A Course in Model Theory III: ## **Classification Theory for Abstract Elementary Classes** ## Rami Grossberg¹ Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213 E-mail address: rami@cmu.edu ## **Contents** | Preface | 7 | |---|----------| | Introduction | 9 | | Chapter 1. Abstract Elementary Classes | 13 | | Introduction | 13 | | 1. Abstract classes | 13 | | 2. Abstract Elementary Classes | 19 | | Chapter 2. Some extensions of first-order logic | 27 | | Introduction | 27 | | 1. $L_{\omega_1,\omega}$ and examples | 27 | | 2. Scott's theorem | 31 | | 3. The logics $L_{\infty,\mu}$, $L_{\lambda,\kappa}$ and $L_{\omega_1,\omega}(\mathbf{Q})$ | 33 | | Chapter 3. Completeness and omitting types theorems for $L_{\omega_1,\omega}(\mathbf{Q})$ | 47 | | Introduction | 47 | | Chapter 4. PC-classes and Hanf numbers | 49 | | introduction | 49 | | 1. Silver's example | 50 | | 2. Morley's computation of the Hanf number | 51 | | 3. Shelah's Generalization of Eherenfeucht-Mostowski models | 58 | | Chapter 5. Abstract elementary classes are PC-classes | 63 | | Preliminaries | 63 | | Skolem Functions in Abstract Elementary Classes | 64 | | Chapter 6. Galois types and saturation | 69 | | Introduction | 69 | | Types in Abstract Elementary Classes | 70 | | 2. Galois saturation and model-homogenuity are the same | 74 | | Existence and uniqueness of model homogenous models Limit models | 78
81 | | | | | Chapter 7. Getting amalgamation | 85 | | Introduction | 85 | | An amusing proof universal models | 85 | | | 86
88 | | 3. Weaker forms of amalgamation4. Few models imply the amalgamation property | 89 | | Few models imply the amaganiation property On the function λ → IE(λ, K) | 93 | | | | | Chapter 8. Existence in \mathcal{K}_{λ^+} | 97 | | Introduction | 97 | | 1. The extension property for pre-types | 98 | 4 CONTENTS | No models in λ⁺⁺ make models in λ⁺ fat Various extension properties Not having maximal models is cool too | 102
104
104 | |--|---| | Chapter 9. Minimal and reduced types Introduction 1. Direct limits of models and Galois types 2. Existence of minimal types in K_{λ}^{3} assuming $K_{\lambda+3}=\emptyset$ and more 3. Existence of minimal types in K_{λ}^{3} assuming Galois-stability and amalgamation 4. Galois stability and non-splitting 5. Using realizations of minimal types as a test of saturation | 107
107
108
112
114
116
118 | | Chapter 10. The effect of assuming categoricity in $\lambda \geq \operatorname{Hanf}(\mathcal{K})$ Introduction 1. μ -Galois satbility for all $\mu < \lambda$ 2. Density of amalgamation bases 3. Vaughtian Pairs | 123
123
123
125
126 | | Chapter 11. Uniqueness of limit models for AECs with amalgamation AECs Introduction 1. The array 2. Strong types | 127
127
127
127 | | Chapter 12. Tameness Introduction 1. μ -Galois tameness for all $\mu < \lambda$ 2. Stability spectrum for tame AECs | 129
129
129
129 | | Chapter 13. Shelah's categoricity conjecture is true for Tame AECs Introduction | 131
131 | | Chapter 14. Frames $\langle \mathcal{K}, \downarrow \rangle$ | 133 | | Introduction 1. A sufficient condition for tameness | 133
133 | | Chapter 15. Excellent classes Introduction 1. The basic framework and concepts 2. Examples and applications 3. Good sets 4. Basic stability of the class of atomic models 5. Transfering results up and down 6. Categoricity 7. Non-excellence gives many models | 135
135
144
149
149
150
150 | | Chapter 16. Homogenouos model theory
Introduction | 151
151 | | Chapter 17. Sufficient condition for tameness Introduction 1. Weak forking 2. Non-uniqueness property 3. Excellence implies tameness | 153
153
153
153
153 | | Chapter 18. Examples | 155 | | CONTENTS | 5 | |----------|---| | | | | Introduction 1. The random bi-partite graph 2. An AEC categorical in λ^{+n} but not in λ^{+n+1} | 155
156
157 | |---|---------------------------------| | Chapter 19. Open Problems Introduction 1. Shelah's categoricity conjecture 2. Main Gap for uncountable theories 3. Other problems | 159
159
159
159
160 | | Appendix(s) | 163 | | Appendix A. The filter of closed unbounded sets Introduction 1. Definitions and basics 2. Fodor's and Ulam Theorems 3. Kueker's filter | 165
165
165
169
174 | | Appendix B. Models of weak set theory Introduction 1. Transitive models | 175
175
176 | | Appendix C. Weak diamond 1. Introduction 2. On diamonds 3. The small subsets of λ^+ is a normal ideal 4. The building-stones of many models | 183
183
183
190
193 | | Appendix D. Historical remarks | 197 | | Appendix. Bibliography | 199 | | Appendix. Index | 203 |