist. More
precisely, for every pair of “sufficiently saturated” modelsM ⊆ N ,M 6= N , there
exists a typep realized inN − M such that the relationa ↓M C (standing for
a 6∈ cl(C)) induces a pregeometry among the realizations ofp in N .

Thus, pregeometries seem to appear naturally in nonelementary classes, while
general well-behaved dependence relations are hard to find. The main goal of this paper is
to recover fromanypregeometry a dependence relation over the subsets of the pregeometry
that satisfies all the formal properties of forking. While it is known that forking general-
izes the first order notion of algebraic closure inside a strongly minimal set, recovering a
“forking-like” dependence relation from an arbitrary pregeometry has not been done. This
is, of course, particularly useful when the pregeometry itself wasnot induced by forking.
In superstable diagrams for example, using our formalism, a good dependence relation can
be recovered inside the pregeometry, while the original dependence relation inducing the
pregeometry isnotas well behaved (see [HySh]).

A similar endeavor was attempted by John Baldwin in the early eighties. In [Bl1],
J.Baldwin examined some pregeometries and several dependence relations in the first order
case. From a pregeometry, he defines the relationa^

B
C, by a ∈ cl(B ∪ C) − cl(B). He

did not however introduceA^
B
C, whereA is a tupleor asetas opposed to an element,

which we do (see Definition 8). This is a crucial step; it is built-in in the model theory
of first order, since forking is naturally defined for types of any arity. To make this more
precise, fixT a first order stable theory. Let us write

ā
∗
^
B
C for tp(ā/B ∪ C) does not fork overB.

Inside a regular typep(x) ∈ S(B), the relationa ∈ cl(C) given bya
∗
/̂
B
C gives rise to a

pregeometry. But, the relation̄a
∗
^
B
C is defined in general whether or notā andC consist

of elements realizingp. Inside the pregeometry, the relationā
∗
^
B
C holds (defined with

forking) if and only if the relation̄a^
B
C holds (defined formally from our definition using
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the closure operator of the pregeometry). This is a consequence of the Pairs Lemma, which
holds for first order simple theories. When we start from an abstract pregeometry (or an
abstract dependence relation), we donot have the formalism of types or the Pairs Lemma.
Therefore the relation̄a^

B
C has to be introduced for tuples, using the relationa^

B
C for

elements. As a consequence, suppose we are given the corresponding notion of a regular
typep ∈ S(B) in a nonelementary context. Suppose there is some ambient dependence

relation, writtenA
∗
^
B
C such that over realizations ofp the relationa ∈ cl(C), given by

a
∗
/̂
B
C, induces a pregeometry. Then, the truth value of the relationā

∗
^
B
C (given from

the ambient dependence relation) andā^
B
C (defined from the closure operation in the

pregeometry) may not coincide. They will coincide only if the Pairs Lemma holds for the
dependence relation (and this fact is not known in general for nonelementary cases). There-
fore, this abstract formalism allows us to introduce for nonelementary classes a (possibly)
betterdependence relation, inside the pregeometry.

As an illustration of the value of this general relation, we present S. Buechler’s
characterization of local modularity with parallel lines (see [Bu]) in this general context.
This also has esthetic value as it allows one carry out this work in the general context of
combinatorial geometry, without logic.

Finally, we add a short section with some easy set-theoretic results.

In a follow-up paper [Le2], Lessmann presents an abstract framework where,
using the “anchor relation” defined is this paper, he derives a generalization of Zilber-
Hrushovski group configuration theorem. We expect this result to have a potential for the
classification theory of nonelementary classes.

We would like to thank John Baldwin and Saharon Shelah for valuable comments
on a draft of this paper.

2. PRELIMINARIES

We recall a few standard and well-known facts about pregeometries. The notation
is standard. We writeAb for A ∪ {b}.

