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ABSTRACT. We study several cardinal, and ordinal-valued functions that are

relatives of Hanf numbers. Let be an infinite cardinality, and l&f C L, +

be a theory of cardinalitg «, and lety be an ordinal> ~™. Consider

1) pr(y, k) :=min{p" : Vo € Loo,w, Withrk(p) < ~, if T has thep, p*)-
order property thethere exists a formul@'(x; y) € L.+ ., such that for
everyx > k, T has the((,o'7 X)-order property}.

(2) p* (v, k) :=sup{pr(v, &) | T € Lo+ .}

We discuss several other related functions, sample results are:

- It turns out that ifT" has the(y, u* (v, x))-order propery for some <
Lo, With tk(¢) < v thenfor everyx > « we have thal(y,T) = 2%
holds.

- For everyx and ~ as above there exists an ordin#l(~y, <) such that
/J“* (77 K’) = :(5* (v,r)1

-8 (k) < (M)

- for x with uncountable cofinality, we have th&t(v, <) > |y|* and

- the ordinalé™ (v, <) is bounded below by the Galvin—Hajnal rank of a re-
duced product.

For many cardinalities we have better bounds, some of the bounds obtained

using Shelah'gcf theory. The function.* (v, k) is used to compute bounds to
the values of the functiop(\, x) we studied in a previous paper.
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1. INTRODUCTION

Let x be an infinite cardinality, and suppose thatC L, . (notice that
wheny = w we are dealing with first-order theories).

The fundamental meta-problem in the area of classification theory can be
stated as:

Problem 1.1. What is the structure dflod(7")?

A more precise (and concrete) test-question is:

Problem 1.2. What are the possible functioté, ") : Card — Card? (where
I(\, T') stands for the number of isomorphism types of model§fof cardinality
A).

A much more precise (and a very difficult) particular case of 1.2 is the
following

Conjecture 1.3. (Shelah about 1976) Let < L, ., be given. If there exists a
cardinality, > 3,,, such thatl(x,v) = 1 then for everyu > 3., I(p,¢) = 1
holds.

A possible approach to Problem 1.1 and its relatives, is to try to imitate
Classification theory for elementary classes (see [Sh c]). Namely it would be desir-
able to find properties parallel siability, superstabilityetc. Much work has been
doneinthe last 25 years (see for example — [Sh 48],[Sh 87a], [Sh 87b],[Sh 88],[Sh 300],
[Sh 394] [MaSh],[GrSh2], or [Sh 299] for a general survey). In this article we con-
centrate in dealing with the parallel (for infinitary languages) to instability. The
following can be viewed as a definition of stability for first-order theories:

Fact 1.4. ([Sh 16]) Let T be a complete first-order theory. The following are
equivalent:

(1) T is unstable

(2) There exist a formula(x;y) € L(T'), a modelM for T, and a sef{a,, :
n < w} C M suchthat/(x) = ¢(y) = ¢(a,) for everyn < w, and for all
n,k < wwehaven < k <= M = pla,;a].

Condition 2 in Fact 1.4 is called thwder-property One of the important
properties of unstable theories is the following:

Fact 1.5. [Sh 12]Let T be a complete first-order theory. Tf is unstable then for
everyu > |T'| we have thai(u,T') = 2#.

An inspection of the proof of 1.5 shows that the hypothesis Thid a
complete first-order unstable theory could be replaced by the following property:
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There is an expansiob’ of L(T') with built-in Skolem functions and an

L’-structureM, a “formula” p(x;y) , and there exists

I:={a; :i <w} C M asequence df’-indiscernibles such thétx) =
(*)r L(y) = {(ay,) forall n < w, M is the Skolem Hull off, M | L(T) = T

and

n <m<= M = ¢la,;a,] holdsforevery n,m < w.

By “formula” we mean that is in any logic (over the vocabulay’) such thatp
is preserved by isomorphisms bfT')-structures.

The condition in Fact 1.4 seems to be a natural candidate for a definition of
instability for infinitary logics. Since the compactness theorem fails eveh for,
the next definition is the replacement of the (the first-order) order-property.

Definition 1.6. LetT C L, ., ¢(x;y) € Lo, and letu be a cardinality.

(1) We say thai\f has the(ip, u)-order propertyiff there exists{a; : i < u} C
M such that/(x) = ¢(y) = ¢(a;) < w, and for everyi,j < p we have
i<j = MEypla;a;]

(2) T has the(p, u)-order propertyiff there existsM |= T such thatV/ has the
(¢, p)-order property.

(3) T has the(p, co)-order propertyiff T' has the(p, u)-order property for
every .

