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ABSTRACT. The new result of this paper is that for 6(x;a)-stable (a
weakening of “T is stable”) we have
S1(0(x;a)] = DI(x;a), L, 00] = R[0(x;a), L, oc].

S1 is Hrushovski’s rank. This is an improvement of a result of Kim and
Pillay, who for simple theories under the (strong) assumption that either
of the ranks be finite obtained the same identity. Only the first equality
is new, the second equality is a result of Shelah from the seventies.

We derive it by studying localizations of several rank functions, we
get:

Theorem 0.1 (Main Theorem). Suppose that i is reqular satisfying p >
|T|*, pis a finite type, and A is a set of formulas closed under Boolean
operations. If
(1) Rlp,A,u"] < o0 or
(2) p is A-stable and p satisfies: for every sequence of cardinals

{wi <pli <[Al+Ro} we have that [, | a|4n, i < 1 holds,
then S[p, A, ut] = D[p, A, u™] = R[p, A, u™].

The S rank above is a localized version of Hrushovski’s S1 rank.
This rank, as well as our systematic use of local stability, allows us to
get a more conceptual proof of the equality of D and R, which is an old
result of Shelah. A particular (asymptotic) case of the theorem offers a
new sufficient condition for the equality of S1 and D[, L, c0]. We also
manage, due to a more general approach, to avoid some combinatorial
difficulties present in Shelah’s original exposition.

INTRODUCTION

Historically the introduction and implementation of several rank functions
have led to significant developments in the classification of theories. In 1965,
Morley published a partial solution to Los’ conjecture [Lo], requiring that
the similarity type of the theory be countable [Mo]. Later in the seventies,
Saharon Shelah solved Los’ conjecture in full generality [Sh31]. Although
Morley and Shelah’s approaches are structurally different, they implement a
common tool, a rank function. Morley introduced a rank function which is
now referred to as the Morley rank and is often denoted by RM (p), where
p is set of formulas (RM (p) := R[p, L, Ro] see Definition 1.1).
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For the general solution to Los’ conjecture, Shelah identified an impor-
tant class of theories, the superstable theories. To study these theories, he
introduced several tools in [Sh 10], including a rank called Deg[p] (Deg[p] :=
Deglp, L, |T|"] see Definition 1.11), and, to characterize stable theories, the
function R[p, A, Np] for p a set of formulas and A a finite set of formulas.

The introduction of these rank functions caught the attention of model
theorists. Daniel Lascar in his review of [Sha] for the Mathematical Reviews
wrote: “Ranks are the main combinatorial device in stability.” John Baldwin
investigated the Morley rank, and in his Ph.D. thesis Baldwin proved that
an Nj-categorical theory has finite Morely rank (see [Bal]). For his solution,
Baldwin introduced a rank function which was later named D[x = x, L, 00]
by Shelah. Among other results Baldwin showed that D|p, L, co] and RM [p]
coincide and are finite for Wy-categorical theories (this was a predecessor of
Theorem 0.1).

Daniel Lascar in [La2] introduced the Lascar rank, U(p) (defined for com-
plete types p), suitable for the study of superstable theories (it is denoted
by L(p) in [Shal). Lascar’s rank is different than the ranks we discuss here
(even for differentially closed fields, see [HS]).

In 1974, Baldwin and Blass introduced the basic axiomatic properties of
rank functions in [BaBl]; the connected property appears in Lascar [La2].
Later (in his book [Sha] from 1978), Shelah presented two other families
of rank functions D[p, A, A\] and R[p, A, \]. The first is a generalization of
Deglp] (as Deglp] = D|p, L,|T|™]) and the latter is a generalization of
the Morley rank (as RM|p] = R[p, L,No]). The functions D|p, L, oc] and
Rlp, L, 0| (the latter often denoted by co-rank[p|) are well understood and
their basic properties appear in several monographs (e.g. John Baldwin’s
book [Ba2], Steve Buechler’s book [Bu| and Anand Pillay’s [Pi]). Shelah’s
[Sh 10] ends with the question about the relation of R[p, A, o] and Deglp].
The question was answered by him in his book. Unfortunately, the deep
results in Section 3 of Chapter II [Sha] relating the rank functions R[p, A, \]
and DIp, A, A\] were not covered by any of the subsequent expositions known
to us. (E. g. if T is superstable, then R[x = x, L, 00| < |T|*.)

In the early nineties, Ehud Hrushovski [Hr| introduced the function S1
that he used to study simple unstable groups. Hrushovski’s S1 was defined
only for finite values. In the unpublished paper [Hr|, he introduced and
proved the independence theorem for theories with finite S1 rank. This
theorem was later generalized by Kim and Pillay [KP] for all simple theo-
ries. Some of Hrushovski’s early results concerning this rank appeared in a
restricted form in his papers with Pillay [HP1] and later with Chatzidakis
[CH].

This paper started by our attempt to understand some of the more diffi-
cult results in Section 3 of Chapter II [Sha]. To our surprise, after writing
up complete proofs to Shelah’s theorems, we realized that the main combi-
natorial dividing line is an implicit use of a rank function similar to the rank
S1; and the latter rank function was introduced explicitly only more than
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20 years later in a geometric context by Ehud Hrushovski. More precisely,
we introduce and study a new rank function S[p, A, A]. It turns out that
Slp, L, \] = S1[p] for sufficiently large A. This gives a more conceptual proof
of R = D than Shelah had.

Equality of D[p, L, 0] and S1[p, L] was previously shown to be true by
Kim and Pillay [KP] under the assumption that 7" is simple when either
Dip, L, 0] or S1[p] are finite. Here we get equality also for infinite valued
rank, but we assume local stability.

From Shelah’s proofs we extract relativized notions of A-stability and A-
superstability that clarify the arguments significantly (compare with Harnik
and Harrington [HH], Bouscaren [Bo] and with Grossberg and Lessmann
[GrLe]). The use of local stability has paid off as we can avoid the com-
binatorial difficulties in the proof of the asymptotic behavior of R, see our
Proposition 3.4 and Shelah’s Theorem I1.3.13 in [Sha).

To lower the complexity of Shelah’s original treatment, we introduce the
rank function Deg (which generalizes Shelah’s function from [Sh 10] and is
closely related to D). We show that under local stability the D-rank has a
simpler equivalent definition that is “almost like” the definition of Deg.

Lastly, a function S2 is introduced, it relates to the S1-rank in a similar
way as Deg[p, A, \] relates to R[p, A, A]. It is shown that when S1[p] =
Rlp, L, 0] then also S1[p] = S2[p].

The notation is standard. Throughout the paper, T" denotes a complete
first-order theory without finite models. The language of T" is denoted L(T).
The monster model is denoted by €.

