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Abstract

We prove some results on the border of Ramsey theory (finite parti-
tion calculus) and model theory. In particular, we demonstrate bounds
on the size of finite sets that assure the existence therein of sequences
indiscernible with respect to a formula and how those bounds are im-
proved by stability assumptions.

1 Introduction

In his fundamental paper Frank Ramsey was interested in “a problem of
formal logic.” (See [9] and pages 18-27 of [4].) He proved the result now
known as “(finite) Ramsey’s theorem” which essentially states

For all k, r < ω, there is an n < ω such that however the r
– subsets of {1, 2, . . . , n} are 2 – colored, there will exist a k –
element subset of {1, 2, . . . , n} which has all its r – subsets the
same color.

(We will let n(k, r) denote the smallest such n.) Ramsey proved this
theorem in order to construct a finite model for a given finite universal theory
so that the universe of the model is canonical with respect to the relations
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in the language. (For model theorists “canonical” means ∆ – indiscernible
as in Definition 2.1).

Much is known about the order of magnitude of the function n(k, r) and
some of its generalizations (see [3], for example). An upper bound on n(k, r)
is an (r − 1) – times iterated exponential of a polynomial in k. Many feel
that the upper bound is tight. However especially for r ≥ 3 the gap between
the best known lower and upper bounds is huge.

In 1956 A. Ehrenfeucht and A. Mostowski [2] rediscovered the usefulness
of Ramsey’s theorem in logic and introduced the notion we now call in-
discernibility. Several people continued exploiting the connections between
partition theorems and logic, predominant among them M. Morley (see [7]
and [8]) and S. Shelah (see [11] among many others). Morley [8] used indis-
cernibles to construct models of large cardinality (relative to the cardinality
of the reals) — specifically, he proved that the Hanf number of Lω1,ω is iω1 .

The major goal of this paper is to study Ramsey numbers for definable
colorings inside models of a stable theory. This can be viewed as a direct
extension of Ramsey’s work, namely by taking into account the first order
properties of a structure. One example is the field of complex numbers
〈C,+, ·〉. It is well known that its first order theory has many nice properties
— it is ℵ1 – categorical and thus is ℵ0 – stable and has neither the order
property nor the finite cover property.

We will be most interested in the following general situation:

Given a first order (complete) theory T , and (an infinite)
model M |= T . Let k and r be natural numbers, and let F be
a coloring of a set of r – tuples from M by 2 colors which is
definable by a first order formula in the language L(T ) (maybe
with parameters from M). Let n def= nF (k, r) be the least natural
number such that for every S ⊆ |M | of cardinality n, if F :
[S]r → 2 then there exists S∗ ⊆ S of cardinality k such that F
is constant on [S∗]r.

It turns out that for stable theories (or even for theories just without
the independence property) we get better upper bounds than for the general
Ramsey numbers. This indicates that one can not improve the lower bounds
by looking at stable structures.
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Shelah [11] proved that instability is equivalent to the presence of either
the strict order property or the independence property. In a combinatorial
setting, stability of a formula φ implies that there is a natural number k so
that for arbitrarily large sets A, the number of φ-types over A is at most
|A|k. We shall restrict our attention to when the number of φ-types over a
finite set A is bounded by a polynomial in |A|.

First we establish the degree of the polynomial bound on the number
of φ-types given to us by the absence of the strict order or independence
properties. Once we have these sharper bounds we can find sequences of
indiscernibles in the spirit of [11]. It should be noted here that everything
we do is “local”, involving just a single formula (or equivalently a finite set of
formulas). We then work through the calculations for uniform hypergraphs
as a case study. This raises questions about “stable” graphs and hypergraphs
which we begin to answer.

Notation: Everything is standard. We will typically treat natural numbers
as ordinals (i.e., n = {0, 1, . . . , n − 1}). Often x, y, and z will denote
free variables, or finite sequences of variables — it should be clear from the
context whether we are dealing with variables or with sequences of variables.
When x is a sequence, we let l(x) denote its length. L will denote a similarity
type (a.k.a. language or signature), ∆ will stand for a finite set of L formulas.
M is an infinite L - structure, |M | is the universe of the structure M , and
‖M‖ the cardinality of the universe of M . Given a fixed structureM , subsets
of its universe will be denoted by A, B, C and D. So when we write A ⊆M
we really mean that A ⊆ |M |, while N ⊆ M stands for “N is a submodel
of M”. When M is a structure then by a ∈M we mean a ∈ |M |, and when
a is a finite sequence of elements, then a ∈ M stands for “all the elements
of the sequence a are elements of |M |”. When we write L(M) we mean
L-formulas (i.e., formulas from L) with parameters from M (equivalently,
formulas from the language of L with added constants for the elements of
M).