(4) Let X andyu be cardinalities, we say that
T has the(L, ,,, u)-order propertyiff there existsy € Ly, such thaf” has
the (p, pu)-order property.

Remark 1.7. (1) In light of the last definition, Fact 1.4 can be restated as (for
first-order completd’): T is unstable iff" has the(L,, .,, Xo)-order prop-
erty.

(2) It is not difficult to see (using [Mo], see 1.10 below) that the following
implication is true: IfT" has thg(L+ ,,, oo)-order property theix)r holds.

A natural question to ask in this context is: Given a theébrand a cardi-
nality 41, doesT” have the(L,+ ,,, u1)-order property? The main object of study in
[GrSh1] was the functiom (A, x). The following u* (A, k) is a relative offi(A, k)
from [GrSh1].

Definition 1.8. Letk < .

(1) Lety) € L+ o, py (A k) == min{p* : Vo € Ly+, if 4 has the(p, pn*)-
order propertythenthere exists a formula’ (x;y) € L,+ ., such that)
has the(y', oo )-order property}.

(2) ,U*()‘7 ’i) = Sup{“;kp()‘v H) | ¢(X; Y) € Ln+,w}'
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Remark 1.9. The idea behind Definition 1.8 is that whérhas the
(Lx+ o, " (A, K))-order property then (by Remark 1.7 afe),) for every y >
k 1(x,¥) = 2%

Already in [Sh 16] Shelah realized the importance of the above concept,
it did not appear there explicitly. Only in [Gr] (see [GrSh1]) these functions were
identified. The previous definition is a generalization of one from [GrShl], see
Definition 1.8. Shelah’s fundamental result from [Sh 16] can be restated as:

Fact 1.10. ([Sh 16]) For everyx < A, we haveu*(\, k) < uo(A, 1)L

Recall thatyp(A, 1) < Jpr)+ and for some\'s we have equality. The
function n* is very different fromug: The following is a dramatic improvement
(for k = Ng) of Fact 1.10:

Theorem 1.11. ([GrSh1])For everyA > Xy, we haveu* (A, Rg) < Jy+.

It turns out that even for first-order theories the above question is interest-
ing (for x = |L| = Ny, T is a complete first-order theory ih, we could ask what
is an upper bound gf}.(\, Xg)?). Since there are cases wlieis stable (i.e. there
is no first-order formula defining an-sequence in a model @f) but still T has
a hidden instability (like in the case of stable theories without the omitting-types
order property).

There is a natural class of examples of theories that do not have a first-order
formula exemplifying the order-property but do have an infinitary order property.
Any stable first-order theory that has the omitting types order-property has the
(Ly, w,00)-order property but not theL,, .., Xo)-order property (see [Sh 200]).

Already from Morley’s omitting-types theorem it follows that givérand
¢ as above there exists:= u(7, ¢) such that ifT" has the(y, i)-order property
thenv\ > x, T has the(p, A)-order property. The bound obtained from repeating
the argument in the proof of Morley’s omitting types theorem (see [Sh 16]) is:
w(T, ) < max{Hanf(T), Hanf(p)}. WhereHanf(T) and Hanf(p) are the
Hanf numbers of” and the logic containing (respectively).

Let xy > Nq (T still may be first-order). Our object is to find upper bounds
on . Itturns out that forp € Lo, — Ly there is a cardinality* := p* (T, ¢)?,
such that the following implication holds: ¥ has the(y, 1*)-order property then
there exists a formula’ € L, ,, (it is a collapse ofp) such thafl” has the(¢’, \)-
order property for every > y.

Lo (X, A) is the usual Morley number to be introduced in Definition 2.2 below. It is known that

MO()‘v A) = MO()‘v 1)
2The surprise is that often* (T, ) is much smaller thap(T, ).
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In this paper we present a systematic study of several cardinal and ordi-
nal valued functions related to the infinitary order property. This is a continua-
tion of [GrSh1], we deal with similar problems and improve many results. This
is achieved via a generalization of the original problem (dealing with new cases)
while obtaining often better estimates to earlier bounds. The reader is not expected
to be familiar with [GrSh1].

