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Abstract

We examine the properties of dependence relations in certain non-elementary classes

and first-order simple theories. There are two major parts.

The goal of the first part is to identify the properties of dependence relations in

certain non-elementary classes that, firstly, characterize the model-theoretic proper-

ties of those classes; and secondly, allow to uniquely describe an abstract dependence

itself in a very concrete way. I investigate totally transcendental atomic models and

finite diagrams, stable finite diagrams, and a subclass of simple homogeneous models

from this point of view.

The second part deals with simple first-order theories. The main topic of this part

is investigation of generalized amalgamation properties for simple theories. Namely,

we are trying to answer the question of when does a simple theory have the property of

n-dimensional amalgamation, where 2-dimensional amalgamation is the Independence

theorem for simple theories. We develop the notion of n-simplicity and strong n-

simplicity for 1 ≤ n ≤ ω, where both “1-simple” and “strongly 1-simple” is the same

as “simple.” We present examples of simple unstable theories in each subclass and

prove a characteristic property of n-simplicity in terms of n-dividing, a strengthening

of the dependence relation called dividing in simple theories. We prove 3-dimensional

amalgamation property for 2-simple theories, and, under an additional assumption,

a strong (n + 1)-dimensional amalgamation property for strongly n-simple theories.

Stable theories are strongly ω-simple, and the idea behind developing extra sim-

plicity conditions is to show that, for instance, ω-simple theories are almost as nice as

stable theories. The third part of the thesis contains an application of ω-simplicity to

construct a Morley sequence without the construction of a long independent sequence.
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Introduction

The goal of this introduction is to describe how this work fits into the classification

program for first-order theories and not first-order, or non-elementary, classes.

The classification program for first-order theories began with M. Morley’s proof of

ÃLoš’ conjecture, the statement asserting that if a countable theory has one model up to

isomorphism of some uncountable size, then any two models of the same uncountable

size must be isomorphic. The transition from this success to a systematic classification

theory was accomplished by Saharon Shelah in [29].

Many mathematical objects cannot be completely described by their first-order

properties, so it is natural to look at the classes of models defined in some, not nec-

essarily first-order, way. The classification task becomes much more difficult because

the familiar tools (most notably, compactness) fail beyond the first-order context.

The reader is referred to the survey [10] discussing the progress of classification in

non-elementary classes.

The method of the classification program is to identify meaningful dividing lines in

the class of all complete first-order theories and non-elementary classes. We refer the

reader to Section 5 in [32] for an in-depth discussion of what is meant by “meaningful.”

A somewhat simplified view is that a dividing line should split the class of objects in

such a way that a structure theory is possible on the “good” side of the dividing line,

and there is a clear reason why such structure theory is impossible on the “bad” side.

Examples of such dividing lines in the first-order case are stable/unstable theo-

ries, where a theory is stable if it does not interpret an infinite linear ordering; or

simple/non-simple theories, where a theory is simple if it does not interpret a certain

1
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tree structure. The importance of these dividing lines, each of which can be char-

acterized in a great variety of ways, becomes obvious when one is able to develop

positive results for, in these examples, stable or simple theories as well as negative

results for the theories that are not stable or not simple. Many of the positive results

became a foundation for development of important fields within model theory, such

as geometric stability theory.

Our approach is based on the observation that in all the cases the analysis of

“good” theories (or classes of models) is possible because one can define a dependence

relation, a necessary tool in studying these objects. To illustrate what is meant by a

dependence relation in the model-theoretic context, let us give some examples.

Examples. (1) Let C be an algebraically closed field. Let A,B, C ⊂ C be such

that C ⊂ A,B. We say that A is independent from B over C and write A^
C

B if

acl(A) is linearly disjoint from acl(B) over acl(C).

(2) Let V be a vector space, and A,B, C ⊂ V are such that C ⊂ A,B. Then

A^
C

B if Span(A) ∩ Span(B) ⊂ Span(C).

(3) Let X be an infinite set, and A,B, C ⊂ X are such that C ⊂ A,B. Then

A^
C

B if A ∩B ⊂ C.

The common idea is that the relation A ^
C

B roughly means “B does not have

more information about A than C does.”

In the first-order cases, the properties of dependence relations characterize the

model-theoretic properties of the classes. For example, in [3], it is shown that a

first-order theory is stable if and only if in its models one can define a dependence

relation with certain “stable” properties, and in addition that dependence relation

must coincide with the forking dependence relation developed by Shelah for all stable

theories in general. In particular, this result shows that the dependence relations in

Examples 1–3 are all instances of forking in those particular contexts.

B. Kim and A. Pillay showed in [22] that, for simple theories, forking satisfies

almost all the properties it has for stable theories. Moreover, they showed that a

first order theory must be simple if it has an (abstract) dependence relation with

certain properties of forking. To prove the last fact, it was shown that any abstract
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dependence relation with certain properties must actually coincide with forking.