We thank John Baldwin and Olivier Lessmann for reading a preliminary
version of this paper and offering us their comments. We also thank Ehud
Hrushovski for clarifying the history of the S1-rank.

1. LOCAL STABILITY AND THE R-RANK

We start by recalling the definitions of existing rank functions. We quote
their basic properties and connections with (local) stability.
Recall from [Shal:

Definition 1.1. Let p be a set of formulas in x, A C {p(x;y) | ¢ €
Fml(L(T))} and X a cardinality (can be finite) or oo.

(1) R[p, A, )] > « is defined by induction on «:
(a) R[p,A,A] >0, if p is consistent;
(b) for « limit, R[p, A, A] > « if R[p, A, A\] > 3 for every f < «
(¢) R[p,A,\] > a+ 1 if for every finite ¢ C p and every u < A there
are {q; | i < u} explicitly contradictory A-types such that
RlqU ¢, A, \] > « for every i < p. (When A = oo we interpret it
as no restriction on p).
(2) For an ordinal o denote by R[p, A, A\] = « the statement

Rlp,A,A\] > a and Rp, AN 2 a+1.
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(3) We write R[p, A, \] = oo if R[p, A, \] > « for every ordinal a.

Remarks 1.2. (1) R[p, L,No] is Morley’s rank often denoted by RM [p].

(2) Rlp, L,0] is often called infinity rank, Buechler (in [Bu]) denotes it
by R>[p].

(3) Rlp,A,Rq] is denoted in Pillay ([Pi]) by R [p.

(4) A word on A: While many results apply for arbitrary A and in de-
veloping the basics of stability theory the case when A = {p(x;y)}
is quite important. In this paper our focus is in a fairly large A.
Especially the case when A = L or A is a countable fragment of L
containg a given formula.

The following are the basic well known properties of the R-rank:

Fact 1.3. For sets of formulas, p and A, and a cardinal A
Invariance: For f € Aut(€), Rlp, A, \] = R[f(p), A, A].
Monotonicity: For sets of formulas, p and q, whenever p b q, p < A
and Ay C Ag, we have that R[p, A1, \] < R[q, Ag, p1].
Finite character: There is a finite subset ¢ C p, such that R[p, A, \] =
Rlq, A, \].
Ultrametric property: For A > X

Rlpu{ \/ ¥}, AN =Maxig<n RlpU {t}, AN

1<i<n

Extension property: For A > X and a set A O dom(p), there exists a
complete type q O p with domain A such that R[p, A, \] = R[q, A, A].
Connected: Let p be a finite set of formulas in x. If
Rlp, A, \] = a < oo then for every < «a there exists a A-type q such
that R[pUq, A\ = 3.

As we point out below, the R-rank can be used to capture stability-
theoretic properties of theories, including local stability and superstability.
In order to establish the framework, recall:

Definition 1.4. Let p be a type in x and let A be a set of formulas such
that for all ¢ € A, p = p(x;y,).

(1) A type q € Sg(x) (A) is called a (p, A)-type if pU q is consistent. The
set of all (p, A)-types is denoted by Sy A(A);

(2) pis (A, N)-stable if for all A, |[A] < A, we have [Sy aA(A)] < A

(3) pis A-stable if there is A such that p is (A, \)-stable;

(4) p is A-superstable if there is A such that p is (A, p)-stable for all
= A

(5) w(x;y) has the order property over p if there is a set {a, | n < w}
with ¢(a,) = £(y) such that p U {p(x;a,)T*<" | n < w} is consistent
for all k£ < w;

(6) A has the order property over p if there is p(x;y) € A that has the
order property over p.
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It turns out that such a definition of local stability is well-behaved, gen-
eralizes the usual definitions (as x = x being L-(super)stable coincides with
T being (super)stable), and allows us to develop the theory in a standard
way; see e. g. [Sha] 1.2.10, 11.2.14, I1.3.13. We can get:

Theorem 1.5. Let p be a type in x and let A be a set of formulas. The
following are equivalent:

(1) For all X\ > Ng such that A = N2l p is (A, \)-stable;

(2) p is A-stable;

(3) A does not have the order property over p.

By using the standard tree characterization for the R-rank as in [Sha]
11.2.2, it is possible to characterize local stability of types in the following
way:

Theorem 1.6. Suppose p is a set of formulas in x and ¢(x;y) is a formula.
The following are equivalent

(1) Rlp,¢,2] <

) Rlp,¢,2] < oo,

) R[p, p,Ro] < o0,

) Rlp, ¢, 00] < o0,

) the formula ¢ does not have the order property over p,

(6) p is {p}-stable.

Corollary 1.7. Suppose p and A are sets of formulas in x. If R[p, A, 00| <
oo, then p is A-stable.

(2
(3
(4
(5
6

Proof. Suppose R[p, A, o] < oo. By monotonicity, R[p, ¢, o] < oo for every
@ € A. Theorem 1.6 implies that for all ¢ € A, ¢ does not have the order
property over p. Thus A does not have the order property. By Theorem 1.5
we get that p is A-stable. -

Remark 1.8. In fact R[p, A, 00] < oo is equivalent to A-superstability of
p, for A closed under Boolean operations (see Theorem 2.16).

The following was introduced by Shelah (in [Sha]) to study superstable
theories

Definition 1.9. D[p, A, \] > 0 if p is consistent.
Dip, A, \] > a, for a limit, if for every 8 < a, D[p, A, \] > 5.
Dip, A, \] > a+1 if for every finite ¢ C p, for every u < A, there are a finite
r2q, p(x;y) € A, n <w, and {a; : i < u} such that:
(1) set {¢(x;a;) :i < u} is n-contradictory over r;
(2) for every i < u, D[rUo(x;a;), A, A] > a.

Remarks 1.10. (1) Buechler [Bu] denotes by D*°[p] the function D[p, L, o0]
from Definition 1.9.
(2) One of the reasons to require the formulas {p(x;a;) | ¢ < u} to be
contradictory over some extension of ¢, is to make sure the rank has
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the monotonicity property. Clearly, when A = L this requirement
can be dropped. In the next section we prove that we don’t need to
consider the arbitrary finite extension in the definition of D if p is
finite, A is closed under Boolean operations and p is A-stable.

(3) It is well-known that the D-rank is not equal to R-rank in some
situations.

(4) The D rank obeys most of the basic properties of the R-rank from
Fact 1.3.

We introduce the Deg-rank, which is a simplification of the D-rank. The
motivation is to eliminate the extra requirement of having to look at all pos-
sible finite extensions of ¢ in the definition of D. We succeed in using Deg,
instead of D, to characterize local superstability of types, to find bounds
for the D-rank and to eventually prove the equality of S1, R, and D under
certain conditions. The price to pay for using Deg instead of D is the extra
requirement: #(x;y) € A. At the end of Section 2 we show how to remove
it and still have the above mentioned equalities.