Notation: Everything is standard. Oftex, y, andz will denote free
variables or finite sequences of variables, wkeis a sequencé(x) denote its
length. It should be clear from the context whether we deal with variables or se-
guences of variablesL will denote a similarity type (also known as-language or
signature),A will stand for a set ofL formulas. M and N will stand for L -
structures|M | the universe of the structu®/, || M| the cardinality of the uni-
verse of M. Given a fixed structurd/, subsets of its universe will be denoted
by A, B, C, andD. So when we writed C M we really mean thatl C |M|,
while N C M stands for ‘N is a submodel of\/”. Let M be a structure. By
a € M we meama € |M|, whena is a finite sequence of elements there M
stands for “all the elements of the sequencare elements ofM|”. For cardi-
nalitiesk < A, let Sc.(\) := {X C XA : |X| < k}. WhenT is a first-order
theory,I" denotes a set df-types over the empty set (not necessarily complete
types). EC(T\T") := {M : M E T, Vp € I' M omits the typen}. When
T is first-order,. C L(T), andT is a set ofT-types byPC(7T,T, L) we de-
note the following{M | L : M = T, Vp € T' M omits the typep}; namely
EC(T,T') = PC(T,T', L(T)). A, i, k, andx will stand for infinite cardinalities;

o, 3,7, 0, ¢, and¢ are ordinals. References of the form “Theorem IV 3.12” are to
[Shc]. Fory € Ly, let Sub(y) be the set of subformulas ¢f now let

K(p) = 0 if ¢ is atomic
= Sup{rk(x) +1 : x € Sub(yp)} otherwise.
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2. REVIEW

C.C. Chang in [Ch] have made the following fundamental observation:

Fact 2.1. Let x be an infinite cardinality, and leL be a similarity type of cardi-
nality no more thars. Giveny € L+, there exist a similarity typ&’ O L, a
first-order theoryT’ in L/, and a set ofl’-typesI" (all three of cardinality less or
equal tox) such thatMod(y)) = PC(T, T, L).

Instead of studyin@/lod(v) directly for an infinitary theory) it is enough
to consider a class of reducts of models of a first-order theory that omits a set of

types.

W. Hanf and M. Morley [Mo], have recognized the importance of the fol-
lowing concept:

Definition 2.2. LetT be a first-order theory, and IEtbe a set of/-types.
The Morley numbeérof T andT, is the following:

(1) po(7,T) := min{p : IM € EC(T,T) |M| > p=Vx > |T| 3N €
EC(T,T) of cardinality> x}.

(2) Let\, k be cardinalities.
to(A, k) := sup{uo(T,T") : |T| < A, T aset ofl-types of cardinality
<k}t

Morley (among other things) have shown that®y, X¢) = 3,,,. His most
general result is stated as Theorem 2.4 below. Shelah in [Sh 78] have dealt with
what is an interpolant gy (7', ') and (A, ):

po(T, k) :=sup{uo(7,T") : I' asetofl-types, |I'| < k}.

It is not difficult to conclude from the proof of Morley’s categoricity theo-
rem that wher{" is a countable andy-stable theory thep (7, -) < ®;. Shelah in
[Sh 78] studied the effect that stability @f has on the upper bounds gg(7T', k).
This work was continued about ten years later by Hrushovski and Shelah in [HrSh].

In this paper, since our main goal is the study of unstable theories (or the-
ories that are not stable in a weak sense) we will ignore the effect that the stability
of T"may have on the functiopy (7, ).

The modern erain the study of Hanf numbers begun with the paper of Bar-
wise and Kunen [BaKu]. They studied systematically the relationship between the
function i¢ and the first ordinal that exemplify the undefinability of well ordering

3Some authors call this the Hanf numberlognd thel”

“We hope that the reader is not bothered by this abuse of notation. We are using the same letter
1o to denote entirely different (but related) functions. They can be distinguished by the type of the
arguments they take.



ON HANF NUMBERS OF THE INFINITARY ORDER PROPERTY DRAFT 7

in classes of models that omit a set of types. Below we recall an ordinal-valued
functiondg(\, k) that is related tqip (A, <) in a nice way.

Definition 2.3. Let A andk be infinite cardinalities]” varies over consistent first-
order theories such th@t(7") © {P, <} whenP is a unary predicate and

T < linearly ordersP”.

So(\, k) :=min{4 : |T] < \, T a set of-types,|I'| < « if for everyd < &

there exists\/ € EC(T,T') such thabtp(PM, <M) > ¢’ thenthere

existsN € EC(T,T) s.t. (PN, <") is not well ordered.

The following is a restatement of Morley’s “other” important theorem:
Fact 2.4. (Theorem VII 5.5)uo (A, ) = Jsy(ax)-

The following ordinal and cardinal-valued functions are frghof [GrShl]:

Definition 2.5. Supposél is a first-order theory such tha{T") is containing the
predicateg <, P} and

T+ [< isalinearorddr A [ <| P is alinear order on the unary predicdtg

(1) 01(0,\, k) :=min{d : T"asetofl-types, |I'| <\, |T| <k
if Vo < 6 3IM € EC(T,T) with otp(P™,<M) € Onn 6t and
otp(M — P, <M) > ¢, thendN € EC(T,T) s.t.otp(PN, <) € Onnk™*
and(N — PV <¥)is not well ordered.