Definition 1. We say that(W, cl) is apregeometryif W is a set andcl : P(W ) → P(W )
is a function satisfying the following four properties

(1) (Monotonicity) For every setX ∈ P(W ) we haveX ⊆ cl(X);
(2) (Finite Character) Ifa ∈ cl(X) then there is a finite setY ⊆ X, such thata ∈

cl(Y );
(3) (Transitivity) LetX,Y ∈ P(W ). If a ∈ cl(X) andX ⊆ cl(Y ) thena ∈ cl(Y );
(4) (Exchange Property) ForX ∈ P(W ) anda, b ∈ W , if a ∈ cl(Xb) buta 6∈ cl(X),

thenb ∈ cl(Xa).

We always assumecl(∅) 6= W .
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The next two basic properties are standard and easy.

Fact 2. If (W, cl) is a pregeometry andB ⊆ C ⊆W , thencl(B) ⊆ cl(C).

Fact 3. If (W, cl) is a pregeometry andB ⊆W , thencl(cl(B)) = cl(B).

Definition 4. Let (W, cl) be a pregeometry.

(1) ForX ⊆W , we say thatX is closedif X = cl(X);
(2) I ⊆W is independentif for everya ∈ I, we havea 6∈ cl(I − {a});
(3) We say thatI ⊆ A generatesA, if cl(I) = cl(A);
(4) A basisfor a setA ⊂W is an independent setI generatingcl(A);
(5) ForX ⊆ W , thedimension of X, written dim(X), is the cardinality of a basis for

cl(X).

Fact 5. Using the axioms of pregeometry, one can show that for every set, bases exist and
that the dimension is well-defined see for example Appendix in [Gr]

Definition 6. LetG = (W, cl) be a pregeometry.

(1) A bijectionf : W → W is anautomorphism ofG if for everya ∈ W andA ⊆ W
we have

a ∈ cl(A) if and only if f(a) ∈ cl(f [A]).

We denoteAutA(G) the set of automorphisms ofG fixing A pointwise.
(2) We say thatG is homogeneousif for every a, b ∈ W andA ⊆ W , such that

a 6∈ cl(A) andb 6∈ cl(A) there is an automorphism ofG, fixing A pointwise and
takinga to b.

Remark 7. While most of geometric model theory requires that the geometries are homo-
geneous, in this paper homogeneity is not assumed.

3. DEPENDENCE INPREGEOMETRIES

In this section, we introduce the main concept of the paper.

Definition 8. Let (W, cl) be a pregeometry. LetA,B andC be subsets ofW . We say that
A depends onC overB, if there exista ∈ A and a finiteA′ ⊆ A (possibly empty) such
that

a ∈ cl(B ∪ C ∪A′)− cl(B ∪A′).

If A depends onC overB, we writeA /̂
B
C;

If A does not depend onC overB, we writeA^
B
C.

Remark 9. An alternative definition withA′ = ∅ does not permit a smooth extension to
setsA^

B
C whenA is not a singleton.

Remark 10. A^
B
C if and only if A ∪ B^

B
C ∪ B. Hence, we will often assume that

B ⊆ A ∩ C.
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We now prove that the properties of forking in simple theories hold with this
formalism, directly from the axioms of a pregeometry.

Proposition 11(Finite Character). Let (W, cl) be a pregeometry. LetA,B andC be sub-
sets ofW . Then

A^
B
C if and only if A′^

B
C ′,

for every finiteA′ ⊆ A and finiteC ′ ⊆ C.

Proof. If A /̂
B
C, then there exista ∈ A, and a finiteA′ ⊆ A such that

a ∈ cl(B ∪ C ∪A′)− cl(B ∪A′).
By Finite Character, there exist a finiteC ′ ⊆ C such thata ∈ cl(B ∪ C ′ ∪ A′). Hence
A′ /̂
B
C ′, by definition.

For the converse, if there exist a finiteA′ ⊆ A and a finiteC ′ ⊆ C such that
A′ /̂
B
C ′, then we can finda ∈ A′ andA′′ ⊆ A′ such that

a ∈ cl(B ∪ C ′ ∪A′′)− cl(B ∪A′′).
SinceC ′ ⊆ C, we havea ∈ cl(B ∪C ∪A′′), by Fact 2. Hence,A /̂

B
C, by definition.

