0.1 MORE EXERCISES

- (1) Let T be a countable complete theory. Suppose that T is stable in \aleph_0 . Prove that for every $\lambda \ge \aleph_0$ the theory T has a saturated model of cardinality λ .
- (2) Let T be a countable complete theory. Suppose that T is stable in ℵ₀. If R[φ(**x**; **a**)] = α for an ordinal α then for every β < α there exists a formula ψ_β(**x**; **b**_β) such that R[ψ_β(**x**; **b**_β)] = β.
- (3) Let p be a type. Prove that for every automorphism f (of \mathfrak{C}) we have that R[p] = R[f(p)].
- (4) Use (2) and (3) to give an alternative proof to the fact that for countable theories, ℵ₀-stability implies R[x = x] < ω₁.
- (5) If T has the order property then T is unstable.
- (6) Let λ be an infinite cardinal, show that $I(\lambda, PA) > 1$.
- (7) Let T be a complete first order theory. Prove that the following are equivalent.
 - (a) T is stable
 - (b) every countable complete $T' \subseteq T$ is stable.
- (8) Show that T_{ind} is unstable and is model complete.
- (9) Show that the rank function $R[\cdot]$ defined in class and the function from page 211 of my book are equal.
- (10) Let $\langle G, \cdot \rangle$ be an infinite group we say that G is *stable/superstable* iff $Th(\langle G, \cdot \rangle)$ is. By $H \leq_{def} G$ denote H is a definable subgroup of G.
 - (a) G is \aleph_0 stable then

 $\neg \exists \{H_n \leq_{def} G \mid n < \omega\} \quad with \quad 1 < [H_n : H_{n+1}] for all \ n < \omega.$

(b) G is superstable then

$$\neg \exists \{ H_n \leq_{def} G \mid n < \omega \} \quad with \quad [H_n : H_{n+1}] \ge \aleph_0 forall \ n < \omega.$$

(c) G is stable then there is no {H_n ≤ G | n < ω} uniformly definable subgroups with H_{n+1} ≤ H_nforalln < ω.
Where uniformly definable subgroups stands for: There are φ(x; y; a) maybe with parameters from G and {b_n | n < ω} ⊆ G such that H_n = φ(G; b_n; a) for all n < ω.

(11) Use the previous exercise to prove the following:

Theorem 0.1.1 Let $\langle G, \circ \rangle$ be a group and suppose that $h : G \to G$ is a non trivial definable (in the language of group theory) homomorphism. If $Th(\langle G, \circ, h \rangle)$ is superstable and the kernel of h is finite then h must be surjective.

Moreover,

Theorem 0.1.2 Let $\langle G, \circ \rangle$ be a group and suppose that $h : G \to G$ is a non trivial definable (in the language of group theory) homomorphism. If $Th(\langle G, \circ, h \rangle)$ is \aleph_0 -stable then h must be surjective.

Hint: Use Exercise 1.6.26.