DEPENDENCE RELATION IN PREGEOMETRIES

RAMI GROSSBERG AND OLIVIER LESSMANN

ABSTRACT. The aim of this paper is to set a foundation to separate geometric model
theory from model theory. Our goal is to explore the possibility to extend results from
geometric model theory to non first order logic (elg., ). We introduce a dependence
relation between subsets of a pregeometry and show that it satisfies all the formal properties
that forking satisfies in simple first order theories. This happens when one is trying to lift
forking to nonelementary classes, in contexts where there exists pregeometries but not
necessarily a well-behaved dependence relation (see for example [HySh]). We use these to
reproduce S. Buechler’s characterization of local modularity in general. These results are
used by Lessmann to prove an abstract group configuration theorem in [Le2].

1. INTRODUCTION

The notion of forking is at the center of stability theory. Forking is a dependence
relation discovered by S. Shelah. It satisfies the following properties in the first order stable
case, see [Sh b]:

(1) (Finite character) The tygedoes not fork oveB if and only if every finite subtype
q C p does not fork oveB.

(2) (Extension) Lep be a type which does not fork ové. Let C' be given containing
the domain op. Then there existg € S(C) extendingp such thay; does not fork
overB;

(3) (Invariance) Letf € Aut(€) andp be a type which does not fork ovét. Then
f(p) does not fork oveyf (B).

(4) (Existence) The typg does not fork over its domain;

(5) (Existence of(T')) For every typep, there exists a sé8 C dom(p) such thatp
does not forkB;

(6) (Symmetry) Letp = tp(a/Bc¢). Suppose thap does not fork overB. Then
tp(¢/Ba) does not fork ove;

(7) (Transitivity) LetB C C C A. Letp € S(A). Thenp does not fork ove3 if and
only if p does not fork ove€ andp | C does not fork ovei3.

Already in the introduction of Chapter Il of [Sh b], S. Shelah states what is im-
portant about the forking relation is that it satisfies properties (1)-(7). S. Shelah stated
another property named by S. Buechler [Bu] the Pairs Lemma (see Proposition 17 for the
statement) as one of the basic properties of forking, which was proved in [Sh b] using the
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Finite Equivalence Relation Theorem. Later Baldwin in his book [Bl] presented an ax-
iomatic treatment of forking in stable theories. This allowed Baldwin to derive abstractly
Shelah’s Pairs Lemma from the other properties of forking. Following these ideas, it has
now become common to characterize various stability conditions in terms of the axiomatic
properties that forking satisfies.

One of the most difficult directions of pure model theory is the area called by She-
lah classification theory for nonelementary classes. A major problem is to find a depen-
dence relation which is as well-behaved as forking for first order theories. See for exam-
ple [Gr 1], [Gr 2], [GrHa], [GrLel], [GrLeZ2], [GrSh 1], [GrSh 2], [HaSh], [HySh], [Ki],
[KISh], [Lel], [MaSh], [Sh3], [Sh47], [Sh 87a], [Sh 87b], [Sh 88], [Sh tape], [Sh 299],
[Sh 300], [Sh 362], [Sh 394], [Sh 472], [Sh 576] and [Sh h]. The situation in nonelemen-
tary classes is very different from the first order case. In the first order case, the Extension
property for forking comes for free; it holds for any theory and is a consequence of the
Compactness Theorem. This is in striking contrast with the nonelementary cases; the Ex-
tension property is usually among the most problematic and does not hold over sets in
general for any of the dependence relations introduced thus far.

A general dependence relation satisfying all the formal properties of forking has
thus not been found yet for nonelementary classes. There are, however, several cases where
pregeometries appear; i.e. sets with a closure operation satisfying the properties of linear
dependence in a vector space. In the first order case, the pregeometries are the sets of
realizations of aegular type, and the dependence is the one induced by forking and thus
satisfies automatically many additional properties. In nonelementary classes the situation
is different.