(2) (0, A\, k) :=min{p : T'| < X\ |T| < k T asetofl-types, if IM €
EC(T,T) ||M|| > p with otp(PM, <) € On N 6+ thenfor everyy >
x 3N € EC(T,T) of cardinality at leasty such thatotp(PY, <) ¢
Onnekt .

(3) Whenéd = X we will omit the first parametef-

In an analogous way to Fact 2.4 we can prove the following equality:
Theorem 2.6. For everyx < \ < 6 we haveu; (0, \, k) = Jal(gA,ﬂ).

From now on we concentrate on the case that A and work with the
functionsd, (A, k) andu; (A, k). The arguments for the functions with three param-
eters are essentially similar (they require an additional technical effort, but require
no new ideas). Note that by 2.1 working with two parameter functions is sufficient
for Ly+ ... The new pointis that we are able to show that\, k) > Js (5 ). The
proof of Theorem 2.6 is similar to that of Theorem VII 5.5, we skip its proof, since
later we will prove a related theorem (Th. 3.6) whose proof is similar (but is little
harder).

The next proposition provides a lower bound &t ), «), it follows im-
mediately from the definitions (in Theorem 3.8 a better lower bound is obtained).

Proposition 2.7. For A > k we have that); (\, k) > 01(k,k) > do(k, k) =
do(k,1).
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In the following proposition the connection between the last definition and
the order property is clarified.

Theorem 2.8. Letx < A, be cardinalitiesJ,+ < p*(\, k) < p1(\, k).

Proof. First we show thag*(\, k) < p1(X\, k). Lety € L+, andp(x;y) €
L+, be given. Suppose has the(y, 111 (), k))-order property we need to find a
formulay’ € L+, such that) has the(y’, co)-order property.

By Fact 2.1 there exists a first-order thed@tyn a similarity typeL(7T') that
extend<., and there is a s&tof T-types of cardinality< « such thaPC(7,T", L) =
Mod(). By following the inductive definition of the formula we may identify
¢ with a functionf from the setP into the setL U{A, -, (,), =} U{z; : i < k}.

Let x be a regular large enough such that
{L)\+,wa LH"’wa T, L, p, I, P, )‘+, :U’l()‘v ’{)7 o1 ()‘7 K)} U :U’l()‘v ’{) - H(X)

In addition we require that the structu(& (), €) reflects all the relevant prop-
erties of the above sets. Lé&t be the rank of the formula, note that it is an
ordinal less than\*. Let2’ < (H(x),€,...) of cardinality u; (\, ) such that
(K% = (N k) (So (M k) +1 C ), fix a bijectionG from p1 (A, &)
onto the universe d’, and let2 := (', G). By the definition ofu (A, ), for
everyy > « there existsB, = 2 of cardinality x such thatB, omits the types
fromI', k®x = k, and P is an ordinal less thar* (just apply the Mostowski
collapse orf8,). Using P®x, and f®x we know (inB,) thatx®x € Lfﬁﬁw, but

sincex®x = x we have thap®x € L.+ , is a formula as required in the definition
of u*(\, k).

To see thap*(\, k) > Jy+: Itis enough to show that for every < A"
there exist a senteneg, € L+, and aformulap, € L)+, such that), has the
(a,3a)-order property and, does not have the(+ ,,, co)-order property.

Before proving this we need several tools.

Notation: The sentence), will be defined as a the theory of a well
founded tree. We deal with well-founded trees whose vertices are decreasing se-
quences of ordinals, the root of the tr€eis denoted byr¢(T), for an element
x € T let Sucr(z) stand for the set of immediate succssesors @indT|z] stands
for the subtree of consisting of the elements that are greater or equal to

Definition 2.9. Let T be a well founded tree.

(1) Forz € T let Dpr(z) = (3 thedepth ofx in T defined by induction or:
(@) if Suer(z) =thenDpy(x) = 0.
(b) if for everyy € Sucr(x) we haveDpr(y) < [, and for everyy < (8
there exists € Sucy(x) of such thatDpr(z) > v thenDpr(z) = .



ON HANF NUMBERS OF THE INFINITARY ORDER PROPERTY DRAFT 9

(2) Thedepth ofT is Dp(T) := sup{ Dpr(z) : = € T}.
Proposition 2.10. Let T be a well-founded tred)p(T) = Dpr(rt(T)).

Proof. Trivial. U210

Claim. For everya there exists a well-founded tré@, of deptha such that
ITall < af 4 Ro.

Proof. By induction ona:
Fora = 0; Simply letT := ().

Fora = 3+ 1; Suppose€l’s is a tree of deptis.
LetT, :={()} U{()"n : n € Tg}. The order orll, is the obvious.