Proposition 12(Continuity). Let (W, cl) be a pregeometry. Let〈Ci | i < α〉 be a contin-
uous increasing sequence of sets inW , andA,B ⊆W .

(1) If A^
B
Ci for everyi < α, thenA^

B

⋃
i<α Ci.

(2) If Ci^
B
A for everyi < α, then

⋃
i<α Ci^

B
A.

Proof. By the finite character.

Proposition 13(Invariance). LetG = (W, cl) be a pregeometry. LetA,B andC be sub-
sets ofW and letf ∈ Aut(G). Then

A^
B
C if and only if f(A) ^

f [B]
f(C).

Proof. Immediate from the definitions.

Proposition 14(Monotonicity). Let (W, cl) be a pregeometry. LetA,B andC be subsets
ofW . SupposeA^

B
C.

(1) If A′ ⊆ A andC ′ ⊆ C, thenA′^
B
C ′;

(2) If B′ ⊆ C, thenA ^
B ∪B′

C.
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Proof. (1) Suppose thatA′ /̂
B
C ′. Let a ∈ A′ andA∗ ⊆ A′ finite such that

a ∈ cl(B ∪ C ′ ∪A∗)− cl(B ∪A∗).
Then, by Fact 2, we havea ∈ cl(B ∪ C ∪ A∗)− cl(B ∪ A∗). But a ∈ A andA∗ ⊆ A, so
A /̂
B
C.

(2) SupposeA /̂
B ∪B′

C. Let a ∈ A andA′ ⊆ A finite such that

a ∈ cl(B ∪B′ ∪ C ∪A′)− cl(B ∪B′ ∪A′).
SinceB′ ⊆ C, we havecl(B ∪ B′ ∪ C ∪ A′) = cl(B ∪ C ∪ A′). Also, cl(B ∪ A′) ⊆
cl(B ∪B′ ∪A′). Hencea ∈ cl(B ∪ C ∪A′)− cl(B ∪A′). ThereforeA /̂

B
C.

The role ofA′ becomes clear in the next proof.

Proposition 15(Symmetry). Let (W, cl) be a pregeometry. LetA,B andC be subsets of
W . Then

A^
B
C if and only if C^

B
A.

Proof. Suppose thatA /̂
B
C. Choosea ∈ A and a finiteA′ ⊆ A such that

a ∈ cl(B ∪ C ∪A′)− cl(B ∪A′).(*)

By Finite Character and (*), there existc ∈ C and a finite (and possibly empty)C ′ ⊆ C
such that

a ∈ cl(B ∪ C ′ ∪ c ∪A′) and a 6∈ cl(B ∪ C ′ ∪A′).(**)

Therefore, by the Exchange Property, we have

c ∈ cl(B ∪ C ′ ∪A′ ∪ a).

But c 6∈ cl(B ∪ C ′ ∪A′), (**). Hence,

c ∈ cl(B ∪ C ′ ∪A′ ∪ a)− cl(B ∪ C ′ ∪A′).
Therefore,C /̂

B
A′, for some finite subsetA′ of A. Hence,C /̂

B
A, by Finite Character.

Proposition 16(Transitivity). Let(W, cl) be a pregeometry. LetA,B,C andD be subsets
ofW such thatB ⊆ C ⊆ D. Then,

A^
C
D and A^

B
C if and only if A^

B
D.

Proof. Suppose first thatA /̂
B
D. Choosea ∈ A and a finiteA′ ⊆ A such that

a ∈ cl(D ∪A′)− cl(B ∪A′).
Eithera ∈ cl(C ∪A′), and so

a ∈ cl(C ∪A′)− cl(B ∪A′),
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which implies thatA /̂
B
C. Or a 6∈ cl(C ∪A′), and therefore

a ∈ cl(D ∪A′)− cl(C ∪A′),
which implies thatA /̂

C
D.