Here are several nonelementary examples: The first three examples have in com-
mon that there exists a rank, giving rise to a reasonable dependence relation. However the
Extensiorproperty and th&&ymmetnyproperty fail in general (they hold over sufficiently
“rich” sets). The rank introduced for these classes are generalizations of what S. Shelah
calls R[-, L, 2]. Intuitively, a formula has rank + 1 if it can be partitioned iriwo pieces
of ranka with some additional properties that are tailored to each context. It is noteworthy
that extensions of Morley rank are inadequate, as partitioning a formula in countably many
pieces makes sense only when the compactness theorem holds. In the last example, no
rank is known, but pregeometries exist.

Categorical sentences i, ,(Q): S. Shelah started working on this context [Sh47]
to answer a question of J.T.Baldwin: Can a sentend&({Q) have exactly one un-
countable model? Shelah answers this question negatively Wsibhg (and later
using different methods within ZFC) while developing powerful concepts. A main
tool is the introduction of a rank. This rank is bounded under the parall®jio
stability. It gives rise to a dependence relation and pregeometries. Later, H. Kier-
stead [Ki] uses these pregeometries to obtain some results on the countable models
of these sentences.

Excellent Scott sentencesin [Sh 87a] and [Sh 87b] Shelah introduces a simplifica-
tion of the rank of [Sh47]. Shelah identifies the concepbafellent Scott sentences
and proves (among many other things) the parallel to Morley’s Theorem for them.
Again, this rank induces a dependence relation on the subsets of the models. Later,
R. Grossberg and B. Hart [GrHa] proved the existence of pregeometries (regular
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types) for this dependence relation and used it to prove the main gap for excellent
Scott sentences.

Totally transcendental diagrams: In[Lel] Lessmann introduced a rank fg-stable
diagrams. Finite diagrams were introduced by S. Shelah [Sh3] in 1970 (see also
[GrLe1l] for an exposition). They are classes of models omitting a prescribed set of
types, with an additional condition. We call a finite diagréotally transcenden-
tal when the rank is bounded. The rank gives rise to a dependence relation on the
subsets of the models and pregeometries exist often. This is used to give a proof of
categoricity generalizing the Baldwin-Lachlan Theorem. In a work in preparation,
[GrLe?2], we prove the main gap for totally transcendental diagrams.

Superstable diagrams: In [HySh], Hyttinen and Shelah study stable finite diagrams
([Sh3] or [GrLe1]) under the additional assumption th@D) = X,. Such diagrams
are calledsuperstableThey introduce a relation between sdtsB and an element
a, writtena | A. The main result is that the parallel of regular types exist. More
precisely, for every pair of “sufficiently saturated” modd&sC N, M # N, there
exists a typep realized inN — M such that the relation |;; C (standing for
a ¢ cl(C)) induces a pregeometry among the realizationsiof N.

Thus, pregeometries seem to appear naturally in nonelementary classes, while
general well-behaved dependence relations are hard to find. The main goal of this paper is
to recover fromanypregeometry a dependence relation over the subsets of the pregeometry
that satisfies all the formal properties of forking. While it is known that forking general-
izes the first order notion of algebraic closure inside a strongly minimal set, recovering a
“forking-like” dependence relation from an arbitrary pregeometry has not been done. This
is, of course, particularly useful when the pregeometry itself mas$nduced by forking.

In superstable diagrams for example, using our formalism, a good dependence relation can
be recovered inside the pregeometry, while the original dependence relation inducing the
pregeometry isiotas well behaved (see [HySh]).

A similar endeavor was attempted by John Baldwin in the early eighties. In [BI1],
J.Baldwin examined some pregeometries and several dependence relations in the first order
case. From a pregeometry, he defines the relationC, by a € cl(B U C) — cl(B). He

B

did not however introducel | C, whereA is atuple or asetas opposed to an element,

B
which we do (see Definition 8). This is a crucial step; it is built-in in the model theory
of first order, since forking is naturally defined for types of any arity. To make this more
precise, fixI" a first order stable theory. Let us write

*

al C for tp(a/BUC) does notfork ove.
B

Inside a regular typg(z) € S(B), the relationa € cl(C) given bya [ C gives rise to a
B

pregeometry. But, the relatiah L C is defined in general whether or noandC' consist
B

of elements realizing. Inside the pregeometry, the relatian. C holds (defined with

forking) if and only if the relatiorz L C' holds (defined formally from our definition using
B
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the closure operator of the pregeometry). This is a consequence of the Pairs Lemma, which
holds for first order simple theories. When we start from an abstract pregeometry (or an
abstract dependence relation), werdht have the formalism of types or the Pairs Lemma.