Since all of our work will be inside a given structure M all the notions
are relative to it. For example for a ∈M and A ⊆M we denote by tp∆(a,A)
the type tp∆(a,A,M) which is {φ(x; b) : M |= φ[a; b], b ∈ A, φ(x; y) ∈ ∆}
and if A ⊆ M then S∆(A,M) def= {tp∆(a,A) : a ∈M}. Note that in [11]
S∆(A,M) denotes the set of all complete ∆ -types with parameters from
A that are consistent with Th(〈M, ca〉a∈A). It is usually important that ∆
is closed under negation, so when ∆ = {φ,¬φ}, instead of writing tp∆(· · ·)

3



and S∆(· · ·) we will write tpφ(· · ·) and Sφ(· · ·), respectively.

2 The effect of the order and independence prop-
erties on the number of local types

In this section, we fix some notation and terms and then define the first
important concepts. In the following definition, parts (1)−(3) are from [11],
(4) is a generalization of a definition of Shelah, and (5) is from Grossberg
and Shelah [6].

Definition 2.1 1. For a set ∆ of L – formulas and a natural number n,
a (∆, n) – type over a set A is a set of formulas of the form φ(x; a)
where φ(x; y) ∈ ∆ and a ∈ A with l(x) = n. If ∆ = L, we omit it, and
we just say “φ – type” for a ({φ(x; y),¬φ(x; y)}, l(x)) – type.

2. Given a (∆, n) – type p over A, define dom(p) = {a ∈ A : for some
φ ∈ ∆, φ(x; a) ∈ p}.

3. A type p (∆0,∆1) – splits over B ⊆ dom(p) if there is a φ(x; y) ∈ ∆1

and b, c ∈ dom(p) such that tp∆0(b, B) = tp∆0(c,B) and φ(x; b),¬φ(x; c) ∈
p. If p is a ∆ – type and ∆0 = ∆1 = ∆, then we just say p
splits over B.

4. We say that (M,φ(x; y)) has the k - independence property if there are
{ai : i < k} ⊆ M , and {bw : w ⊆ k} ⊆ M , such that M |= φ[ai; bw] if
and only if i ∈ w.

5. (M,φ(x; y)) has the n – order property (where l(x) = l(y) = k) if there
exists a set of k – tuples {ai : i < n} ⊆M such that i < j if and only
if M |= φ[ai, aj ] for all i, j < n.

6. We say that (M,φ) does not have the d - cover property if for every
n ≥ d and {bi : i < n} ⊆M , if(

∀w ⊆ n
[
|w| < d⇒M |= ∃x

∧
i∈w

φ(x; bi)

])
then

M |= ∃x
∧
i<n

φ(x; bi).
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Warning: This use of “order property” corresponds to neither the order
property nor the strict order property in [11]. The definition comes rather
from [5].

Example 2.2 If M = (M,R) is the countable random graph, then (M,R)
fails to have the 2 – cover property. If M is the countable universal homoge-
neous triangle-free graph, then (M,R) fails to have the 3 – cover property.

The following monotonicity property is immediate from the definitions.

Fact 2.3 For sets B ⊆ C ⊆ A and a complete (∆, n) – type p with Dom(p) ⊆
A, if p does not split over B, then p does not split over C.

Shelah (see [11]) established that for complete first order theory T is
unstable if and only if T has a model which has the ω− order property.
This along with the compactness theorem gives us the following.

Fact 2.4 Let T be a stable theory, and suppose that M |= T is an infinite
model.

1. For every φ(x, y) ∈ L(M) there exists a natural number nφ such that
(M,φ) does not have the nφ – order property.

2. For every φ(x, y) ∈ L(M) there exists a natural number kφ such that
(M,φ) does not have the kφ – independence property.

3. If T is categorical in some cardinality greater than |T |, then for every
φ(x, y) ∈ L(M) there exists a natural number dφ such that (M,φ) does
not have the dφ – cover property.

We first establish that the failure of either the independence property
or the order property for φ implies that there is a polynomial bound on the
number of φ− types. The more complicated of these to deal with is the
failure of the order property. At the same time this is perhaps the more
natural property to look for in a given structure. The bounds in this case
are given in Theorem 2.9. The failure of the independence property gives us
a far better bound (i.e., smaller degree polynomial) with less work. This is
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hardly surprising since the independence property entails the order property
in this sense. Theorem 2.11 reproduces this result of Shelah paying attention
to the specific connection between the bound and where the independence
property fails.

This first lemma is a finite version of Lemma 5 from [5].