The converse follows by Monotonicity sinceB ⊆ C ⊆ D.

The following is proved in [Sh b] directly using the finite equivalence relation
theorem. The proof that it follows from the other axioms of forking is due to J. Baldwin.
We present it here for completeness.

Proposition 17(Pairs Lemma). LetG = (W, cl) be a pregeometry. LetA,B,C andD be
subsets ofW such thatC ⊆ B ∩D. Then

A ∪B^
C
D if and only if A ^

C ∪B
D ∪B and B^

C
D.

Proof. Notice first, that by definition

A ^
C ∪B

D ∪B if and only if A ^
C ∪B

D.(*)

Therefore, by Symmetry and (*), it is equivalent to show that

D^
C
A ∪B if and only if D ^

C ∪B
A and D^

C
B,

which is true by Transitivity.

Remark 18. Let (W, cl) is a pregeometry. LetA,B,C andD be subsets ofW . Then

AD^
B
C if and only if A^

B
CD.

Proof. SupposeA^
B
CD. Then, by Monotonicity we haveA^

B
D. Therefore, by Sym-

metry, we haveD^
B
A. By Transitivity, we haveA ^

BD
CD. Hence,AD^

B
C by Con-

catenation.

For the converse, suppose thatA^
B
CD. Then by Symmetry we must have

CD^
B
A. Hence, by the first paragraph, we know thatC^

B
AD, so by Symmetry, also

AD^
B
C.

This finishes the list of usual properties of forking. We now prove a few proposi-
tions relating closure and̂ .

Proposition 19(Closed Set Theorem). Let (W, cl) be a pregeometry. LetA,B andC be
subsets ofW . Then

A^
B
C if and only if A′^

B′
C ′,

provided thatcl(A ∪B) = cl(A′ ∪B′), cl(B) = cl(B′) andcl(C ∪B) = cl(C ′ ∪B′).
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Proof. It is clearly enough to prove one direction. Furthermore, by Symmetry, it is enough
to show thatA^

B
C impliesA^

B′
C ′. Suppose thatA /̂

B′
C ′. Let a ∈ A andA∗ ⊆ A be

such that

a ∈ cl(B′ ∪ C ′ ∪A∗)− cl(B′ ∪A∗).
But, it follows from the assumption thatcl(B′ ∪C ′ ∪A∗) = cl(B ∪C ∪A∗) andcl(B′ ∪
A∗) = cl(B ∪A∗). Therefore

a ∈ cl(B ∪ C ∪A∗)− cl(B ∪A∗),
which implies thatA /̂

B
C.

Remark 20. In view of the previous result, whenA^
B
C, we can first choose a basisB′

of B, and chooseA′ ⊆ A andC ′ ⊆ C, independent overB (or equivalentlyB′), such that
cl(A∪B) = cl(A′∪B) andcl(C∪B) = cl(C ′∪B), and thusA′^

B
C ′ and alsoA′^

B′
C ′.

Proposition 21. Let (W, cl) be a pregeometry. LetA,B andC be subsets ofW .

A^
B
C implies cl(A ∪B) ∩ cl(C ∪B) = cl(B).

Proof. Certainly cl(B) ⊆ cl(A ∪ B) ∩ cl(C ∪ B). Suppose that the reverse inclusion
does not hold, and leta ∈ cl(A ∪ B) ∩ cl(C ∪ B) such thata 6∈ cl(B). Thena ∈
cl(C ∪B)− cl(B), socl(A ∪B) /̂

B
C. But the previous proposition implies thatA /̂

B
C,

which is a contradiction.

Remark 22. In view of the definition and symmetry, when we look atA^
B
C, we will

generally assume thatB ⊆ A andB ⊆ C. Further, because of the closed set theorem, we
may assume thatA,B andC are closed, and finally, thatB = A ∩ C.

4. BUECHLER’ S THEOREM

This section is devoted to reproducing a theorem of S. Buechler in general pre-
geometries. The point is to illustrate the following idea: Any geometric property valid
in the first order case which uses only basic properties of forking is in fact valid in every
pregeometry, in particular in nonelementary examples.