Therefore the relation L C has to be introduced for tuples, using the relatiah C for
B B
elements. As a consequence, suppose we are given the corresponding notion of a regular

typep € S(B) in a nonelementary context. Suppose there is some ambient dependence

relation, writtenA L. C' such that over realizations pfthe relationa € cl(C), given by
B

a.J C, induces a pregeometry. Then, the truth value of the relationC' (given from
B B
the ambient dependence relation) and. C (defined from the closure operation in the

pregeometry) may not coincide. They will coincide only if the Pairs Lemma holds for the
dependence relation (and this fact is not known in general for nonelementary cases). There-
fore, this abstract formalism allows us to introduce for nonelementary classes a (possibly)
betterdependence relation, inside the pregeometry.

As an illustration of the value of this general relation, we present S. Buechler’s
characterization of local modularity with parallel lines (see [Bu]) in this general context.
This also has esthetic value as it allows one carry out this work in the general context of
combinatorial geometry, without logic.

Finally, we add a short section with some easy set-theoretic results.

In a follow-up paper [Le2], Lessmann presents an abstract framework where,
using the “anchor relation” defined is this paper, he derives a generalization of Zilber-
Hrushovski group configuration theorem. We expect this result to have a potential for the
classification theory of nonelementary classes.

We would like to thank John Baldwin and Saharon Shelah for valuable comments
on a draft of this paper.

2. PRELIMINARIES

We recall a few standard and well-known facts about pregeometries. The notation
is standard. We writelb for A U {b}.

Definition 1. We say tha{W, cl) is apregeometryf IV is a set andl: P(W) — P(W)
is a function satisfying the following four properties

(1) (Monotonicity) For every seX € P(W) we haveX C cl(X);

(2) (Finite Character) I € cl(X) then there is a finite s& C X, such thata €
cl(Y);

(3) (Transitivity) LetX,Y € P(W). If a € cl(X) andX C cl(Y) thena € cl(Y);

(4) (Exchange Property) Fot € P(W) anda,b € W, if a € cl(Xb) buta ¢ cl(X),
thenb € cl(Xa).

We always assumd(() # W.
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The next two basic properties are standard and easy.
Fact 2. If (W, cl) is a pregeometry anB C C' C W, thencl(B) C cl(C).
Fact 3. If (W, cl) is a pregeometry anB C W, thencl(cl(B)) = cl(B).
Definition 4. Let (W, cl) be a pregeometry.

(1) ForX C W, we say thatX is closedif X = cl(X);

(2) I € W isindependenif for everya € I, we haven ¢ cl(I — {a});

(3) We say thaf C A generatesd, if cl(I) = cl(A);

(4) A basisfor a setA C W is an independent sétgenerating:1(A);

(5) ForX C W, thedimension of Xwritten dim(X), is the cardinality of a basis for
cl(X).

Fact 5. Using the axioms of pregeometry, one can show that for every set, bases exist and
that the dimension is well-defined see for example Appendix in [Gr]

Definition 6. Let G = (W, cl) be a pregeometry.

(1) A bijectionf: W — W is anautomorphism of7 if for everya € W andA C W
we have
a € cl(4) ifandonlyif f(a) € cl(f[4]).

We denotedut 4 (G) the set of automorphisms 6f fixing A pointwise.

(2) We say thatG is homogeneous for every a,b € W and A C W, such that
a ¢ cl(A) andb ¢ cl(A) there is an automorphism @}, fixing A pointwise and
takinga to b.

Remark 7. While most of geometric model theory requires that the geometries are homo-
geneous, in this paper homogeneity is not assumed.

3. DEPENDENCE INPREGEOMETRIES

In this section, we introduce the main concept of the paper.