Lemma 2.5 Let φ(x; y) be a formula in L, n a positive integer, t = max{l(y), l(x)},
and ψ(y;x) = φ(x; y). Suppose that {Ai ⊆ M : i ≤ 2n} is an increasing
chain of sets such that for every B ⊆ Ai with |B| ≤ 3tn, every type in
Sφ(B,M) is realized in Ai+1. Then if there is a type p ∈ Sφ(A2n,M) such
that for all i < 2n, p|Ai+1 (ψ, φ) – splits over every subset of Ai of size at
most 3tn, then (M,ρ) has the n− order property, where

ρ(x0, x1, x2; y0, y1, y2) def= [φ(x0; y1)↔ φ(x0; y2)]

Proof. Since p is a finite consistent set of formulas over |M |, we may
choose d ∈ M realizing p. Define {ai, bi, ci ∈ A2i+2 : i < n} by induction
on i. Assume for j < n that we have defined these for all i < j. Let
Bj =

⋃
{ai, bi, ci : i < j}. Notice that |Bj | ≤ 3tj < 3tn, so by the

assumption, p|A2j+1 (ψ, φ) – splits over Bj . That is, there are aj , bj ∈ A2j+1

such that
tpψ(aj , Bj ,M) = tpψ(bj , Bj ,M),

and
M |= φ[d; aj ] ∧ ¬φ[d; bj ].

Now choose cj ∈ A2j+1 realizing tpφ(d,Bj ∪{aj , bj},M) (which can be done
since |Bj ∪ {aj , bj}| ≤ 3tj + 2t < 3t(j + 1) ≤ 3tn). This completes the
inductive definition.

For each i, let di = ciaibi. We will check that the sequence of di and the
formula

ρ(x0, x1, x2; y0, y1, y2) def= [φ(x0; y1)↔ φ(x0; y2)]

witness the n – order property for M .

If i < j < n, then ci ∈ Bj . By the choice of aj and bj , tpψ(aj , Bj ,M) =
tpψ(bj , Bj ,M), so in particular,

M |= ψ[aj ; ci]↔ ψ[bj ; ci], or equivalently
M |= φ[ci; aj ]↔ φ[ci; bj ]
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That is, M |= ρ[di; dj ].

On the other hand, if j ≤ i < n, then φ(x; aj) ∈ tpφ(d,Bi ∪ {ai, bi},M)
and φ(x; bj) /∈ tpφ(d,Bi ∪ {ai, bi},M), and so, by the choice of ci, we have
that

M |= φ[ci; aj ] ∧ ¬φ[ci; bj ].

That is, M |= ¬ρ[di; dj ] in this case. 2

In order to see the relationship between this definition of the order prop-
erty and Shelah’s, we mention Corollary 2.8 below. Note that it is the
formula φ, not the ρ of Lemma 2.5, which has the weak order property in
Corollary 2.8.

Definition 2.6 (M,φ) has the weak m – order property if there exist {di :
i < m} ⊆M such that for each j ≤ m,

M |= ∃x
∧
i<m

φ(x; di)if(i≥j)

Remarks:

• The notation φ(x; di)if(i≥j) is to be interpreted as follows:

φ(x; di)if(i≥j) =
{

φ(x; di) if i ≥ j
¬φ(x; di) otherwise

• Definition 2.6 is what Shelah [11] calls the m – order property.

Definition 2.7 We write x → (y)ab if for every partition Π of the a - el-
ement subsets of {1, . . . , x} with b parts, there is a y - element subset of
{1, . . . , x} with all of its a – element subsets in the same part of Π.

Corollary 2.8 1. If in addition to the hypotheses of Lemma 2.5 we have
that (2n)→ (m+ 1)2

2, then φ has the weak m – order property in M .

2. If in addition to the hypotheses of Lemma 2.5 we have that n ≥ 22m−1

πm ,
then φ has the weak m – order property in M .

Proof. (This is essentially [11] I.2.10(2))
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1. Let ai, bi, ci for i < n be as in the proof of Lemma 2.5. For each pair
i < j ≤ n, define

χ(i, j) :=
{

1 if M |= φ[ci; aj ]
0 if M |= ¬φ[ci; aj ]

Since (2n)→ (m+1)2
2, we can find a subset I of 2n of cardinality m+1

on which χ is constant which we can enumerate as I = {i0 < · · · < im}.
If χ is 1 on I, then (keeping in mind the definition of ai, bi, ci from
Lemma 2.5) for every k with 1 ≤ k ≤ m+ 1

{φ(x; bij )
if(j≥k) : 1 ≤ j ≤ m}

is realized by cik−1
. Therefore, the sequence {bi1 , . . . , bim} witnesses

the weak m – order property of φ in M .

On the other hand, if χ is 0 on I, then (keeping in mind the definition
of ai, bi, ci from Lemma 2.5) for every k with 1 ≤ k ≤ m+ 1

{¬φ(x; aij )
if(j≥k) : 1 ≤ j ≤ m}

is realized by cik−1
. Therefore, the sequence {ai1 , . . . , aim} witnesses

the weak m – order property of ¬φ in M . (Of course, it is equivalent
for φ and ¬φ to have the weak m – order property in M .)