For o a limit ordinal; By the induction hypothesis I1¢T3 : 5 < o} be
pairwise disjoint trees, each of depth
DefineT, to be the tred ()} U{()n : n € Ts,8 < a}. O,

Definition 2.11. (1) LetT;, Ty be well-founded trees, and letbe an ordinal.

By induction ona define wherly ~, To:

(a) Fora =0, alwaysT; ~, Ts.

(b) Fora # 0, if for every 8 < «a and for everyz; € Sucr, (rt(T1))
there existscy € Sucr, (rt(T2)) such thafl [x1] ~3 T2[x2], and for
everyzs € Sucr,(rt(T2)) there existss; € Sucr, (rt(T1)) such that
To[z2] =5 T1lz1].

(2) AtreeT is calledsimpleiff there are no distinct:q, zo € Sucy(rt(T)) such
that Dpr(x1) = Dpr(x2) andT[z1] ~pp.(x,) Tlz2].
Proposition 2.12. Let T, T, be trees, and let: be an ordinal. IfT; =, T then
one of the following conditions holds:

(1) Dp(T1) = Dp(T>), or

(2) Dp(T1) > e and Dp(Tz) > a.
Proof. Easy, by induction on. L2192
Claim. For every ordinak there exists a family of simple tre€¥; : ¢ < 3.},
such that for every < 3,

(1) Tl < 3,
(2) i #j=T; #0ta Ty,
(3) Dp(Ty) =w + o + 1.

Proof. By induction ona:

For a = 1; First constructy, simple tree§T,, C“~ w : n < w} such
thatTy := {()}, Tn+1 := {(n+ 1)} UT, when the order is an extention of the
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order onT,,; () is the root, andn + 1) is a new immediate successor of the root
incomparable with the elements §fict, (()). Now for everyA C w let

Ta={(wn :neTy, nc AAu{reT, : k¢ A}

The order ofT 4 is defined as follows{w) is a new immediate sucessor of
the root, the elementsy)'n andv are pairwise incomparable whene T,,, (n €
A)andv € Ty, (k ¢ A), and we require that
(W)ym <{w)m2 & m <t, 72
In orderto see thal # B C w = T4 #,+a Tp: W.L.O.g. we may assume that
dn € A—B. SinceT4[(w,n)] %, Tg[v]foranyv € Sucr, ((w)) (this is because
T) andT,, are inequivalent fok # n).

Fora # 1; By the inductive hypothesis IQI{Tf c i< g} f<a}be
disjoint trees satisfying the statement of the Theorem. Denosétbg set{ (5, 7) :
i < Jg, B < a}. Fix an injective mapping fron$' into On — Sup(Ugs, Tf),
denote byyg; the image of the paif3, i). For everyy < «, and for everyd C S
cardinality, define

Ta:={()}U{(s:)n : n €T, (3,4) € A}.

The order orf 4 is defined in the natural way) is the root, and
(Byiym <r, (B,9)m2 it m <ge mo

The verification thaDp(T 4) = w + a+ 1 is left to the reader. Suppose# B C
3. both of cardinality3s for somes < . We need to show thdt4 #,1o Ts.
W.l.o.g. there existsg,; € A — B. Since(yg;)n : n € ']I‘f} is a subtree off' 4
and for allj < J; we have tha # i = T/ #,,4 Tf, from the definition of the
relation~, and the fact that it follows that there is no ordirauch that the tree
{en : ne "]1‘;6} does not appear as a subtreélgf it is clear thafl 4 %14 T5.
Lo

Back to the proof of Theorem 2.8: Lat< AT be given. By Claim 2 there
exists a family of nonequivalent simple tregg; : ¢ < J,}. By renaming, we
may assume that the above trees do not contain sequences of ordinals which are
less tharl,. We define a new treet/,, its set of elements consists of

(OYULE) = i <30,y : neTy, i <i,i<Ja)

We can viewM,, as a partially ordered set (by “being initial segment”). We
view M, as a model in a languge consisting of single function symbol: A unary
function f whose interpretation is the predessor of its argument (if the argument is
the root than the value is defined to be the root). Notice that the following formula
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(of Ly, w)s Vol = f*(y)]° defines the relation of “being an initial segment” on
well founded trees.

Let o = ATheyw(Ma) A (VX) Voo [f"(x) = ()]. Namely, is the
first-order theory of\/,, together with the statement that say that every element is
of finite distance from the root.

Let p,(x,y) be the following statementk,y € Suc(()), and for every
x' € Suc(zx) there existy) € Suc(y) such thafl[z'] ~,1a+1 T[y’], and there
existsy’ € Suc(y) such that for every’ € Suc(x) we have thafl[z'] %, 1a+1
T[y'] holds.