Definition 8. Let (W, cl) be a pregeometry. Let, B andC be subsets dfi’. We say that
A depends ori” over B, if there exista € A and a finiteA’ C A (possibly empty) such
that

a€c(BUCUA) —cl(BUA).
If A depends o over B, we write A )L C;
B

If A does not depend ofi over B, we write A L C.
B

Remark 9. An alternative definition withA’ = () does not permit a smooth extension to

setsA. L C whenA is not a singleton.
B

Remark 10. A.L C ifand only if AU B.L C U B. Hence, we will often assume that

B
BCANC.
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We now prove that the properties of forking in simple theories hold with this
formalism, directly from the axioms of a pregeometry.

Proposition 11 (Finite Character) Let (I, cl) be a pregeometry. Let, B andC' be sub-
sets ofi¥. Then

ALC ifandonlyif A’ L C’,
B B

for every finiteA’ C A and finiteC’ C C.

Proof. If A ) C, then there exist € A, and a finited’ C A such that
B

a€ec(BUCUA) —cl(BUA).
By Finite Character, there exist a finie@ C C such thata € cl(B U C’ U A’). Hence
A" ) C’, by definition.
B

For the converse, if there exist a finitE C A and a finiteC’ C C such that
A’ L ¢, then we can find € A’ andA” C A’ such that
B

a€c(BUC'UA")—cl(BUA").
SinceC’ C C, we haves € cl(BUC U A”), by Fact 2. Henced ., C, by definition. O
B

Proposition 12 (Continuity). Let (W, cl) be a pregeometry. LéC; | i < «) be a contin-
uous increasing sequence of set$linand A, B C .

Q) IfA 7\3/ C; for everyi < a, thenA % Uica Ci-

(2) If C; L Aforeveryi < a,then,__, C; L A.
B B

<o

Proof. By the finite character. O

Proposition 13 (Invariance) Let G = (W, cl) be a pregeometry. Let, B andC' be sub-
sets ofii and letf € Aut(G). Then

ALC ifandonlyif f(A4) L f(C).
B f1B]

Proof. Immediate from the definitions. O

Proposition 14(Monotonicity) Let(W,cl) be a pregeometry. Let, B andC be subsets
of W. Supposed L C.
B

(1) If A’ C AandC’ C C, thenAd’ L C;
B
() If B'CC,thend L C.
BUDB
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Proof. (1) Suppose thatl’ ) C’. Leta € A’ andA* C A’ finite such that
B

a€c(BUC' UA*) —cl(BUA").

Then, by Fact 2, we havee cl(BUC U A*) — cl(BU A*). Buta € AandA* C A, so
A)C.
B

(2) Supposed [ C.Leta € AandA’ C A finite such that
BUPB

a€ec(BUB UCUA) —c(BUB' UA).

SinceB’ C C, we havecl(BUB' UCUA’) = c(BUCUA"). Also,cl(BUA") C
c(BUB'UA). Hencea € cl(BUC U A’") — cl(BU A’). Therefored .J. C. O
B

The role ofA’ becomes clear in the next proof.

Proposition 15(Symmetry) Let (W, cl) be a pregeometry. Let, B andC' be subsets of
W. Then

ALC ifandonlyif C L A.
B B

Proof. Suppose thatl ., C. Choosez € A and a finiteA’ C A such that
B

* a€c(BUCUA") —cl(BUA).

By Finite Character and (*), there existe C and a finite (and possibly emptg) C C
such that

(**) acec(BUC'UcUA") and agc(BUC UA).
Therefore, by the Exchange Property, we have
cec(BUC ' UA Ua).
Butc & cl(BUC’'U A’), (**). Hence,
cec(BUC'"UA Ua) —cl(BUC"UA).
Therefore,C\éA’, for some finite subsed’ of A. Hence,C\éA, by Finite Character.
O

Proposition 16 (Transitivity). Let(1V, cl) be a pregeometry. Let, B, C'and D be subsets
of W such thatB C C C D. Then,

ALD and ALC ifandonlyif AL D.
C B B

Proof. Suppose firstthati ., D. Choosez € A and a finited’ C A such that
B

a€c(DUA) —cl(BUA).
Eithera € cl(C U A’), and so
a€cl(CUA)—c(BUA,
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which implies thatd .. C. Ora ¢ cl(C U A’), and therefore
B

a€c(DUA) —cl(CUA),
which implies thatd ;. D.
C

The converse follows by Monotonicity sinde C C' C D. O

The following is proved in [Sh b] directly using the finite equivalence relation
theorem. The proof that it follows from the other axioms of forking is due to J. Baldwin.
We present it here for completeness.