2. By Stirling’s formula, n ≥ 22m−1

πm implies that n ≥ 1
2

(
2m
m

)
, and from

[4], n ≥ 1
2

(
2m
m

)
implies that (2n)→ (m+ 1)2

2.

2

We can now establish the relationship between the number of types and
the order property.

Theorem 2.9 If φ(x; y) ∈ L(M) is such that

ρ(x0, x1, x2; y0, y1, y2) def= [φ(x0; y1)↔ φ(x0; y2)]

does not have the n – order property in M , then for every set A ⊆ M
with |A| ≥ 2, we have that |Sφ(A,M)| ≤ 2n|A|k, where k = 2(3nt)t+1

and
t = max{l(x), l(y)}.
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Proof. Suppose that there is some A ⊆ M with |A| ≥ 2 so that
|Sφ(A,M)| > (2n)|A|k. Let ψ(y;x) = φ(x; y), m = |A|, and let {ai :
i ≤ (2n)mk} ⊆ M be witnesses to the fact that |Sφ(A,M)| > (2n)mk.
(That is, each of these tuples realizes a different φ – type over A.) Define
{Ai : i < 2n}, satisfying

1. A0 = A

2. A ⊆ Ai ⊆ Ai+1 ⊆M ,

3. |Ai| ≤ ceim(3nt)i ,where c := 22+(3nt)t and ei := (3nt)i+1−1
3nt−1 , and

4. for every B ⊆ Ai with |B| ≤ 3tn, every p ∈ Sφ(B,M)
⋃
Sψ(B,M) is

realized in Ai+1.

To see that this can be done, we need only check the cardinality con-
straints. Notice that condition (3) is met for i = 0 since |A| = m. Now since
there are at most |Ai|3tn subsets of Ai with cardinality at most 3tn, and over
each such subset B, there are at most 2(3tn)t types in each of Sψ(B,M) and
Sφ(B,M), then there are at most 21+(3tn)t types in Sψ(B,M)

⋃
Sφ(B,M)

for each such B. Therefore, Ai+1 can be defined so that

|Ai+1| ≤ |Ai|+ (21+(3tn)t)|Ai|3tn

≤ (22+(3tn)t)|Ai|3tn

= c|Ai|3tn

≤ c(ceim(3nt)i)3tn

= c1+ei(3tn)m(3tn)i+1

= cei+1m(3tn)i+1

Claim 1 There is a j < (2n)mk such that for every i < 2n and every
B ⊆ Ai with |B| ≤ 3tn, tp(aj , Ai+1) (ψ, φ) – splits over B.

Proof. (Of Claim 1) Suppose not. That is, for every j ≤ (2n)mk, there
is an ij < 2n and a B ⊆ Aij with |B| ≤ 3tn, so that tp(aj , Aij+1) does not
(ψ, φ) – split over B. Since i is a function from the ordinal 1 + (2n)mk to
the ordinal 2n, there must be a subset S of 1 + (2n)mk with |S| > mk, and
an integer i∗ < 2n such that for all j ∈ S, ij = i∗. Now similarly, there are
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less than |Ai∗ |3tn subsets of Ai∗ , with cardinality at most 3tn, so there is a
T ⊆ S with

|T | > mk

|Ai∗ |3tn

and a B0 ⊆ Ai∗ , with |B0| ≤ 3tn such that for all j ∈ T , tp(aj , Ai∗+1) does
not (ψ, φ) – split over B0. Since |Ai∗ | ≤ cei∗m(3nt)i

∗
≤ (cm)(3tn)2n

, then

|T | ≥ mk

(cm)(3tn)2n (1)

Let C ⊆ Ai∗+1 be obtained by adding to B0, realizations of every type in
Sφ(B0,M)

⋃
Sψ(B0,M). This can clearly be done so that |C| ≤ 3nt +

2(3nt)r + 2(3nt)s . The maximum number of φ – types over C is at most
2|C|

t ≤ 2c
t
.

Claim 2 mk−(3nt)2n
> (2c

t
)(c(3nt)2n

)

Proof. (Of Claim 2) Since c = 22+(3nt)t , we have ct + (3nt)2n(2 + (3nt)t)
as the exponent on the right-hand side above. Since m ≥ 2, it is enough to
show that

k > (ct + (3nt)2n(2 + (3nt)t) + (3nt)2n

= 2t(2+(3nt)t) + (3nt)2n(3 + (3nt)t)

This follows from the definition of k (recall that k = 2(3nt)t+1
), so we have

established Claim 2. ¤2

Now by (1) and Claim2, |T | is greater than the number of φ – types
over C, so there must be i 6= j ∈ T such that tpφ(ai, C) = tpφ(aj , C). Since
tpφ(ai, A) 6= tpφ(aj , A) (by the original choice of ai’s), we may choose a ∈ A
so that M |= φ[ai, a] ∧ ¬φ[aj , a]. Now choose a′ ∈ C so that tpψ(a,B0) =
tpψ(a′, B0) (this is how C is defined after all). Since tpφ(ai, Ai∗+1) and
tpφ(aj , Ai∗+1) each do not (ψ, φ) – split over B0, we have that