We list a few more definitions.

Definition 23. Let (W, cl) be a pregeometry.

(1) (W, cl) is calledmodularif for every closed subsetsS1 andS2 of W we have

dim(S1 ∪ S2) + dim(S1 ∩ S2) = dim(S1) + dim(S2);

(2) (W, cl) is calledlocally modular if for every closed subsetsS1 andS2 of W we
have

dim(S1 ∪ S2) + dim(S1 ∩ S2) = dim(S1) + dim(S2),

provided thatS1 ∩ S2 6= ∅.
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Definition 24. Let (W, cl) be a pregeometry.

(1) A closed setL ⊆W is a line if dim(L) = 2;
(2) Two disjoint linesL1 andL2 areparallel if dim(L1 ∪ L2) = 3.

Definition 25. LetG = (W, cl) be a pregeometry andA ⊆ W . Define thelocalization of
G at A, writtenGA = (WA, clA), by

WA = W −A and clA(X) = cl(X ∪A)−A, for X ⊆WA.

Remark 26. It is easy to see that ifG is a pregeometry, thenGA is a pregeometry. InGA,
we denote the dimension ofX by dim(X/A).

Remark 27. If G = (W, cl) is locally modular, thenGA is modular for any finite subset
A of W − cl(∅).
Proposition 28. Let (W, cl) be a pregeometry. LetS1, S2 be finite dimensional closed sets
satisfyingS0 = S1 ∩ S2. Then,

S1 ^
S0

S2 if and only if dim(S1 ∪ S2) + dim(S1 ∩ S2) = dim(S1) + dim(S2).

Proof. Suppose first thatS1 ^
S0

S2. Let I be a basis forS0, and letIi ⊇ I be a basis for

Si for i = 1, 2. Clearly,cl(S1 ∪ S2) = cl(I1 ∪ I2). We claim, in addition, thatI1 ∪ I2 is
independent. Otherwise there isa ∈ cl(I1∪ I2−{a }). Without loss of generality, we may
assume thata ∈ I1. Now, sinceI1 is independent,a 6∈ cl(I1 − {a }), thus

a ∈ cl(I1 ∪ I2 − {a })− cl(Ii − {a }), for i = 1, 2.

We may also assume thata 6∈ I. To see this, assume thata ∈ I. ChooseI ′i ⊆ Ii − I,
minimal with respect to inclusion, such thata ∈ cl(I ′1∪I ′2∪I−{a }), I ′i 6= ∅, for i = 1, 2.
By the Exchange Property, there isb 6∈ I, such that

b ∈ cl(I ′1 ∪ I ′2 ∪ I ∪ {b }) ⊆ cl(I1 ∪ I2 − {b }).
But, if a 6∈ I, thencl(I1 − {a }) = cl(I ∪ I1 − {a }) so

a ∈ cl(I2 ∪ (I2 − {a}))− cl(I ∪ (I2 − {a })),
which means thatS1 /̂

S0

S2, a contradiction. HenceI1 ∪ I2 is independent. Therefore

dim(S1 ∪ S2) = |I1 ∪ I2|. But |I1 ∪ I2|+ |I| = |I1|+ |I2|, so

dim(S1 ∪ S2) + dim(S1 ∩ S2) = dim(S1) + dim(S2).

For the converse, supposeS1 /̂
S0

S2. Let a ∈ S1 andA1 ⊆ S1 such that

a ∈ cl(S2 ∪A1)− cl(S0 ∪A1).(*)

Choosea such thatA1 has minimal cardinality. This implies thatA1 ∪ {a} is independent
overS0, andA1 is independent overS2. Thus, we can pick a basisI0 for S0, and extend
I0 ∪ A1 ∪ {a} to a basisI1 of S1. Now chooseI ′2 disjoint fromI0, such thatI0 ∪ I ′2 is a
basis ofS2. But, I0 ∪A1 ∪ {a} ∪ I ′2 is not independent by (*). Hence

dim(S1 ∪ S2) + dim(S1 ∩ S2) < dim(S1) + dim(S2),

which finishes the proof.
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In the previous section, we showed that in any pregeometry, there is a relation
that satisfies all the properties that forking satisfies in the context of simple theories. This
allows us to show a theorem of Buechler [Bu], originally proved for stable theories, when
the pregeometry comes from forking.