Proposition 17 (Pairs Lemma) LetG = (W, cl) be a pregeometry. Let, B, C' and D be
subsets of#” such that” C BN D. Then

AUBLD ifandonlyif A . DuB and B.LD.
C CUB C

Proof. Notice first, that by definition

*) A L DuUB ifandonlyif A L D.
CUB CUB

Therefore, by Symmetry and (*), it is equivalent to show that

Dl AuB ifandonlyif D L A and DL B,
C cCuB C

which is true by Transitivity. O

Remark 18. Let (W, cl) is a pregeometry. Let, B, C andD be subsets dfi’. Then

AD L C ifandonlyif AL CD.
B B

Proof. Supposed .l CD. Then, by Monotonicity we havel .l D. Therefore, by Sym-
B

B
metry, we haveD . A. By Transitivity, we haved . CD. Hence,AD L C by Con-
B B

_ BD
catenation.

For the converse, suppose thatl. CD. Then by Symmetry we must have
B

CD L A. Hence, by the first paragraph, we know tidatl. AD, so by Symmetry, also
B B

AD L C. O
B

This finishes the list of usual properties of forking. We now prove a few proposi-
tions relating closure and. .

Proposition 19(Closed Set Theorem) et (I, cl) be a pregeometry. Let, B andC be
subsets of¥/. Then

ALC ifandonlyif A" L,
B B’

provided thatl(A U B) = cl(A’ U B’), cl(B) = cl(B’) andcl(C U B) = cl(C' U B').
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Proof. Itis clearly enough to prove one direction. Furthermore, by Symmetry, it is enough
to show thatd L C implies A L C’. Suppose thatl ;. C’. Leta € A andA* C A be
B B’ B’
such that
a€cl(B UC'UA*") —cl(B' UAY).

But, it follows from the assumption that(B’ U C" U A*) = cl(BU C U A*) andcl(B’ U
A*) = cl(B U A*). Therefore

a€cl(BUCUA") —cl(BUAY),
which implies thatd ., C. O
B

Remark 20. In view of the previous result, wheA L C, we can first choose a basi®
B
of B, and choosel’ C A andC’ C C, independent oveB (or equivalentlyB’), such that

cl(AUB) = cl(A’UB) andcl(CUB) = cl(C'UB), and thusA’ L C" and alsad’ L C".
B B’

Proposition 21. Let (W, cl) be a pregeometry. Let, B andC' be subsets df’.
AL C implies cl(AUB)Ncl(CUB)=cl(B).
B

Proof. Certainlycl(B) C cl(A U B) ncl(C U B). Suppose that the reverse inclusion
does not hold, and lei € cl(A U B) N cl(C U B) such thata ¢ cl(B). Thena €
cl(C' U B) — cl(B), socl(AU B) ., C. But the previous proposition implies that ). C,

B B

which is a contradiction. O
Remark 22. In view of the definition and symmetry, when we look At C, we will

B
generally assume théat C A andB C C. Further, because of the closed set theorem, we
may assume that, B andC are closed, and finally, thd&8 = AN C.

4. BUECHLER S THEOREM

This section is devoted to reproducing a theorem of S. Buechler in general pre-
geometries. The point is to illustrate the following idea: Any geometric property valid
in the first order case which uses only basic properties of forking is in fact valid in every
pregeometry, in particular in nonelementary examples.

We list a few more definitions.

Definition 23. Let (W, cl) be a pregeometry.

(1) (W, cl) is calledmodularif for every closed subset$; and.S; of W we have
dlm(81 U SQ) + dlm(Sl N SQ) = dlm(Sl) + dlm(Sg),

(2) (W, cl) is calledlocally modularif for every closed subsetS; and S, of W we
have

dim(Sl U Sg) + dim(51 N 52) = dlm(Sl) + dim(Sg),
provided thatS; N Sy # 0.
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Definition 24. Let (W, cl) be a pregeometry.