φ(x; a) ∈ tpφ(ai, Ai∗+1) if and only if φ(x; a′) ∈ tpφ(ai, Ai∗+1)

soM |= φ[ai, a′]∧¬φ[aj , a′], contradicting the fact that tpφ(ai, C) = tpφ(aj , C)
and thus completing the proof of Claim 1. ¤1

Now letting j be as in Claim 1 and applying Lemma 2.5 completes the
proof of Theorem 2.9. ¤2.9 2
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Theorem 2.11 below gives a better result under under stronger assump-
tions. The next lemma is II, 4.10, (4) in [11]. It comes from a question due
to Erdős about the so-called “trace” of a set system which was answered by
Shelah and Perles [10] in 1972. Proofs in the language of combinatorics can
also be found in most books on extremal set systems (e.g., Bollobas [1]).

Lemma 2.10 If S is any family of subsets of the finite set I with

|S| >
∑
i<k

(
|I|
i

)
then there exist αi ∈ I for i < k such that for every w ⊆ k there is an
Aw ∈ S so that i ∈ w ⇔ αi ∈ Aw. (The conclusion here is equivalent to
trace(I) ≥ k in the language of [1].)

Theorem 2.11 If φ(x; y) ∈ L(M) (r = l(x), s = l(y)) does not have the
k− independence property in M , then for every finite set A ⊆M , if |A| ≥ 2,
then |Sφ(A,M)| ≤ |A|s(k−1).

Proof. (Essentially [11], II.4.10(4)) Let F be the set of φ – formulas over
A. Then

|F | < |A|s.
So if |Sφ(A,M)| > |A|s(k−1), then certainly

|Sφ(A,M)| >
∑
i<k

(
|F |
i

)
,

in which case Lemma 2.10 can be applied to F and Sφ(A,M) to get witnesses
to the k – independence property in M , a contradiction. 2

The “moral” of Theorem 2.9 and Theorem 2.11 is that when φ has some
nice properties, there is a bound on the number of φ – types over A which
is polynomial in |A|. Note that the difference between the two properties is
that the degree of the polynomial in the absence of the k – independence
property is linear in k while in the absence of the n – order property the
degree is exponential in n. Also the bounds on φ – types in the latter case
hold when a formula ρ related to φ (as opposed to φ itself) is without the n
– order property.
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3 Indiscernible sequences in large finite sets

Note: The next definition is a version of Shelah’s [11], I.2.3, and Ramsey’s
notion of canonical sequence.

Definition 3.1 1. A sequence I = 〈ai : i < n〉 ⊆ M is called a (∆,m)
– indiscernible sequence over A ⊆ M (where ∆ is a set of L(M) –
formulas) if for every i0 < . . . < im−1 ∈ I, j0 < . . . < jm−1 ∈ I we
have that tp∆(ai0 · · · aim−1 , A,M) = tp∆(aj0 · · · ajm−1 , A,M)

2. A set I = {ai : i < n} ⊆M is called a (∆,m) – indiscernible set over
A ⊆ M if and only if for every {i0, . . . , im−1}, {j0, . . . , jm−1} ⊆ I we
have

tp∆(ai0 · · · aim−1 , A,M) = tp∆(aj0 · · · ajm−1 , A,M).

3. If ∆ = {φ}, then we will just write (φ,m)− indiscernible ...

4. For a formula φ(x0x1 . . . xm−1; b) and each i with 1 ≤ i ≤ m we define
the formula φi = φ(x0x1 . . . xi−1;xi . . . xm−1b) (so φm = φ) , and we
define the set

∆φ = {φi : 1 ≤ i ≤ m}

Note that if φ(x; b) ∈ tp∆(a0 . . . am−1, B,M), then necessarily l(x) =
m · l(a0).

Example 3.2 1. In the model Mm
n = 〈m, 0, 1, χ〉 (n ≤ m < ω) where χ

is function from the increasing n – tuples of m to {0, 1}, any increas-
ing enumeration of a monochromatic set is an example of a (∆, 1) –
indiscernible sequence over ∅ where ∆ = {χ(x) = 0, χ(x) = 1}.

2. In a graph (G,R), cliques and independent sets are examples of (R, 2)
– indiscernible sets over ∅.

Recall that in a stable first order theory, every sequence of indiscernibles
is a set of indiscernibles. In our finite setting this is also true if the formula
fails to have the n – order property. The argument below follows closely
that of Shelah [11].
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Theorem 3.3 Assume that M does not have the n – order property. If
I = 〈ai : i < n+m− 1〉 ⊆M is a sequence of (φ,m) – indiscernibles over
B ⊆M , then {ai : i < n+m− 1} a set of (φ,m) – indiscernibles over B.