Theorem 29(Buechler). LetG = (W, cl) be a pregeometry. ThenG is locally modular if
and only ifGA has no parallel lines for every finiteA ⊆W , such thatA 6⊆ cl(∅).

Proof. Suppose first that there is a finiteA ⊆ W , such thatA 6⊆ cl(∅) andGA contain
parallel lines. Thus, letL1 andL2 be disjoint lines inGA such thatdim(L1 ∪L2/A) = 3.
LetL′i = cl(Li ∪A) for i = 1, 2. ThenA ⊆ L′1 ∩L′2, soL′1 ∩L′2 6⊆ cl(∅), L′i is closed for
i = 1, 2, and

dim(L′1 ∪ L′2) + dim(L′1 ∩ L′2) 6= dim(L′1) + dim(L′2).

This shows thatG is not locally modular.

For the converse, suppose thatG is not locally modular. Then there are closedS1

andS2 subsets ofW such thatS1 ∩ S2 6⊆ cl(∅) and

dim(S1 ∪ S2) + dim(S1 ∩ S2) 6= dim(S1) + dim(S2).

We may assume thatS1 andS2 are finite dimensional. LetS0 = S1 ∩ S2. By Proposition
28, this implies thatS1 /̂

S0

S2.

LetD be the set of pairs of integers〈d1, d2〉 such that there are closed setsS1 and
S2 such that

• S0 = S1 ∩ S2 andS0 6⊆ cl(∅);
• d1 = dim(S1/S0) andd2 = dim(S2/S0);
• S1 /̂

S0

S2.

By assumptionD 6= ∅. Choose〈d1, d2〉 minimal with respect to the lexicographic order.
We claim that〈d1, d2〉 = 〈2, 2〉. Note that this is enough to prove the theorem since
clS0(S1 − S0) andclS0(S2 − S0) are parallel lines inGS0 .

Certainly,d1 > 1. Otherwise,dim(S1/S0) = 1 and sinceS1 /̂
S0

S1 there must

exista ∈ S1 − S0 such thata ∈ cl(S2) − cl(S0). SinceS2 andS0 are closed, we have
a ∈ S1 ∩ S2 − S0, a contradiction, sinceS1 ∩ S2 = S0.

We now show thatd1 < 3. Supposed1 = dim(S1/S0) ≥ 3. We will show that
this contradicts the minimality ofd1. We first show that

S1 ∩ cl(S2a) = cl(S0a), for anya ∈ S1 − S0.(*)

First, notice thatS0a ⊆ S1 andS0a ⊆ cl(S2a), so

S1 ∩ cl(S2a) ⊇ cl(S0a), for anya ∈ S1 − S0.

Hence, if (*) does not hold, it is because for somea ∈ S1 − S0, there exists

b ∈ (S1 ∩ cl(S2a))− cl(S0a).
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By definition, this implies that{ a, b } /̂
S0

S2.

Let S′1 = cl(S0ab). ThenS′1 ∩ S2 = S0 andS0 6⊆ cl(∅). FurthermoreS′1 /̂
S0

S2.

But dim(S2/S0) = d2 anddim(S′1/S0) = 2 < 3 ≤ d1, which contradicts the minimality
of d1. Therefore, (*) holds.