(1) Aclosed sef. C W is alineif dim(L) = 2;
(2) Two disjoint linesL; and L, areparallel if dim(L; U Ly) = 3.

Definition 25. Let G = (W, cl) be a pregeometry and C W. Define theocalization of
G atA writtenG4 = (Wa,cla), by
Way=W-A and CIA(X) = Cl(XUA) — A, for X C Wy.

Remark 26. Itis easy to see that i is a pregeometry, thefd 4 is a pregeometry. 167 4,
we denote the dimension &f by dim(X/A).

Remark 27. If G = (W, cl) is locally modular, theri7 4 is modular for any finite subset
Aof W — cl(().

Proposition 28. Let (W, cl) be a pregeometry. Let;, So be finite dimensional closed sets
satisfyingSy = S; N S,. Then,

S1 € Sy ifand only if dlm(81 @] SQ) + dim(51 N 52) = dlm(Sl) + dlm(SQ)
So

Proof. Suppose first tha$; L S;. Let I be a basis folSy, and letl; O I be a basis for
So

S; fori = 1,2. Clearly,cl(S; U S2) = cl(I; U I3). We claim, in addition, thaf; U I5 is

independent. Otherwise thereii cl(I; UI; — {a }). Without loss of generality, we may

assume that € I;. Now, sincel; is independenty & cl(I; — {a }), thus

acc(lhUly—{a})—cl(l; —{a}), fori=1,2.

We may also assume thatg I. To see this, assume thate I. Choosel; C I; — I,
minimal with respect to inclusion, such that cl(I{UI,UI —{a }), I} # 0,fori =1,2.
By the Exchange Property, therebig I, such that

becd(IjUulbuTUu{b}) Ccl(lUuly—{b}).
But,ifa ¢ I,thencl(ly —{a}) =cl(IUI; —{a}) so
a€cl(loU(ls—{a})) —cl(IU (I —{a})),
which means that; ./ S, a contradiction. Hencé, U I, is independent. Therefore

0
dlm(Sl U Sg) = |Il U12|. BUt|Il UIQ‘ + |I| e |Il| + ‘Ig|, SO
dim(Sl U Sg) + dim(51 N 52) = dll’Il(Sl) + dlm(SQ)

For the converse, suppo$e ., S». Leta € S; andA; C S; such that
So

(*) a € CI(SQ U Al) — CI(SO U Al)

Choose: such thatd; has minimal cardinality. This implies that; U {a} is independent
over Sy, andA; is independent ove$,. Thus, we can pick a basig for Sy, and extend
Iy U A; U {a} to a basidl; of S;. Now choosel}, disjoint from Iy, such thatly U I} is a
basis ofS,. But, Iy U 4; U {a} U I} is not independent by (*). Hence

dlm(81 U SQ) + dlm(Sl N SQ) < dlm(Sl) + dlm(Sg),

which finishes the proof. O
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In the previous section, we showed that in any pregeometry, there is a relation
that satisfies all the properties that forking satisfies in the context of simple theories. This
allows us to show a theorem of Buechler [Bu], originally proved for stable theories, when
the pregeometry comes from forking.

Theorem 29(Buechler) LetG = (W, cl) be a pregeometry. TheH is locally modular if
and only ifG 4 has no parallel lines for every finitd C W, such thatd ¢ cl(().

Proof. Suppose first that there is a finite C W, such thatd Z cl()) andG 4 contain
parallel lines. Thus, lef; and L, be disjoint lines inG 4 such thatlim(Z; U L,/A) = 3.
Let L, = cl(L; UA)fori=1,2. ThenA C L} N LY, soL} N L, Z cl((), L, is closed for
1=1,2,and

dim(L} U L}) + dim (L) N LY) # dim(L}) + dim(L5).
This shows that is not locally modular.

For the converse, suppose tliats not locally modular. Then there are closgd
and.S; subsets of? such thatS; N Sy & cl(f) and
dim(S1 U S3) + dim(Sy N S2) # dim(Sy) + dim(Ss).