Proof. Since any permutation of {1, . . . , n} is a product of transpositions
(k, k+1), and since I is a (φ,m)− indiscernible sequence over B, it is enough
to show that for each b ∈ B and k < m,

M |= φ[a0 · · · ak−1ak+1ak · · · am−1; b]↔ φ[a0 · · · ak−1akak+1 · · · am−1; b].

Suppose this is not the case. Then we may choose b ∈ B and k < m so that

M |= ¬φ[a0 · · · ak−1ak+1ak · · · am−1; b] ∧ φ[a0 · · · ak−1akak+1 · · · am−1; b].

Let c = a0 · · · ak−1 and d = an+k+1 · · · an+m−2 (making l(c) = k and l(d) =
m− k − 2). By the indiscernibility of I,

M |= ¬φ[cak+1akd; b] ∧ φ[cakak+1d; b].

For each i and j with k ≤ i < j < n+k, we have (again by the indiscernibility
of the sequence I) that

M |= ¬φ[cajaid; b] ∧ φ[caiajd; b].

Thus the formula ψ(x, y; cdb) def= φ(c, x, y, d; b) defines an order on 〈ai : k ≤
i < n+ k〉 in M , a contradiction. 2

The following definition is a generalization of the notion of end-homogenous
set in combinatorics (see section 15 of [3]) to the context of ∆ – indiscernible
sequences.

Definition 3.4 A sequence I = 〈ai : i < n〉 ⊆ M is called a (∆,m)
– end-indiscernible sequence over A ⊆ M (where ∆ is a set of L(M) –
formulas) if for every {i0, . . . , im−2} ⊆ n and j0, j1 < n both larger than
max{i0, . . . , im−2}, we have

tp∆(ai0 · · · aim−2aj0 , A,M) = tp∆(ai0 · · · aim−2aj1 , A,M)

Definition 3.5 For the following lemma, let F : ω → ω be given, and fix
the parameters α, r, m and k. We define the function F ∗α,r,k,m (which we
write simply as F ∗ when the parameters are understood) as follows:
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• F ∗(0) = 1,

• F ∗(j + 1) = 1 + F ∗(j) · F (α+m · r · (j + 1)) for j < k − 2−m, and

• F ∗(j + 1) = 1 + F ∗(j) for k − 2−m ≤ j < k − 2.

We will not need j ≥ k − 2.

Lemma 3.6 If for every B ⊆M , |Sφ(B,M)| < F (|B|), and I = {ci : i ≤
F ∗α,r,k,m(k − 2)} ⊆ M (where l(ci) = l(xi) = r, α = |A|), then there is a
J ⊆ I such that |J | ≥ k and J is a (φ,m) – end-indiscernible sequence over
A.

Proof. (For notational convenience when we have a subset S ⊆ I, we
will write minS instead of the clumsier cmin{i : ci∈S}.) We first construct
Aj = {ai : i ≤ j} ⊆ I and Sj ⊆ I by induction on j < k − 1 so that

1. S0 = I

2. aj = minSj ,

3. Sj+1 ⊆ Sj ,

4. |Sj | > F ∗(k − 2− j), and

5. whenever {i0, . . . , im−1} ⊆ j and b ∈ Sj ,

tpφ(ai0 · · · aim−2aj , A,M) = tpφ(ai0 · · · aim−2b, A,M).

The construction is completed by taking an arbitrary ak−1 ∈ Sk−2 −
{ak−2}. (which is possible by (4) since F ∗(0) = 1), and letting J = 〈ai :
i < k〉. We claim that J will be the desired (φ,m) – end-indiscernible
sequence over A.

To see this, let {i0, . . . , im−2, j0, j1} ⊆ k with max{i0, . . . , im−2} < j0 <
j1 < k be given. Certainly then {i0, . . . , im−2} ⊆ j0 and aj1 ∈ Sj0 , so by (5)
we have that

tpφ(ai0 · · · aim−2aj0 , A,M) = tpφ(ai0 · · · aim−2aj1 , A,M).
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To carry out the construction, first for j ≤ m − 1 set aj = cj and
Sj = {ci : j ≤ i ≤ F ∗(k − 2)}. Clearly we have satisfied all conditions in
this. Now assume for some j ≥ m that Aj−1 and Sj−1 have been defined
satisfying the conditions.

Define the equivalence relation ∼ on Sj−1 − {aj−1} by c ∼ d if and only
if for all {i0, . . . , ir−1},

tpφ(ai1 · · · aim−1c, A,M) = tpφ(ai1 · · · aim−1d,A,M)

Let ψ(w; z) = φ(x1, . . . , xm−1, w; y) (so z = x1 · · ·xm−1y). The number of
∼ − classes then is at most |Sψ(A∪Aj)| ≤ |Sφ(A∪Aj)| < F (α+m·r·(j+1)).