The Deg-rank is an interpolant of Shelah’s ranks: D[p, A, A] (from [Shal])
and Deg[p] (from [Sh 10]).

Definition 1.11. Deg[p, A, A\] > 0 if p is consistent.
Deg[p, A, \] > ¢, for ¢ limit, if for every a < §, Deg[p, A, \] > a.
Deg[p, A, \] > a + 1 if for every finite ¢ C p, for every u < A, there exist
o(x;y) € A, n <w and {a; : i < p} such that:
(1) set {@(x;a;) : i < p} is n-contradictory,
namely, for all i1 < --- <, < p we have that = ~Ix A\}_; o(x;a;,);
(2) for every i < p, DeglqU {p(x;a;)}, A, \] > a.

Remarks 1.12. (1) The rank Deglp, L, |T|*"] is Deg[p] in [Sh 10].

(2) When A = L, then trivially Deg[p, A, A\] = D[p, A, A\]. When A is a
proper subset of the set of formulas of L, then the ranks D and Deg
are different even for some totally categorical theories.

(3) Deg[p, L, (2171)**] is what Baldwin in [Ba2] calls the continuous rank,
denoted by R¢[p]. The same rank is denoted by Pillay (in page 72 of
[Pi]) as D(p). Notice that by the Normalization lemma, Lemma 1.16
and Proposition 1.15, Deg[p, L, (2T *+] = Degl[p, L, |T[*7].

It is not difficult to verify that the analogs to properties in Fact 1.3 also
hold for Deg.
The following is a routine exercise (the first inequality being trivial):

Proposition 1.13. For every p, A and \ > Ny,
Deglp, A, X < Dlp, A, 2] < Rip, A, Al
The Deg-rank can be used to characterize (local) superstability, under the
assumption of (local) stability. To show that, we need the tree-characterization

and normalization lemmas for Deg-rank. First we define the trees.
The following is a special case of Definition 11.3.3 of [Sh 10]:
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Definition 1.14. Let « be an ordinal and p a cardinal. We call h is
(A, a)-function for x iff h: ds(a) — A X w, where
ds(or) :={n € ““a : VL <L(n) =1 (q[f] > n[f+1])} and h(n) = (y(x;¥), 7).
For U C ds(«) define
U . I
Fu (9(X7a)7h) T '
{Feca) A N el ygreno)] | n € U UL} v e My
0<t<L(n)
{~3x[ \ ¥n(x:yn00) |1 € Uw C pu, [w] = ny,v € A1},
S
The following is an important technical property of the previous trees,

obtained by using Compactness:

Proposition 1.15. Let o, u, 0(x;a), A and h be as in the previous defi-
nition.

FZS(O‘) (0(x;a), h) is consistent <= Fis(a) (0(x;a), h) is consistent VA > V.
A proof similar to the one of Theorem I1.3.6 in [Sh 10] gives:

Lemma 1.16 (Tree characterization lemma for Deg). Let 6(x;a) be given
and let cf p > |a| + |T|. The following are equivalent:

(1) Degl0(x;a), A, u*] > o

2 ere exists a (A, a)-function h in x such that x;a),h) is
Th A, q)-f h h that T0) (g h
consistent.

Corollary 1.17. Let p > |T|+ Rg be a regular cardinal.
If Deglf(x;a), A, u*] > u then there exists a (A, u)-function h such that

Fﬁs(”) (0(x;a),h) is consistent.

The following lemma asserts that when o > |T|T, the tree of formulas
given by h in the Lemma 1.16 depends only on the length of 7.

Lemma 1.18 (Normalization Lemma). Let 6(x;a) be given.
Degl0(x;a), A, |T|T] > |T|" iff there exists {¢g,ny | 0 < k < w} such that

ﬁ;‘f (0(x;a), h) is consistent for a (A, a)-function h

satisfying h(n) = (Yo (X:¥), o)) V0 € ds(a).

for every a the set T’

We omit the proof since it is similar to the proof of Lemma IT 3.7 in [Sh 10].

Corollary 1.19. Let 0(x;a) be given.
(1) Degl0(x;a), A, |T|TT] > |T|* iff Deglf(x;a), A, |T|TH] = .
(2) Deg[0(x;a), A, |T""] = oo iff
there exists {(Yg,n) | 0 < k < w} € A x w and there are {a, | n €
“ZIT|*} such that

vne “|TI" {0(x;a)} U{vn(xsanm) | k <w}



8 R. GROSSBERG, A. KOLESNIKOV, I. TOMASIC, AND M. VANDIEREN

is consistent and for every 0 < k < w and for every n € k_1| T|" we
have that

{Yr(x;a,) | i < |T|T} s ng-contradictory.

Proof. (1) Suppose that Deg[f(x;a), A, |T|*"] > |T|*. By the Normaliza-
tion Lemma there is h such that for every a the set Fﬁs(a) (0(x;a),h) is
consistent. Using now the Compactness Theorem and Lemma 1.16 we get
that
Deglf(x;a), A, |T|TF] > « for every «, namely Deg[f(x;a), A, |T|T1] = .

The converse is trivial.

(2) Apply the Normalization Lemma to Deg[f(x;a), A, |T|T1] > |T|* to
produce a (A, |T'|")-function & as there. Let {a,} = FZS(Q)(H(x;a), h).

For the converse, use h(n) := (), e(y)) to show that Fzs(a)(ﬁ(x;a), h)
is consistent for every infinite o and apply Lemma 1.16. -

Definition 1.20. Let p be a type. We say that p has the A-weak tree prop-
erty over A if there are {p,(x;y,) € A |n <w} C L(T) and {a, | n € “"A}
such that the set p U {¢n(x;a,,) | n < w} is consistent for all n € ¥\, and
for all n € “” X and all infinite S C A the set {py()+1(X;a,°0) | @ € S} is
inconsistent.

Using the compactness theorem from Corollary 1.19 we get:

Corollary 1.21. Let (x;a) be given. If Deg[f(x;a), A, |T|""] > |T|* then
0(x;a) has the A\-weak tree property over A for every A > .

Corollary 1.22. (1) If Deg[x = x, L,|T|""] > |T|* then T is not su-
perstable.
(2) If Deglf(x;a), A, |T|T] > |T|" then 6(x;a) is not A-superstable.