In order to complete the proof of Theorem 2.8, it suffices to prove the
following:

Sub Claim 2.13. (1) @a(z,y) € Ly+ .
(2) M, has the(p,, 3, )-order property,
(3) There do not exist a formuld (x,y) € L,.+ , such that
1o has the(¢'(x,y), oo)-order property.

Proof. (1) LetT be a well founded tree, and lat< \* be given, it is enough
to show by induction om that there exists a formuba(z,y) € L+ ,, such
that for everya, b € T we have thall' = x|a, b] iff T[a] ~, T[b]. It is easy
to check that the relatiory,, is definable inLy+ .

(2) Check that for everyy, io < 3, we have that
11 < 19 iff M, lZ SOaKZ‘l)y <12>]

(3) For the sake of contradiction suppose that there exists a formi#ay) €
L.+, suchthat), has they', oo)-order property. Suppose thats a limit
ordinal < ™ such that the formula’ has quantifier deptk: . Denote by
w the cardinality(3,41(|L|))". Let N |= ¢, be a model of cardinality.
such that there exisf®; : i < u} suchthat(x) = {(y) =4(a;) =n < w
and for everyii,is < pwe havei; < io <= N | ¢'[a;,, a;,] holds. For
everyi < p fix (b} : | < n) = a;. By the L, ,-part of the definition of
Yo We have thatV = (V2) V<., ™ (x) = f™1(x). For everyc € N let
m(c) :=min{m : N | f™(c) = f™*(c)}.

Sincey is regular, after renaming we may assume that for everyn
there arek; < w such that for every < u we havem(b}) = k. By
increasingn we may assume that for evefy< u we have thatf(b!) €
{b?C : k < n}, and for everyiy, io < pand everyl;,ls < n we have

NEfo) =0} <= NEfO2) =b2 \ NEb =b < N b2 =02

We may also assume th@t : [ < n) has no repeatition. By thA-system
lemma there exists C n such that for every,, io < pand everyl;,lo <n
we have thabﬁ = b}j — [y =1y Cs.

SWhen f*(y) stands forf(-- - f(y) - - - ) k-many times.
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Let @, be the set of, ., formulas of quantifier deptkc  with finitely
many free variables. Clearly.| < 3,(|L|) and|P(®,)| < 3,11(|L]) <
p=cf(p).

Let tpA/(b[), cee b1 M) = {(p(i‘) € (I),y M ': (p[bo, .. 7bm—1]}-
Without loss of generality we may assume that for eviefy< u we have
tpy (bl ... 0L 13 N) =tpy (b)), ... b, _1;N).

We will obtain a cotradiction to the assumption thiat has the(¢’, co)-
order property by proving the following:

Claim. For everyi, j < uwe have

NE Qb b by b ] = NEG b, b b, b ]

Proof. Let B = {b* : [ € s}
U213

Remark 2.14. In Definition 2.5 we have introduced a third parameter, but
since it does not add anything of substance (just complicates the notation
that may be already little heavy) we decided to limit our treatment to the
above particular case. At the end of this section we discuss several general-
izations.

Theorem 2.8 provides a better upper bound than the one in Fact 1.10:
Corollary 2.15. For everys < A, we haveu*(\, x) < 35, (x x)-

Remark 2.16. Using Facts 1.10 and 2.15, one can show théh, k) <
do(A, k) for k < A. In [GrSh1] we have shown that in many instances the
ordinal§; (A, k) is much smaller thaty (A, \) [e.g. whenx = Xy, we have
thatd; (\, k) = AT, while for A = J,,,, we haveig(\, \) > 22, ]
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3. CONNECTION WITH THE GALVIN -HAJNAL RANK

In Theorem 2.6 we reduced the problem of finding estimateg for, -)
to finding bounds fo;(-,-). In Fact 3.2, below we state a result from
[GrSh1], first we need the following:

Definition 3.1. For uncountable, and\ > «, denote by

« [k ifcfr=NRg
FOE Rt cfk > Ng.

cov(A, k) :==min{|F| : F C Scux(A), VX € Scp+(\) Hwy : Il <w} C
F, such thatX C ;. wi}.

Clearlycov(A, k) < A*. But oftencov(A, k) < A®. In [Sh g] Shelah has
a more general function. Oubv(\, k) is the same asov(\, k*, k*,N1)
from Definition 1l 5.2 of [Sh g].

Fact 3.2. (Theorem 4.4 of [GrSh1]) Let < X be infinite cardinalities.
(@) if Kk = Rg thend; (A, k) < AT
(b) if ¢fx > Ng thend; (A, k) < (cov(A, k) + 27) .
() if cfk = Vo thendi(\, k) < (cov(, k) + 2<F 4+ Rg) .