Therefore, at least one class Sj has cardinality at least |Sj−1|−1
F (α+m·r·(j+1)) . Let

aj = minSj . By definition of F ∗, F ∗(k−2−j+1)
F (α+m·r·(j+1)) > F ∗(k− 2− j), so we have

that |Sj | > F ∗(k − 2− j). It is easy to see that condition (5) is satisfied. 2

For the following lemma, we once again need a function defined in terms
of the parameters of the problem. For fixed parameters α, r and k, let
fi = F ∗α,r,k,i from Lemma 3.6 (so fi is effectively the F ∗ for the formula φi),
and define

gi :=
{
id if i = 0
fi ◦ (gi−1 − 2) otherwise

Lemma 3.7 Let α = |A| and r = l(a0). If J = {ai : i ≤ gm−1(k−1)} ⊆M
is a (∆φ,m)− end-indiscernible sequence over A ⊆M , then there is a J ′ ⊆ J
with |J ′| ≥ k and J ′ is a (φ,m)− indiscernible sequence over A.

Proof. We prove by induction on i ≤ m that there is such a J ′ which
is a (φi, i)− end-indiscernible sequence over A. Since φm = φ, the result
will follow. Note first that if i = 1, there is nothing to do since (φ1, 1)−
end-indiscernible is the same as (φ1, 1)− indiscernible. Now let i ≥ 1 be
given, and assume that every long (∆φ,m)− end-indiscernible sequence over
A ⊆ M has a subsequence of length k which is a (φi, i)− indiscernible
sequence over A.

Let a sequence J of (∆φ,m)− end-indiscernible sequences over A of
length at least gi(k − 1) = fi(gi−1(k − 1)− 2). Let c be the last element in
J . It follows that

M |= φi[a0, . . . , ai−1; cb] if and only if M |= φi+1[a0 · · · ai−1c; b] (2)
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for all a0, . . . , am−1 ∈ J , b ∈ M . (Note that for all i, |Sφi(B,M) ≤
|Sφ(B,M)| for all B ⊆ M , so we can use the same F for φi as for φ.
This result could be improved by using a sharper bound on the number of
φi− types.) By Lemma 3.6, there must be a subset J ′′ of J with cardinality
at least gi−1(k − 1) which is φi− end-indiscernible over A. By the induc-
tive hypothesis, there is a subsequence of J ′′ with cardinality at least k − 1
which is (φi, i)− indiscernible over A. Form J ′ by adding c to the end of
this sequence. It follows from (2), the (∆φ,m)− end-indiscernibility of J ,
and the (φi, i)− indiscernibility of J ′′ that J ′ is (φi+1, i+ 1)− indiscernible
over A. 2

Theorem 3.8 For any A ⊆ M and any sequence I from M with |I| ≥
gm(k − 1), there is a subsequence J of I with cardinality at least k which is
(φ,m) – indiscernible over A.

Proof. By Lemmas 3.6 and 3.7. 2

Our goal now is to apply this to theories with different properties to
see how the properties affect the size of a sequence one must look in to
be assured of finding an indiscernible sequence. First we will do a basic
comparison between the cases when we do and do not have a polynomial
bound on the number of types over a set. In each of these cases, we will give
the bound to find a sequence indiscernible over ∅. We will use the notation
log(i) for

log2 ◦ log2 ◦ · · · ◦ log2︸ ︷︷ ︸
i times

Corollary 3.9 1. If F (i) = 2i
m

(which is the worst possible case), then
log(m) gm(k − 1) ≤ 4k.

2. If F (i) = ip, then log(m) gm(k − 1) ≤ 2mk + log2 k + log2 p.

We now combine part (2) above with the results from the previous section
to see what happens in the specific cases of structures without the n – order
property and structures without the n – independence property. We define
by induction on i the function

i(i, x) =
{
x if i = 0
2i(i−1,x) if i > 0
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Recall that for the formula φ(x; y) we have defined the parameters r = l(x),
s = l(y), and t = max{r, s}.

Corollary 3.9 3. If (M,φ) fails to have the n – independence property
and I = {ai : i < i(m, 2k+log2 k+log2 n+log2m)} ⊆M , then there
is a J ⊆ I so that |J | ≥ k and J is a (φ,m) – indiscernible sequence
over ∅.

4. If (M,ρ) fails to have the n – order property and I = {ai : i <
i(m, 2k + log2 k + (3nt)t+1)} ⊆ M , then there is a J ⊆ I so that
|J | ≥ k and J is a (φ,m) – indiscernible sequence over ∅. (Recall that
ρ(x0, x1, x2; y0, y1, y2) = [φ(x0; y1)↔ φ(x0; y2)].)

Finally, note that with the additional assumption of failure of the d –
cover property, if d is smaller than n, then from the assumptions in (3) and
(4) above, we could infer a failure of the d – independence property or the
d – order property improving the bounds even further.