Proof. Let u be given. By the previous corollary applied to A := 3, (u) we
get that the theory is not stable in . -

2. THE MAIN THEOREM

To prove Theorem 0.1 it suffices (by Proposition 1.13) to show that
Rlp, A, \] < D[p, A, )]. To do this we introduce the S-rank and show that
under certain conditions, R[p, A, A\] < S[p, A, A] and S[p, A, \] < D[p, A, Al.
The S-rank is a close relative of the rank function S1 introduced by Hrushovski
in the early nineties, see [Hr], [HP1] and [CH]. The definition of S1-rank (see
Section 3) is motivated by algebraic dimension theory. We find it surprising
that in the quest to settle a combinatorial problem — the Main Theorem —
one naturally discovers such a geometric object.

Definition 2.1. Let p be a set of formulas, not necessarily finite. Let A be
a set of formulas, and let A be a cardinal. In most of what follows, A is an
infinite uncountable cardinal; however, the definition makes sense for finite
and countable \ as well.
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Slp, A, A] > 0 if p is consistent.

Slp, A, A] > a, for « limit, if for every 8 < a, S[p, A, A\] > .

Slp, A, A] > a+ 1 if for every finite pg C p and for every pu < A there exist
Y(x;y) € A and {b; | i < pu} such that

X

(1) S[po U{w(x;b;)}, A, A] > « for every i < p and

(2) Slpo U {e(x;bi) Ap(x;b;)}, A Al < afor i # j < p.
(When X = co we interpret it as no restriction on pu).

Similarly to Fact 1.3 we get Invariance, Monotonicity, Finite Character,
Ultrametric and Extension properties for S-rank, provided we use A-types
only.

Lemma 2.2. Given sets of formulas p, q, and A; A closed under Boolean
operations:
Invariance of S rank: For f € Aut(C), S[f(p), A1, \] = S[p, A1, A
Monotonicity of S rank: Ifq is a A-type, then S[pUq, A, A] < S[p, A, A].
Finite Character for S rank: There exists py Cfinite p such that S[p, A, \] =
S[po, A, )‘] :
Ultrametric property for S rank: Let A be infinite uncountable. For
n<wand{Y; |l <n} CA,

S[p U { \/ wl}a Av )‘] = MaXlglgn S[p U {"¢l}; A? )‘]
1<i<n
Extension property for S rank: Suppose A is closed under disjunc-
tions. Given a set A O dom(p), there exists ¢ € Sa(A) such that
Slp, AN = SlpUg, A, AL

Theorem 2.3. Let A be a set of formulas in x closed under Boolean op-
erations, 0(x;y) € A; and let p > |T|" be a reqular cardinal. If 0(x;a) is
A-stable, then S[0(x;a), A, u"] < Deglf(x;a), A, ut].

Proof. By induction on ordinals o, we show for all finite p that
Slp, A, p] = o= Deglp, A, p] =2 a. (¥)a
We show that it suffices to prove (x), just for a < |T|":

Claim 2.4. Suppose that () holds for every o < |T|T.
If Sp, A, ™) > |T[* then Deglp, A, p¥] = oo

Proof. Since S[p, A, u™] > |T|" we have by the definition of S that

S[p, A, ut] > a for every a < |T|T. By (), and the definition of Deg this
gives Deg[p, A, u*] > |T|*. By an application of Corollary 1.22(1) we are
done. -

If a = 0, then (%), holds by the definitions of the ranks. For « a limit
ordinal, (), follows from the continuity of the ranks and the induction
hypothesis. Let o = 3+ 1 be such that S[f(x;a), A, u] > « and (x)g is
true. By the definition of the S rank, there are {b; | i < u} and a formula
©(x;y) € A such that
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(1) S[O(x;a) A p(x;b;), A, u] > 3 for every i < pu and

(2) S1(x;a) A p(x: bi) A 9(x; by), A, ] < B for i < .

Since 6(x;a) is A-stable, by Theorem 1.5 no formula in the set A has the
order property over #(x;a). Therefore, there is a number n < w witnessing
the failure of the order property for ¢(x;y), i. e. , for no {by | k < n}

/\ Ix |0(x;a) A /\ o(x; bk)if (k21)

I<n k<n

holds.
For every 7 = (2[0], ... ,2[n]) € [p]"™! define:

b(x;¢") ==\ ~p(x; byy) A @(%; gy

I<n

Since S[A(x;a) A p(x; b)), A, ut] > 8 and ¢(x;byy,)) is logically equiv-

alent to
P(x;c’) v ([\/ o(x; bz[l])] A p(x; bz[n])) :

l<n
by the ultrametric property of S rank, we obtain
B < S[0(x;a) A p(x; b)), A, 1]
= max{S[0(x;a) A (x;c’), A, ],
S[0(x;a) A [Vicp 2(x5 )| A (x5 b)), A, it}

Notice that the second argument in the above maximum is less than (.
Indeed, applying the ultrametric property again, by the choice of ¢(x;y)
and parameters b;, we get

S[0(x;a) A [V (x5 bay)] A (x5 b)), A, ]
= max{S[0(x;a) A o(x; b)) A @(x;bgy), A, p] [ 1 < n} < B.
Therefore, S[0(x;a) A (x;c?), A, ut] > B for every 7 € [u]"!. Clearly,
all the formulas 6(x;a) A ¥ (x;c’) are A-stable. Applying the induction
hypothesis to §(x;a) A ¥(x; c’), we get
Vi (1"t Deglf(x;a) Ap(x;¢'), A, ut] > 6.

By the Tree Characterization Lemma for Deg, for every 7 there is a (A, 3)-
function h; such that I‘ﬁs(ﬁ ) (0(x;a) A 1h(x;c?), h;) is consistent.

Also, since S[0(x;a), A, ut] > 3, by the induction hypothesis,
Deglf(x;a), A, u™] > 3. So there is a (A, 8)-function hs such that
Fﬁs(ﬁ) (0(x;a), hy) is consistent.

Now for every 7 define a (A, «)-function h*:

. h«(n) if n € ds(B);
for n € ds(a)) h'(n) =< hi(v) ifn={(6)v;
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It is enough to show that there is an 7 € [u]"*! such that FZS(Q) (6(x;a),h’) is

consistent. Moreover, by compactness, it is enough to show @ (0(x;a),h?)

Ro
is consistent. i
Suppose Fg‘z(a)(ﬁ(x; a),h') is not consistent; then for each 7 there is a
finite u(z) C ds(a) such that

F;ig‘) (6(x;a), h?) is inconsistent. Define, for 7 € [u]"!,

F (1) == (u(@), k" [ u(z)).

Now applying the Combinatorial Lemma from Appendix B to the function
F, where |dom(F)| = p (regular > |T|7) and |rge(F)| < |T| (since |a| <
|T|), we get § < p and an increasing sequence {y(k) < ¢ : k < w} such that
for every lg < -+ < I, < w,

(u, h) == F(y(lo), - s Y(In-1),7(In)) = F(y(lo), - - - ,7(In-1), 0)-
Claim 2.5. For | < w, let d; := (V0 (=DA0+0) = The set {4)(x;d;) |

| < w} is n-contradictory over 6(x;a).