We may assume that; and.S; are finite dimensional. Let, = S; N S;. By Proposition
28, this implies thab; L. Ss.
So

Let D be the set of pairs of intege(d;, d») such that there are closed sgisand
Ss such that

e Sy =51NS5; andS, g Cl(@),
o d; = dlm(Sl/SQ) andd2 = dlm(SQ/So),

« S LS,
So

By assumptiorD # (). Choose{(d;,d>) minimal with respect to the lexicographic order.
We claim that(d;,ds) = (2,2). Note that this is enough to prove the theorem since
cls, (S1 — Sp) andclg, (S2 — Sp) are parallel lines if7s, .

Certainly,d; > 1. Otherwisedim(S;/Sp) = 1 and sinceS; ., S; there must
So
exista € S; — Sp such thate € cl(S2) — cl(Sp). SinceSs and.S, are closed, we have
a € S1 NSy — 8y, acontradiction, sincé; N Sy = Sg.

We now show thatl; < 3. Supposel; = dim(S;/Sy) > 3. We will show that
this contradicts the minimality af,. We first show that

* S1Necl(Sqa) = cl(Spa), foranya € S; — Sp.
First, notice thatSpa C S7 andSpa C cl(Sza), SO
S1 Ncl(S2a) D cl(Spa), foranya € Sy — Sp.
Hence, if (*) does not hold, it is because for some S; — Sy, there exists
b € (S1Ncl(S2a)) — cl(Spa).
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By definition, this implies thaf a,b} ). 5.
0

Let S] = cl(Spab). ThenS; NSy = Sy andSy Z cl(P). FurthermoreS] ., Sa.
So
But dim(S2/Sy) = dz anddim(S]/Sp) = 2 < 3 < dy, which contradicts the minimality
of d;. Therefore, (*) holds.

Now, sinceS; L Ss, there existz € S and a finiteA C S; such that
So
**) a € cl(SyUA)—cl(SyU A).
But A € Sy. Otherwise, by (**) we have € cl(S3) —cl(Sp). This shows that € Sy — 5,

sinceS, andS, are closed. But € S1, soa € (51 N Se) — Sp = B, which is impossible.
Hence, there is € A — Sy. Then, sincedb = A, we have

a € cl(SyUA)—cl(SebU A).
HenceS; L 5.
SoUb

Now considerSy := cl(S2b). Then,S; J S, implies thatS; ., S5. By

SoUb SoUb
(*) we have S; NS5 = cl(Spdb). Finally, dim(S1/(Sob)) < dim(S1/Sy) = d; and
dy = dim(S2/Sp) = dim(S%/Sob). This contradicts the minimality of;. We prove
similarly thatd, = 2, which finishes the proof. O

5. SOME “SET THEORY'

In this section, we gather several observations with a set-theoretic flavor. The next
theorem is a generalization of a lemma from J. Baumgartner, M. Foreman and O. Spinas
[BFS]. Although the proof is easy, it does not follow from the analog theorem involving
models as we do not have control over the cardinality of the closures. The value of this
theorem is that it makes it possible to attach a club as an invariant of the pregeometry.

Theorem 30. Let G = (W, cl) be a pregeometry. Suppodan(W) = X is regular and
uncountable. Lef = {a; |i <A} andJ = {b; | i < A} be bases of’. Then

C={i<X: d({a;|j<i})=c{bjli<i}) }
is a closed and unbounded subsefof

Proof. We first show that is closed. Let = sup(é N C). Then, for anyi < ¢ there is
i1 € C'such that < i; < 4. Hence, by definition of”

* c(fa;[j <ir}) =c({b;[j<ir}).
Lemma 4 and (*) implies that; € cl({b; | j < d }). Hence,
fajlj <o} Cefb;|j<d}),
and therefore
cd({a; |j<d})Scd{b;[j<d}),
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by Fact 2 again. The other inclusion is similar and so

c(fa; |7 <do})2c({b;[j<d}).
This shows that € C, by definition ofC.

We now show thaf” is unbounded in\. Leti < X be given. We construél, < A
for n € w increasing withiy = 7 such that

(@) cd({aj |j<in}) Ccl({bj|j <int1})if niseven;
(2) cl({b; |j<in}) Ccl{aj|j <ingr})if nisodd.