4 Ramsey’s theorem for finite hypergraphs

In this section we look to graph theory to illustrate an applications. We
can improve (for the case of hypergraphs without the n – independence
property) the best known upper bounds for the Ramsey number nr(a, b).
This indicates that if examples are to be sought of hypergraphs with only
small cliques and independent sets (the existence of which improves the
lower bounds for Ramsey’s Theorem), then one should look to graphs which
have the n – independence property for n as large as possible. First however
we should say what all of this means.

Definition 4.1 1. An r – graph is a set of vertices V along with a set
of r – element subsets of V called edges. The edge set will be identified
in the language by the r – ary predicate R.

2. A complete r – graph is one in which all r – element subsets of the
vertices are edges. An empty r – graph is one in which none of the r
– element subsets of the vertices are edges.
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3. nr(a, b) denotes the smallest positive integer N so that in any r –
hypergraph on N vertices there will be an induced subgraph which is
either a complete r – graph on a vertices or an empty r – graph on b
vertices.

4. We say that an r – graph G has the n – independence property if
(G,R(x)) does (where l(x) = r).

Remark. We will assume that G is a countable graph although all results
are on large finite sets in G so they could be applied to an appropriately
constructed large finite graph.

Note that Lemma 3.6 can be improved in this situation since the edge
relation is symmetric. With this in mind, we can make the following com-
putations.

Lemma 4.2 1. In an r – graph G, F is given by F (i) = 2q where q =(
i

r − 1

)
. Consequently, F ∗(k) ≤ 2k

r
in this case.

2. In an r – graph G which does not have the n – independence property,
F is defined by

F (i) :=
{

1 for i < r

i(r−1)(n−1) otherwise

Consequently F ∗(k) ≤ k(r−1)(n−1)k in this case.

We should now see how this improvement shows up at the end of the
process. To do this we first need to adapt the gm function from Lemma 3.7
to this specific task. For a fixed natural number p, define the functions E(j)

p

by

• E(1) = E = (α 7→ (α+ 1)p(α+1)), and

• E(i+1) = E ◦ E(i) for i ≥ 1.

Theorem 4.3 Let n ≥ 2 and k ≥ 3 be given, and let p = (r − 1)(n − 1).
If an r – graph G on at least E(r−1)

p (k − 1) vertices does not have the n –
independence property, then G has an induced subgraph on k vertices which
is either complete or empty.
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Proof. This is simply Theorem 3.8 specifically taking into account the
function F for r− hypergraphs without the n− independence property as
well as the symmetry of the edge relation. 2

Remark: Another way to say this is that in the class of r – graphs without
the independence property nr(k, k) ≤ E(r−1)

p (k − 1).

Comparing upper bounds for r = 3

Note that for r = 3 in Theorem 4.3, we have p = 2(n − 1), and so we get
E

(2)
p (k−1) = (22k+1)p(2

2k+1) which is roughly 2nk(22k+2). The upper bound
for R3(k, k) in [3] is roughly 224k

. So log2 log2(their bound) = 4k and

log2 log2(our bound) = log2 p+ log2 k + (2k + 2)

which is smaller than 4k as long as 2k− 2− log2 k > log2 n, which is true as
long as n < 22k−2/k.

For example, for k = 10 our bound is about 2c(n−1) where c is roughly
4 × 107 and theirs is about 2240

. Since 240 is roughly 1012, this shows
some improvement in the exponent for 3− hypergraphs without the n –
independence property.

Comparing upper bounds in general

Let ar be the upper bound for Rr(k, k) given in [3] and br be the upper
bound as computed for the class of r – graphs without the n – independence
property in Theorem 4.3 (both as a function of k, the size of the desired
indiscernible set). Since we have br+1 ≤ b(p)(br)r , we get the relationship

log(r) br+1 ≤ log(r−1)[p br(log br)]
= log(r−2)(log(r − 1) + log(n− 1) + log br + log log br)

for r ≥ 3, log log b3 = 2k+log2 k+log2 n+log2 r, and log b2 = 2k. It follows
that log(r) br+1 is less than (roughly) 2k + log2 k + log2 n for every r.

In [3], the bounds ar satisfy log a2 = 2k, log log a3 = 4k, and for r ≥ 3,

log(r) ar+1 = log(r−1)(arr) =
log(r−2)(r log ar) = log(r−3)[log r + log log ar].
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We can then show that log(r−1) ar < 4k + 2 for all r.

Clearly for each r ≥ 3, br
ar
→ 0 as m gets large.

Remark: On a final note, the above comparison is only given for r – graphs
with r ≥ 3 because the technique enlisted does not give an improvement in
the case of graphs. This has not been pursued in this paper because it seems
to be of no interest in the general study. However, the techniques may be
of interest to the specialist in graph theory.
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