Proof. By Ramsey’s Theorem we may assume that the sequence
{b,y | I <w} is such that for all i(0) < --- <i(n) <w and for all k <n

é\ @(x; b)) TR (%)

I<n

Ix |O(x;a) A N\ p(x; b,y(l))if (lzk)] & Ix [9(){; a) /\l

If {¢(x;d;) | | <w} is not n-contradictory over 6(x;a), then there are
{l(k) | E < n} such that

= dx lﬁ(x; a) A /\ Y(x; dl(k))] )

k<n

1. e. , by the definition of ¢ and d;,

): dx [9(){; a) A /\ _'QO(X; b'y(kz)) A /\ QO(X; b'y(n—i—l(k)))] .

k<n k<n

In particular, for every m < n,

n—1
= 3x [e(x; a) A [\ —exibyw) AN elx; b“/(nJrl(k)))] :

k<m k=m

Now by (%) we get

n—1
= 3x [9(X§ a) A\ —p(xbyg) AN e(x; by(k))] ,

k<m k=m

which is a contradiction to the choice of n, which was chosen to witness the
failure of the order property over 0(x;a) for ¢. -
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We may assume that  is closed under taking initial segments and I'§ (6(x; a), h)
is consistent: putting 7, := (y(0),... ,v(n1—1),v(n1+1)), d; := ¢% for | < w,

and
4 ifn=(8),v = ()
byy = 4 bl ifn=(B)€v= ()G
by, ifneds(p
(

choice of © and we are done.
_|

The following fact now trivially follows from Theorems 2.3 and 1.13.

Corollary 2.6. Let A be a set of formulas in x closed under Boolean op-
erations, 0(x;y) € A; and let p > |T|T be regular. If 0(x;a) is A-stable,
then

S[0(x;a), A, u¥] < Deglf(x;a), A, u*] < D[f(x;a), A, ut] < R[f(x;a), A, .

In order to prove the main theorem, we need to show that R[f(x;a), A, A\] <
S[0(x;a), A, A] under appropriate assumptions. The following lemma will
provide the link between the R-rank and the S-rank. It fuels the successor
stage of an induction proof of Theorem 2.12.

Lemma 2.7. Suppose that u is a reqular cardinal, p > |T|", and A is a set
of formulas which is closed under Boolean operations. If R[f(x;a), A, ut] >
B+1 and
(1) R[A(x;a), A, u"] < oo or
(2) O(x;a) is A-stable and for every set {p; | i < |A|+Ro} of cardinalities
all less than u, we have Hi<|A\+No i < p(e.g. = 2TH* is such a
cardinality),
then there is a formula ¢*(x,y) € A and a set {c; | i < u} such that
(1) R[O(x;a) A p*(x,¢;), A, uT] > B for all i < u;
(2) R[O(x;a) A p*(x,¢i) Ap*(x,¢;), A, ut] < B fori#j < p.

Proof. Since R[f(x;a), A, ut] >  + 1, there are {p; | i < u} explicitly
contradictory A-types such that R[{0(x;a)} Up;, A, ut] > g for all i < p.
Using the hypothesis of the lemma, we get

Claim 2.8. There are a set A, a formula p(x;y) € A and

{pi |i < p} CSA(A) such that p; | @ # p; | ¢ for every i # j and
R[{0(x;a)} Up;, A, ut] > B holds for every i < p.

Proof. The argument is by cases corresponding to the hypotheses of the
lemma.

(1) Suppose that R[f(x;a), A, ut] < oo. Using Theorem 1.3 (by replacing
the p;’s by extensions) we may assume that R[{f(x;a)} Up;, A, ut] = 3
for all i+ < p. By the finite character there are g¢; Cfinite p; such that
R[{0(x;a)} Ugq, A, uT] = for all i < p.
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Subclaim 2.9. For every i < p the set {j < p | ¢; C p;} is bounded.

Proof. Otherwise, there is S C u of cardinality p such that there exists g
satisfying ¢;, C p;j for all j € S. Namely by monotonicity we have that
R{0(x;a)} U g, Upj, A,u™] = j for every j € S. This, by the definition
of R, implies that R[{f(x;a)} U gi,, A, "] = B+ 1 in contradiction to the
choice of g;. —

By induction on i < p we can now define an increasing sequence
{j(7) < p|i < p} such that g¢ Z p;(;) for all § <i. By renumerating the set
{pjey | 1 < p} we may assume that {p; | i < p} also satisfies ¢; Z p; for all
i < j. Since A is closed under Boolean operations, the formula ¢; := A ¢; is
a A-formula. Consider the mapping i — ¢;. Since the domain is a regular
cardinal larger than |T|, there are a formula p(x;y) € A and a set S C p of
cardinality ;o such that ¢; = ¢ for all ¢ € S. Since ¢; € p; for j > i, we have
that ¢; € p;, and since the types are complete this entails that —¢; € p;.
We have shown that ¢ # j implies that p; [ ¢ # p; | ¢.
(2) For this part we do not use the local stability assumption; we just use
that J[; jajsn, s < pfor every {p; < pu| i <|A[+No}. If there is no set of
w4 many types as required then let

po=|{pi ¢ :i<p} <p forevery ¢eA.
However, the mapping i — (p; | ¢)pea is an injection from p

into [[ eaipi I ¢ 14 < p}, which contradicts the above cardinal arithmetic
assumption.

_|
Claim 2.10. R[0(x;a),o(x;y),2] < w.

Proof. We have two arguments according to the hypothesis of the lemma:
(1) By monotonicity, R[f(x;a),p, 0] < R[f(x;a), A, u"], and by Theorem
1.6 (1), RlA(x;a),¥,2] < w.
(2) Since 6(x;a) is A-stable, it is {¢}-stable

for every ¢ € A. By Theorem 1.6 this entails R[0(x;a), p, 2] < w. =

By the above claim, R[f(x;a), p(x;y),2] is a natural number. Let ng :=
R[0(x;a), ¢,2].

Claim 2.11. If the set ® C {q € S,(A) | 6(x;a) U q is consistent} has
cardinality k > Rg then there exists {r;,p; | i < k,7; C p;,p; € ®} such that

(1) |ril =no +2,

(2) for everyi <k if g € ® and r; C q then q = p;, and

(3) i # j implies p; # p;-

We present the proof of Claim 2.11 in the Appendix.

For every i < u, we have that R[(x;a) Up; | ¢, A, ut] > 3. Thus for
¢ = {qg € S,(A) | Rl0(x;a) Ug,A,u"] > 3}, it follows that |®| > pu.
Applying the previous claim to @, let {r; : i < u} be as in the claim.
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For i < p define p*(x;¢;) := Ar; (since p > |T|", we may assume that
©*(x;y) does not depend on 7).