Note that the above inocent looking results are quite powerfull! E.g. By
aresult of [Sh g] (from Chapter XI),
if (Ve < )™ < AJAcef(x) = RoAx < A < x*T1 then we have that
cov(A, k) = A, thuspui (A, k) < 3y+, while using Morley’s methods we get
Only Ml()\, KJ) < :(2)\)+.

The following is a generalization of the cardinal-valued function we have
introduced in Definition 1.8. Here instead of assuming that; y) is an
L+ ,, formula we look at allp € L., with quantifier depth< ~, we take
into consideration only the rank of the formuta

Definition 3.3. Let x be an infinite cardinality, and let be anordinal
greater orequalte™, T € L+,
(@) wi(v, k) == min{p* : Yo € Lo, With rk(p) < =, if T has the
(¢, u*)-order propertythen3y'(z;y) € L+ ,,, such thatl” has the
(¢', 00)-order property.
(b) H%(% ’i) = Sup{/ﬁ”(’% H) | T e Ln+,w}6'

The improvement in comparison to what we have seen before is that in-
stead of limiting attention to formulas with the order-property to be from
Ly+ ,, we consider what may look as a weaker order-property, by consider-
ing formulas with the order property to be from the lodig, ., (with rank
bounded byy).

5Note that similarly to what we did in the previous section with the functig@, -) above, the
functionsp™ (v, k) andu* (A, <) are different objects, we distinguish between them by using different
arguments.
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Definition 3.4. Let T, <, <, P be as in Definition 2.5. For aordinal v >
k let

(@) 62(\, v, k) :=min{d : T'isasetofl-types,|['| <k, |T| <A
if V&' <& 3IM € EC(T,I) with otp PM,<P") < v and
otpM — P,<) > ¢ ,then3N € EC(T,T) s.t. otp(PN, <") €
Onnk* and(N — PN, <V)is not well ordered.

(b) pa(N, v, k) := min{p : T'is a set ofT-types , |I'| < k,|T| <
A if 3M € EC(T,T) ||M]| > u with otp(PM, <M) < + then
foreveryx > « IN € EC(T,T") of cardinality at leask such that
otp(PN, <Ny e Onnrktl.

(c) When\ = k we may omitA. By the discussion after Theorem 2.6
this case is interesting enough.

The following is an analog of Proposition 2.8:

Proposition 3.5. Letx andu be cardinalities, and let be an ordinal > «.
Then(1) = (2) = (3) where

@) 1> pa(y, k)

(b) for everyy € L+, and for everyp(x;y) € Lo Of quantifier
depth < ~ if ¢ has the(y, iu)-order propertythenthere existsy’ €
L,.+ ,, such that) has the(y’, co)-order property.

€ p=> :l'y-

Theorem 3.6. For everyx and every ordinaly > x we haveus(y,x) =
Tsa(v.)-
Theorem 3.6 will be proved in the next section.

The following theorem connects to the Galvin—Hajnal rank and pro-
vides a lower bound fofz (v, x):

Theorem 3.7. (A lower bound):Suppose: is an uncountable regular car-
dinality. Let.J be the ideal of nonstationary subsets«ofFor every ordinal
v > k we have||y||; < d2(v, k), when||v|| s is the Galvin—Hajnal rank of
the constant functiorf : x — + + 1 whose value is.

Instead of proving the above theorem, we prove a more general result. It
turns out that the ideal of nonstationary subsets can be replaced by almost
any other ideal satisfying rather weak conditions:

Theorem 3.8. (A better lower bound)Suppose/ is anR;-complete ideal
on x such that

(*) J as anideal is generated by « sets or at least we have

(**) there exists a moded3 (of an expansion of set theory) with universe
K, |L(®B)| < kandy(P) € L+, whenL = L(B) U {P}, P is a unary
predicate; having the following property:

®; foreveryA C k, we havethatl € J < (B8, A) = (P)
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or at least

®; foreveryA C x,wehavethatl € J <= forsomeA wehavethatAC
A e J, (B,A") E¢(P)

then for every ordinaly > x we have thaf|v||; < da2(7, ).

Remark 3.9. (a) One way to see that Theorem 3.7 is a special case of
Theorem 3.8 is by using the same argument. Another formal argu-
ment (using the statement of 3.8) we can take= (x, <) andy(P)
will say that{z : P(x)} is a closed unbounded set. This satisfy
&®; butnot® ;.

(b) Note that®; is equivalent to: for some (P, R) € L+, we have
thatA € J < (3R)(B, A) & (P, R).