Now, sinceS1 /̂
S0

S2, there exista ∈ S1 and a finiteA ⊆ S1 such that

a ∈ cl(S2 ∪A)− cl(S0 ∪A).(**)

ButA 6⊆ S0. Otherwise, by (**) we havea ∈ cl(S2)−cl(S0). This shows thata ∈ S2−S1

sinceS2 andS0 are closed. Buta ∈ S1, soa ∈ (S1 ∩ S2)− S0 = ∅, which is impossible.
Hence, there isb ∈ A− S0. Then, sinceAb = A, we have

a ∈ cl(S2 ∪A)− cl(S0b ∪A).

HenceS1 /̂
S0 ∪ b

S2.

Now considerS′2 := cl(S2b). Then,S1 /̂
S0 ∪ b

S2 implies thatS1 /̂
S0 ∪ b

S′2. By

(*) we haveS1 ∩ S′2 = cl(S0b). Finally, dim(S1/(S0b)) < dim(S1/S0) = d1 and
d2 = dim(S2/S0) = dim(S′2/S0b). This contradicts the minimality ofd1. We prove
similarly thatd2 = 2, which finishes the proof.

5. SOME “ SET THEORY”

In this section, we gather several observations with a set-theoretic flavor. The next
theorem is a generalization of a lemma from J. Baumgartner, M. Foreman and O. Spinas
[BFS]. Although the proof is easy, it does not follow from the analog theorem involving
models as we do not have control over the cardinality of the closures. The value of this
theorem is that it makes it possible to attach a club as an invariant of the pregeometry.

Theorem 30. LetG = (W, cl) be a pregeometry. Supposedim(W ) = λ is regular and
uncountable. LetI = { ai | i < λ } andJ = { bi | i < λ } be bases ofW . Then

C = { i < λ : cl({ aj | j < i }) = cl({ bj | j < i }) }
is a closed and unbounded subset ofλ.

Proof. We first show thatC is closed. Letδ = sup(δ ∩ C). Then, for anyi < δ there is
i1 ∈ C such thati < i1 < δ. Hence, by definition ofC

cl({ aj | j < i1 }) = cl({ bj | j < i1 }).(*)

Lemma 4 and (*) implies thatai ∈ cl({ bj | j < δ }). Hence,

{ aj | j < δ } ⊆ cl({ bj | j < δ }),
and therefore

cl({ aj | j < δ }) ⊆ cl({ bj | j < δ }),
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by Fact 2 again. The other inclusion is similar and so

cl({ aj | j < δ }) ⊇ cl({ bj | j < δ }).
This shows thatδ ∈ C, by definition ofC.

We now show thatC is unbounded inλ. Let i < λ be given. We constructin < λ
for n ∈ ω increasing withi0 = i such that

(1) cl({ aj | j < in }) ⊆ cl({ bj | j < in+1 }) if n is even;
(2) cl({ bj | j < in }) ⊆ cl({ aj | j < in+1 }) if n is odd.

This is enough: Leti(∗) = sup{ in | n ∈ ω }. Theni(∗) < λ sinceλ is regular
uncountable. Furthercl({ aj | j < i(∗) }) = cl({ bj | j < i(∗) }), since ifi < i(∗), then
there isin with n even such thati < in, so

ai ∈ cl({ aj | j < in }) ⊆ cl({ bj | j < in+1 }) ⊆ cl({ bj | j < i(∗) }),
hence

cl({ aj | j < i(∗) }) ⊆ cl({ bj | j < i(∗) }).
The other inclusion is proved similarly. Thusi < i(∗) ∈ C, which shows thatC is
unbounded.

This is possible: Giveni < λ, we let i0 = i. Assume thatin < λ has been
constructed. Supposen is even. For eachj < in, we have thataj ∈ W = cl({ bj |
j < λ }) sinceJ is a basis. By Finite Character, there is a finiteSj ⊆ λ such that
aj ∈ cl({ bk | k ∈ Sj }). Let kj = supSj < λ, soaj ∈ cl({ bl | l ≤ kj }), and by
increasingkj if necessary, we may assume thatkj ≥ in. Setin+1 = sup{ kj+1 | j < in }.
Thenin+1 < λ sinceλ is regular and satisfies our requirement. The case whenn is odd is
handled similarly.