Since r; C p;, for all i < u, and R[]0 Up;, A, u™] > 3, we get

R[0(x;a) A p*(x;¢:), A, uT] > B.
However, if ¢ # j, then
R[0(x; ) A g™ (x;¢:) A @™ (x5¢5), A, ut] < B.

Otherwise, by the Extension Property there would be a ¢ € S,(A) ex-
tending p* (x; ¢;) Ap*(x; ¢j) such that R[f(x;a)Uq, A, p] > 3, which would
contradict the uniqueness clause (2) from the construction of r;’s from Claim
2.11. —

Theorem 2.12. Suppose that p is reqular cardinal satisfying p > |T|*
and A is a set of formulas which is closed under Boolean operations, with
O(x;y) € A. If
(1) R[A(x;a), A, u™] < oo or
(2) O(x;a) is A-stable and for every {p; | i < |A| + No} cardinalities all
less than pu, TT; a1t i < B
holds, then S[0(x;a), A, u™] > R[0(x;a), A, ut].

Proof. We show that for all ordinals «,
(*)a RlO(x;a), A, u"] > a = S[0(x;a), A, u"] > a.

We proceed by induction on a. For a = 0, (%), holds by the definitions
of ranks. For « a limit ordinal, (), follows from the continuity of the ranks
and the induction hypothesis. Suppose R[f(x;a),A,u] > a = f+ 1 and
that (%) holds. Then by Lemma 2.7 we have a formula ¢*(x;y) € A and a
set {c; | i < p} such that

(1) R[O(x;2) A *(x;¢:), A, uF] > B for all i < p;

(2) R[A(x;a) A p*(x;¢:) A p*(x,¢;), A, pT] < B lori#j < p.

By induction hypothesis (1) gives us S[f(x;a) A p*(x;¢;), A, u] > 3 for
all i < p. And (2) together with Corollary 2.6 imply

S[O(x;a) A p*(x;¢;) A p*(x;¢5), A, ut] < Bfori+je€l

By the definition of S rank, we have S[f(x;a), A, u™] > «, completing the
induction. -

Corollary 2.6 and Theorem 2.12 give the following
Theorem 2.13. Suppose that u is reqular satisfying u > |T|T and A is a
set of formulas closed under Boolean operations with 0(x;y) € A. If
(1) Rf(x;a), A, ut] < oo or
(2) O(x;a) is A-stable and p satisfies: for every sequence of cardinals
{ui <p|i<|A[+No} we have that J[; | aj4n, #i < 1 holds,
then S[0(x;a), A, ut] = Deglf(x;a), A, ut] = D[0(x;a), A, ut] = R[A(x;a), A, uT].
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Now we show how to remove the assumption 0(x;y) € A and get Theo-
rem 0.1. First we prove

Lemma 2.14. ! Suppose 0(x; a) is A-stable, where A is closed under Boolean
operations. Suppose A > Ry. If D[, A, \] > a+1 for a >0, then for every
<X\ there are p € A, k < w, and {b; | i < pu} such that

(1) the set {{(x;by) | i < p} is k-contradictory over 0(x;a);

(2) for everyi < pu, D[B(x;a) A(x;b;), A, A] > a.

Proof. Suppose D[0(x;a), A, \] > a+ 1 for a > 0. By the definition, for all
Ng < p < A, p limit, there is a formula ¢(x;c) with = ¢(x;¢) — 0(x;a),
there are ¢ € A and {a; | i < pu} such that for some n < w
(1) Dle(x;¢) Ap(x;a;), A, A\] > « and
(2) {¥(x;a;) | i < p} is n-contradictory over ¢(x;c).
Clearly,
D[f(x;a) ANp(x;a;), A, > a for all i < p,

so if {¢(x;a;) | i < p} is k-contradictory over f(x;a) for some k < w, then
we are done. Otherwise, we may assume that the set {6(x;a)} U {¢)(x;a;) |
i < w} is consistent. Since {¢(x;a;) | i < p} is n-contradictory over ¢(x;c),
we have
= p(xic) = p(x;e) A\ d(x;ay).
j<n

Hence D[p(x;c) A [\, ¥(x;a;)] A p(x;a;), A, A] > a for @ < p. By the
ultrametric property for the D-rank and the pigeon-hole principle, refining
{a; | i < p} if necessary we may assume that

Dip(x;¢) A p(x;a0) ANp(x;a;), A, N > afor 1 <i < p. (%0)
By monotonicity
DI[f(x;a) A ~p(x;a0) Ap(x;a;), A, A > afor 1 <i<p.

If {¢(x;a;) | 1 <i < u}is k-contradictory over 0(x;a) A —i)(x;ag) for some
k < w, then we are done.

Otherwise, {0(x;a) A =)(x;a0)} U {¢(x;a;) | 1 <i < w} is consistent. Now
we replace p(x; ) in (o) by ©(x;¢) A= A <icpqr (X5 ), and get as above

Dlp(x;¢c) AN—p(x;a0) A (x;a1) A(x;a;), A, N > afor 2 <i < p. (%1)

Observe that since we are only refining the sequence {a; | i < p}, after the
second step we get that both {f(x;a)} U {¢(x;a;) | i < w} and {f(x;a) A
—(x;a0)} U{¢(x;a;) | 1 <i<w} are consistent.

Repeat this process.

!The statement of this Lemma appears as Exercise 11.3.10 in [Sha]. In a preliminary
version of this paper we stated it without proof. One of the readers doubted the correctnes
of this, so we have included a complete proof for completness.
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Subclaim 2.15. The above process terminates in finitely many steps, i.e.,
there is | < w and a sequence {a; | i < pu} such that

Dlp(x;c) A /\ —Y(xsa5) ANp(xa;), AN > o for 1 +1 <i < p. (%)
J<l
and {1(x;a;) | 141 < i < p} are k-contradictory over 0(x; a) AN\ ;<; ~(x; a;)
for some k. a

Proof. Since 6 is A-stable, the formula ¢y € A does not have the order
property over 0(x;a). Let N < w witnes failure of the order property for 1).
We claim that the above process terminates after at most N steps. Indeed,
otherwise we would have a sequence {a; | ¢ < u} such that

= 3x[0(x;a) A \ v(xsa) A\ v(xiay)] forall I < N,

j<l I<i<N
which contradicts the choice of N. =

Let {a; | i < u}, | <w and k be as in the subclaim, let

DX y0, - YL Yie) = [\ (x5 y5) A% yig),

Jj<lI
and let b; 1= ap’a;” ... a;"a;y14 for i < p. Since A is closed under Boolean
operations, ¢ € A. By () and monotonicity D[0(x;a)A¢(x;b;), A, A] > a,
and clearly {¢(x;b;) | ¢ < u} is k-contradictory over 6(x;a). o

The above lemma shows that we can don’t need to consider arbitrary
finite extensions of f(x;a) to compute D[f(x;a), A, A]. This allows us to get
the Main Theorem from the abstract.