Proof. Lety* := ||v||s, and letds(~*) stand for the set
{v|v is strictly decreasing sequence of ordinatsy*}. There exists a fam-
ily of functions{f, : K — On | n € ds(y*)} with the following properties:

(@) f is constantlyy.
(b) if ni € ds(v*) thenf,~; <; fy, and for every( < x we have
[ fi(Q) < fo(Q] = firi(Q) = f5(¢) =0.

(0) if n () then¥¢ < k[f,(¢) <]

(d) ni € ds(v*) = | fills = i

@ Ifolls =~
This is possible: Define the functiory,, by induction or¢(n):
For{(n) = 0; Let f,, be the constant function as in requirement (1).
For ¢(n) > 0; If n%i € ds(v*) then f, is defined, and by the inductive
hypothesis we have thdtf,|; > i (asni € ds(y*) and||fyll; = ),
by the definition of the Galvin—Hajnal rank there exigts<; f, such that
I1#/1l7 > 4. Now for ¢ < & let

ity = { 119 1119 <50

0 otherwise.

This is enough: Denote byf the sequencéf, : n € ds(v*)).
Let x* be a sufficiently large regular cardinal such tf&ty*) conatins all
relevant sets and the structuff (x*), €) reflects all relevant properties.
Let € := (H(x*),€, <%, f,5,D,B,¢(:),J,Q, P,i)i<x , When<}. is a
well ordering of the sefi(x*), P is the unary predicatéi : ¢ < v}, Q
is the unary predicate interpreted by the §et: j < v*}, D interpreted
by ds(v*). LetT := Th(€), andT is a set of types consisting only of the
following type —{z € Kk Az # ¢ : i < k}. SupposeN € EC(T,T)
is such tha{ PV, <P") is well ordered, and we will show th4©", <) is
well ordered.

W.l.o.g. we may assume that¥ := {x ¢ N : N = 1k(z) € P}isa
transitive set andV| AN =c| AV (by taking the Mostowski’s collapse).
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SoP"N =~ for somey/, and sinceV omits the type il we havexV = &,
since the universe dB is x we haveB”¥ = 9B. So necessarily(-)V =
().

By the axioms ofl" it follows that
Mif NEnzeDthenN = (3X C{i<k : f(i) < frz(d)}) B =
(X). Now sincerjz € DV, we havef,, Y, € AN. So by the functions
from x into 4/, Also ¢V = 4, by absoluness we havé = (3X C {i <
ko Fal) < fro(i)}) B = 9(X). So by (**) we have
(*) 77A1: € DN = anx <J fr]-

Now if (Q, <) is not well ordered then we can fidd, € QY : N =
[Tn+1 < x,]}. FromT's axioms it follows that there argy,, : n < w}
such thatyy = (), ynt1 = yn'xn € D forall n < w. So we have that
{fy, 1k =7 |n<w}andforevernyn <w f, ., <s fy, (inV). SinceJ
is anX;-complete ideal we have a contradiction. We have shown that there
exists a paifl’, I' of the aproperiate cardinalities such that

(@) N € EC(T,T), (PV,<) is well ordered= (QV, <) is well or-

dered.

(b) there isN € EC(T,T) with otp(PY, <) < v and(Q", <) of order

type~* (take N = €).
This establishes that" < d2(7, k). Oss
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4., CONCLUDING REMARKS

It is natural to ask whether the lower bound from Theorem 3.8 is equal to
the one in Fact 3.2. The following seems to be a reasonable

Conjecture 4.1. For cardinalities: of uncounable cofinality and such that
2% < A we haved; (A, k) = (cov(A, k) + 27)7.

Remark 4.2.  (a) Notice that whem is strong limit singular of cofinality
N, then the conjecture holds.
(b) Why 2" < X\ — See Barwise-Kunen for independence results.
(c) The conjecture can to a large extent be traslated to a opefoiit is
evident that e.g. (***) below is a sufficient condition:

(***) for any set a of < « regular cardinals which are 2" the set
pcf(a) has cardinality at most, or at least the setc fi, complete(a)
has cardinality at most.

This is because by [Shg] Il 5.4 # < X theny = cov(\, k) IS
the firsty such that if{\; : i < k} is a set of regular cardinal-
ities in the interval(2®, ) and J is anX;-complete ideal on: and
cf (Il Nis <) is well defined then it is< p.

The problem is that the ideal may not satisfy e@r;. However
by [Sh g] VII, 2.6 the ideal/ is generated by a family of
< |pcf{\i : i < r}| sets and even by a family of just
< pefr;-completd Ai 1 @ < K} sets,
sowe havépcf({\i 1 i <k} <Kk=Q;
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