Proposition 31(Downward Theorem). LetG = (W, cl) be a pregeometry. LetA,B and
C be subsets ofW . SupposeA^

B
C andA′ is a subset ofA, of cardinality at mostλ, for

λ an infinite cardinal. Then there isB′ ⊆ B of cardinality at mostλ such thatA′^
B′
C.

Proof. Let A′ ⊆ A of cardinalityλ be given. Let{ 〈ai, Ai〉 | i < λ } be an enumeration
of all the pairs such thatai ∈ A′ andAi ⊆ A′ is finite. Such an enumeration is possible
sinceλ is infinite. SinceA^

C
B, necessarily

ai 6∈ cl(B ∪ C ∪Ai)− cl(B ∪Ai), for everyi < λ.(*)

Hence, eitherai 6∈ cl(B ∪ C ∪ Ai), or ai ∈ cl(B ∪ Ai). If the latter holds, by Finite
Character, we can find a finiteBi ⊆ B such thatai ∈ cl(Bi ∪ Ai). We letBi = ∅, if
ai 6∈ cl(B ∪Ai). LetB′ =

⋃
Bi. ThenB′ ⊆ B, and|B′| ≤ λ.

We claim thatA′^
B′
C. Otherwise, there exista ∈ A′ and a finiteA∗ ⊆ A′, such

that

a ∈ cl(B′ ∪ C ∪A∗)− cl(B′ ∪A∗).(**)
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Choosei < λ such thata = ai andA∗ = Ai. Thus,ai ∈ cl(B′ ∪ C ∪Ai), and so by Fact
2 we haveai ∈ cl(B ∪ C ∪ Ai). Therefore, by (*) we have thatai ∈ cl(B ∪ Ai). Hence
ai ∈ cl(Bi ∪ Ai) by construction. ButBi ⊆ B′, and soai ∈ cl(B′ ∪ Ai) by Fact 2. This
contradicts (**) sinceA∗ = Ai.

Corollary 32. Let G = (W, cl) be a pregeometry. LetA,B and C be subsets ofW .
Suppose thatA,B andC have cardinality at leastλ for someλ infinite. IfA^

C
B, then

we can findA′ ⊆ A,B′ ⊆ B andC ′ ⊆ C of cardinalityλ, such thatA′^
C ′
B′.

Proof. By the previous theorem using monotonicity.

Proposition 33(Ultraproducts of Pregeometries). Let I be a set andD an ℵ1-complete
ultrafilter on I. Suppose that(Wi, cli) is a pregeometry for eachi ∈ I. ConsiderW =
Πi∈IWi and fora ∈W andB ⊆W , define

a ∈ cl(B) if { i ∈ I | a(i) ∈ cli(B(i)) } ∈ D.

Then(W, cl) is a pregeometry.

Proof. We only show Finite Character, since all the other axioms of a pregeometry are
routine. Supposea ∈ cl(B). ThenJ = { i ∈ I | a(i) ∈ cli(B(i)) } ∈ D, and by Finite
Character ofcli, for eachi ∈ J , there is a finiteB′(i) ⊆ B(i), such thata(i) ∈ cli(B′(i)).
Let Jn = { i ∈ J | B′(i) hasn elements}. Then

{ i ∈ J | a(i) ∈ cli(B′(i)) } =
⋃
n<ω

Jn.

Hence, byℵ1-completeness, there existn < ω such thatJn ∈ D. We now writeB′(i) =
{ bi1, . . . , bin } for i ∈ Jn. Let A = { f1, . . . , fn } ⊆ B be given byfk(i) = bik when
i ∈ Jn andfk(i) ∈ B(i) arbitrary wheni 6∈ Jn. Then

{ i ∈ I | a(i) ∈ cli(A(i)) } ⊇ Jn ∈ D,

by construction. Hence{ i ∈ I | a(i) ∈ cli(A(i)) } ∈ D. Thus,a ∈ cl(A) andA is a finite
subset ofB, which is what we needed.
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