Proof of the Main Theorem. Let p be a finite type, let 6(x;a) := Ap. Prove

(1) SiP(x;a), A, u'] < Dif(x;a), A, u'],

(2) Rl0(x;a), A, '] < S[0(x;2), A, .

In view of Lemma 2.14, the proof of (1) repeats almost word-for-word
that of Theorem 2.3. Proof of (2) is the same as the proof of Theorem 2.12
except one needs to use (1) and Proposition 1.13 instead of Corollary 2.6.

As a byproduct of our results, we get the following characterization of
local superstability (notice the alanogy to Theorem II 3.14 from [Sha]):

Theorem 2.16. Let p be a finite type and let A be a set of formulas closed
under Boolean operations. The following conditions are equivalent:

(1) p is A-superstable,

(2) p is A-stable and D[p, A, |T|TF] < |T|T,

(8) p is A-stable and D[p, A, 0] < |T|T,

(4) Rip, A, o0] < [TI*,

(5) Rlp, A, 0] < o0,

(6) p is A-stable and Deg[p, A, 00| < co.

If in addition \p € A, then any of (1)-(6) above is equivalent to

(7) p is A-stable and Deg[p, A, |T|T+] < |T|T,
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Remark 2.17. Even more is true in the above: we can add the condition
Rp, A, (2IT)++] < |T|*; see Proposition 3.4.

3. BOUNDS ON RANKS

As we mentioned above, the following rank was introduced by Hrushovski
in the context of geometric dimension theory. We describe the connection
between the ranks S, R, D, and S1.

Definition 3.1. S1[p, A] > 0 if p is consistent.

S1[p, A] > a, for « limit, if for every 8 < a, S1[p, A] > .

S1[p,A] > a + 1 if for every finite py C p there exists ¥(x;y) € A and
{b,, | n < w} indiscernibles over dom(pg) such that

(1) S1[po U {¥(x;bn)}, A] > « for every n < w and
(2) SlpoU{e(x;bp) Ap(x;bpm)}, Al < a for m # n < w.

The S1 rank has all the properties of the S rank, and they can be proved
in a completely analogous way.

Claim 3.2. There is a cardinal k such that for any type p, set of formulas
A, and X > k1 we have S1[p,A] = S[p,A,N]. In particular, S1[p,A] =
Slp, A, o0].

Proof. We use the fact that there exists a cardinal x such that for any
countable set A and any sequence {b; | i < k} there is a sequence {c, |
n < w} of indiscernibles over A such that for all n < w there are i(0) <
- <i(n = 1) < K with tp(co ... cn—1/A) = tp(bi(o) - - - bitn—1)/A). Namely,
K= :l(zm)JrQ.

We prove by induction

Slp, Al > a< Sp, AN > « (*)a

for every A > k™ and every finite type p. Let 0(x;a) := A p.

If & = 0, then (x), holds by the definitions of the ranks. For « a limit
ordinal, (%), follows from the continuity of the ranks and the induction
hypothesis.

Let @« = B+ 1, S1[0(x;a),A] > o and (x)g is true. By the definition of
the S1 rank, there are ¢)(x;y) € A and {b,, | n < w} indiscernibles over a as
in the definition. By invariance of the S1 rank and Compactness Theorem,
there is an indiscernible sequence {b; | i < A} over a, such that

(1) S1[0(x;a) A(x;b;), A] > 3 for every i < A and

(2) S1[0(x;a) A (x by) A th(x; by), A] < 3 for i £ j < A.

By (%) we obtain
(1) S[f(x;a) Ap(x;b;), A, A\] > [ for every ¢ < A and
(2) S[O(x;a) Ap(x;by) Ap(x;bj), A A] < B for i # j < A

2This fact appears in [Sh93], Lemma 6.3; for a more detailed account and an improve-
ment of the bound see [GIL], Theorem Al.
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Note that we use both directions of (x)g here. By the definition, we see that
Slo(x;a), A, A > a.

Suppose now that S[f(x;a), A, A\] > « and fix {b; | ¢ < k} such that

(1) S[0(x;a) Ap(x;b;), A, A] > (3 for every i < k and

(2) 8100 a) A (3 by) A (x; by), AN < 6 for i £ 7 < .
We certainly can find such b;’s because A > xT. By the choice of &, there is
a sequence {c | k < w} of indiscernibles over a such that for every n < w
there are i(0) < ¢(1) < --- < i(n — 1) < K such that tp(cp...cp—1/a) =
tp(bj(0) - - - Pin—1)/a). By invariance of the S rank, we have

(1) S[(x;a) Ap(x;cp), A, A] > (3 for every n < w and

(2) S[O(x;a) ANp(x;¢n) ANY(X;¢m), A A < B forn #m < w.

Using (x)g, we get

(1) S1[0(x;a) Ap(x;cy), A] > (3 for every n < w and

(2) S1[0(x;a) Ap(x;cn) ANp(x5¢m), Al < S for m#n <w
which shows (x)q.

—~~

_|

The following theorem describes the asymptotic behaviour of the ranks
and shows that S1 is equal to S, R, and D under the local stability assump-
tion.

Theorem 3.3. Suppose A is closed under Boolean operations. If 0(x;a) is
A-stable, then

S1[0(x;a), Al = S[0(x;a), A, 00] = D[f(x;a), A, 00] = R[f(x;a), A, o0].
Moreover, for every A > (2|T|)+Jr
S1[0(x;a), Al = S[0(x;a), A, \] = D[0(x;a), A, \] = R[0(x;a), A, ).
Proof. The first set of equalities and
Slo(x; ), A, (271 H] = Dlo(xsa), A, (271) ] = Rlo(x;a), A, (217)*]

follow from Theorem 0.1, clause (2), and Claim 3.2.
The rest follows from monotonicity of the ranks in the third argument
and

Proposition 3.4. For a finite type p and A closed under Boolean opera-
tions, for every A > (2/TH++

Rlp, A, \] = R[p, A, ).
Proof. By monotonicity, R[p, A,\] > R[p,A,o0]. If R[p, A, o0] = oo, we
have nothing to prove. Otherwise, by Theorem 1.7 we get that p is A-stable
and we are in the conditions of Theorem 0.1, clause (2). Taking into account

the equality D[p, A, |T|t%] = Dlp, A, oc] from [Sha], I1.3.8, by the choice of
A we get Rlp, A, \] = Dip, A, \] = D[p, A, 0] = R[p, A, 00]. =

_|
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Theorem 3.5. Suppose A is closed under Boolean operations.
(1) Suppose that 6(x;a) is A-stable. If any of the ranks in Theorem 3.3
is bounded (i.e. is less than 0o ), then all the ranks there are less than |T|".
(2) If p is a type, not necessarily finite, and R[p, A,o0] < oo, then
R[p, A, o00] < |T|".