This is enough: Lei(x) = sup{ i, | n € w}. Theni(x) < A since is regular
uncountable. Furthed({a; | j < i(x)}) = cl({d; | j < i(*) }), since ifi < i(x), then
there isi,, with n even such that < i,,, so

ai € cd({aj | j <in}) Cel({b; |5 <ing1}) Cel({b; |j<i(*)}),
hence

c(faj |7 <i(x)}) Cel({b; [ 7 <ilx)}).

The other inclusion is proved similarly. Thus< i(x) € C, which shows that is
unbounded.

This is possible: Givern < A, we letig = i. Assume that,, < A\ has been
constructed. Supposeis even. For eachi < i,, we have that; €¢ W = cl({b; |
j < A}) sinceJ is a basis. By Finite Character, there is a finfte C A such that
a; € Cl({bk | k € Sj }) Letkj = suij < A, SOa; € Cl({bl | [ < ]{Jj }), and by
increasing; if necessary, we may assume that> i,,. Seti, 1 = sup{ k;+1 | j < i, }.
Theni, 1 < A sincel is regular and satisfies our requirement. The case whemdd is
handled similarly. O

Proposition 31 (Downward Theorem)Let G = (W, cl) be a pregeometry. Let, B and
C be subsets dfi’. Supposed L C and A’ is a subset ofd, of cardinality at most\, for
B

A an infinite cardinal. Then there iB’ C B of cardinality at mosf\ such thatd’ | C.
B/

Proof. Let A’ C A of cardinality A be given. Let{ (a;, 4;) | i < X} be an enumeration
of all the pairs such that; € A’ andA; C A’ is finite. Such an enumeration is possible
since) is infinite. SinceA .l B, necessarily

C

* a; € cl(BUCUA;) —cl(BUA4;), foreveryi <.
Hence, either; ¢ cl(BU C U A;), ora; € cl(B U 4;). If the latter holds, by Finite

Character, we can find a finit8; C B such thata; € cl(B; U 4;). We letB; = 0, if
a; € cl(BUA,;). LetB’ =JB,. ThenB’ C B, and|B’| < A.

We claim that4d’ | C. Otherwise, there exist € A’ and a finited* C A’, such
B/
that

(**) a€cl(B UCUA*") —cl(B'UA").
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Choose < X such thats = a; andA* = A;. Thus,a; € cl(B’ U C U A;), and so by Fact
2 we haven; € cl(B U C U A;). Therefore, by (*) we have that € cl(B U 4;). Hence
a; € cl(B; U A;) by construction. BuB; C B’, and sau; € cl(B’ U A;) by Fact 2. This
contradicts (**) sinced* = A;,. O

Corollary 32. Let G = (W,cl) be a pregeometry. Let, B and C' be subsets ofi’.

Suppose thatl, B and C have cardinality at leash for some) infinite. If A L B, then
C
we can find4d’ C A, B’ C BandC’ C C of cardinality \, such thatd’ | B’.
O/

Proof. By the previous theorem using monotonicity. O

Proposition 33 (Ultraproducts of Pregeometried)et I be a set and® an X;-complete
ultrafilter on I. Suppose thatWW;, cl;) is a pregeometry for eache I. ConsideriV =
II;c;W; and fora € W and B C W, define

accB) if {iel]a(i)ecl(B(i)) }eD.
Then(W, cl) is a pregeometry.

Proof. We only show Finite Character, since all the other axioms of a pregeometry are
routine. Suppose € cl(B). ThenJ = {i¢ € I | a(i) € cl;(B(3)) } € D, and by Finite
Character otl;, for eachi € J, there is a finiteB’ (i) C B(i), such thau(i) € cl;(B’(4)).
LetJ, = {i € J | B'(i) hasn element$. Then

{ieJ|a()eci(B' (@)} =] Jn

n<w

Hence, byR;-completeness, there exist< w such that/,, € ©. We now writeB’(i) =
{vi,... b5 }fori € J,. LetA = {fi,...,f.} C B be given byfi(i) = bi when
i € J, and (i) € B(i) arbitrary wheni ¢ .J,,. Then

{iel|a(i)ecl(Al)} 2D J, €D,

by construction. Hencéi € T | a(i) € cl;(A(7)) } € . Thus,a € cl(A) andA is a finite
subset ofB, which is what we needed. O
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