Proof. (1) If any of the ranks in Theorem 3.3 is bounded, then D[f(x;a), A, 00| <
00. By Theorem I1.3.8 in [Shal, we have then D[f(x;a), A, o00] < |T|*. Ap-
plying Theorem 3.3 again, we see that all the ranks must be less than |T'|T.
(2) By finite character, there is a finite pg with R[p, A, co] = R[po, A, 00] <
0o. By Theorem 2.16 we get R[pg, A, o0] < |T|T and the assertion follows.
_|

4. S2-RANK
The following is a generalization of the S1 rank.

Definition 4.1. Let p be a set of formulas in x.

S2[p, A] > 0 if p is consistent.

S2[p, A] > a, for « limit, if for every 8 < a, S2[p, A] > a.

S2[p,A] > o+ 1 if for every finite pg C p there exists ¥(x,y) € A, | < w
and {b,, | n < w} indiscernibles over dom(py) such that

(1) S2[po U {¢(x,bp)}, A] > « for every n < w and
(2) S2[po U {A ey ¥(x,bn)}, A] < a whenever u € 'w.

Remark 4.2. Given A C {¢(x;y) | ¢ € Fml(L(T))} closed under Boolean
operations and containing all the formulas of a type p in x, if p is A-stable,
one can show that S2[p, A] = S1[p, A].

The inequality S1[p, A] < S2[p, A] is trivial and holds without any re-
strictions on A and p.

One then can show that S2[p, A] < Deg[p, A, A], where A is infinite cardi-
nal, using a similar argument to that which was used to prove Theorem 2.3.

APPENDIX A. Proor or CrLamM 2.11

Proof. (Of the Claim 2.11) Define r;, p; by induction on i < k. Suppose we
have defined {r;,p; : j < i}. Now define an equivalence relation E;:

fora,be ‘DA, aBEb e (Vi <i)p(x;a) € pj < ¢(x;b) € pjl.
Subclaim A.1. |‘®A /Ej| < k.

Proof. For every j < i, let ¢; = p;j. Suppose for the sake of contradiction
that {a;/E; | k < k} are distinct equivalence classes.

Let g, := tpy(ar/Uj<icj). Let k # 1 < k be given. Then a;/FE; # a;/E;. By
the definition of Ej, there is a j < i such that =(p(x;ax) € p; < @(x;a;) €
pj). Without loss of generality we may assume that ¢(x;a;) € p; and
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—p(x;a;) € pj. Since ¢; = pj, we have that p(c;;y) € g, and ~p(c;;y) € ¢
Thus for k # [ < K, qx # q-

Since i < k, we get that | Uj<; ¢j| < k. But {qy : kK < k} witnesses that
|Sp(Uj<ics)| > k, which contradicts our stability assumption. =

Subclaim A.2. |[{¢ € ®:aEb = [p(x;a) € ¢ & o(x;b) € ¢]}| < k.

Proof. Let S := {g € ® | Va,b € ‘DA (aEb = (p(x;a) € ¢ & p(x;b) €
q)}. For the sake of contradiction, suppose that |S| = k. Let A := ‘@A /E;.
By subclaim A.1, we have that |A| < &; but, we have an obvious injection
S — S,(A), so |S,(A)| > k, which is a contradiction to the stability as-
sumption. =

By induction on I < ng define p € @, a_, and t(I) € {0,1} such that:
<= {p(x;ah), (a0, p(x;a),, ) D) C
- Rlf(x;a)Ur,,2] <ng—1lor3lged, qgDr.
For [ = 0, by Subclaims A.1 and A.2 there exists p® and a}, a} such that
alF;al and p(x;a)) € p°, —~p(x;al) € p°. Put t(0) := 1. ‘ ‘ ‘
Suppose we have defined everything for [. If Jlg € ®, ¢ D 1}, let aj | = ay,
t(l+1) =t(l) and p'tt = q. If |{g € ® : ¥ C g}| > 1, then, since & C S,(4),
for some afH e ‘@A there are qo,q1 € P, U {p(x; a§+1)t)} C ¢q;. From
definition of R, there is t(I + 1) € {0,1} such that

R[{0(x;a)} Uri U {p(x;aj,1) "D}, 0,2 < RI{0(x;a)} Ui, ¢,2] < no — 1

and put p = g1y ‘
Now, it is clear from the construction that r;, ., has a unique extension
in ® and [r}, 1| <ng+2. Put r; := 7}, ., adding eventually some formulas

from the unique extension of rﬁ'm 41 to satisfy the requirement |r;| = ng +
2. =

APPENDIX B. A COMBINATORIAL THEOREM

Claim B.1 (A combinatorial lemma). Let k > W and suppose that p > K
is reqular. For every n < w and every F : [u]"*! — K there exists a limit
ordinal § < p such that for every £ < p satisfying & > § there exists an
increasing {y(k) | k < w} C & such that for any by < --- < £, < w we have
that

F(/V(EU)v s ’ry(fn)) = F(/V(EO)v s ar}/(gnfl)a 5)

Proof. Let x > Ny be a regular cardinal large enough such that {u, F'} C
H(x). Let B := (H(x), €, 4, F, &) a<r, where p stands for a unary predicate
interpreted by the set of ordinals less than u, F' is interpreted by the function
F and « is an individual constant interpreted by the corresponding ordinal.

By the Downward Lowenheim-Skolem-Tarski theorem pick an increasing
and continuous elementary chain {8; < B | i < u} satisfying

(1) [Bil| < p and
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(2) @ C p®i for all i < p.
Since we have that p = J, 4 pBi, there is a closed unbounded subset C' of
the set {0 < p | § = ™5 A S is limit}.

The definition of {v(k) | kK < w} is by induction on k:
Fix any 7(0) < v(1) < --- < y(n — 1) < é. Suppose {y(j) | j < k} are
defined (for £ > n—1). Let ¢(x) be the following formula (with parameters
Y(0), ..., v(k)):

NEFQW), - Aln), ) =a | by <+ < lny <k <k,
B ': F(y(lo)s- - sv(ln-1),§) = a}'

Since B | 9¥(§), we have that B |= Jxep(z). Since all the parameters of

Y are in By, Bs < B and £ > (k) there exists y(k + 1) < § such that
v(k+1) > (k) and B = ¥(y(k + 1)). =
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