The first part of this thesis establishes that model-theoretic properties of non-

elementary classes too can be completely characterized by the properties of the de-

pendence relations, and that the dependence relations there are unique. That is, we

obtain analogs of the two first-order results mentioned above.

In the second part we attempt to draw some dividing lines in the class of first order

simple unstable theories. As the guiding principle we use a family of properties that

the forking dependence relation may (or may not) possess in simple unstable theories.

The motivation for considering these properties comes from a non first-order context

of excellent classes developed by Shelah in [31]. Excellent classes received much

attention recently due to work of Boris Zilber [34]. One of the key tools in the context

of excellent classes is that of n-dimensional amalgamation, for any n < ω. One of

the characterizing properties of forking in simple theories is called the Independence

theorem, established by B. Kim and A. Pillay in 1995. It gives a two-dimensional

type amalgamation property for all simple theories, and it natural to ask whether

generalized amalgamation properties would hold. It turns out that the answer is

“no”, and so the family of amalgamation properties gives rise to natural dividing

lines within the class of all simple unstable theories. The direction of our work is

to find alternative characterizations of these properties, for example the appropriate

syntactic conditions that would give n-dimensional amalgamation.

Research shows that there are different strengths of the n-dimensional amalgama-

tion conditions that hold in simple theories. This gives rise to several related families

of simplicity conditions. Two of these families are studied in Chapters II and III.

The thesis is divided into three chapters.

Chapter I of this thesis is devoted to characterizing dependence relations in some

non-elementary classes. Namely, we identify the properties of dependence relations

that allow us to conclude from existence of a dependence relation on a non-elementary

class that the class has certain model-theoretic properties. Another part establishes

the uniqueness of a “nice” dependence relation for the class. We isolate the properties

that allow us to describe any abstract dependence relation with those properties in a
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concrete way. The chapter contains an introduction and is divided into five sections,

the first section contains the definitions of abstract dependence relations and each

subsequent section is devoted to a particular non first-order context.

In Chapter II we begin our analysis of simple unstable first-order theories from

the point of view of n-dimensional amalgamation properties. We start by defining a

family of syntactic properties

The definitions of n-simplicity are refined in Chapter III. There we prove the

3-dimensional amalgamation property for 2-simple theories.



Chapter 1

Characterization of Abstract

Dependence

Introduction

In the last 25 years, significant effort was made to develop classification theory for

non-elementary classes. While for the general case (the abstract elementary classes)

existence of a satisfactory dependence relation is a major open question, good depen-

dence relations were defined and used in several non-first order frameworks. In this

chapter we study dependence relations in the following non-elementary classes:

(1) totally transcendental classes of atomic models and homogeneous finite dia-

grams. The known dependence relation in atomic models was developed by

S. Shelah in [28, 31]; it is called a stable amalgamation. For homogeneous finite

diagrams, it was introduced by O. Lessmann in [24] via an appropriate 2-rank.

(2) stable homogeneous finite diagrams. The dependence relation is strong splitting,

introduced and studied by S. Shelah in [27], with extensions in, for example, [12,

18, 17].

(3) simple homogeneous models. The dependence relation is dividing, due to S. Buech-

ler and O. Lessmann in [7].

5
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The goal is to characterize dependence relations for these classes in the following two

ways.

First, we identify the properties of dependence relations that allow us to conclude

from existence of such a dependence relation on a non-elementary class that the class

has certain model-theoretic properties (e.g., totally transcendental, stable, etc.). For

the first order case, the work in this direction was started in 1974 by J. Baldwin and

A. Blass. In [4] they deal with axiomatization of rank function, and with the ques-

tion of what do the properties of the rank imply about the theory. In 1978 S. Shelah

introduced axiomatizations of various isolation notions in his book [29]. The axiom-

atization of Ff is an implicit axiomatization of forking for stable theories. Axiomatic

treatment of forking in stable theories appeared in [14]. Abstract dependence rela-

tions were systematically studied in the book [3] by J. Baldwin that appeared in 1988.

In 1996, B. Kim and A. Pillay showed in [22] that, for simple theories, forking satis-

fies almost all the properties it has for stable theories. Moreover, they showed that

a first order theory must be simple if it has an (abstract) dependence relation with

certain properties of forking. To prove the last fact, it was shown that any abstract

dependence relation with certain properties must actually coincide with forking.

This brings us to the second aspect of our study: Determine whether or not the

specific dependence relation used in analysis of a non-elementary class is the unique

“nice” dependence relation for the class. We isolate the properties that allow us to

uniquely describe any abstract dependence relation with those properties in a con-

crete way. For stable first order theories, such a characterization of forking was derived

from [23] by J. Baldwin in [3]. For simple first order theories, the characterization of

forking was obtained by B. Kim and A. Pillay in [22]. Their analysis was useful in

particular as a tool to establish that a certain theory is simple, see for example [9]. On

the non-first order front, a characterization of dependence was obtained by T. Hytti-

nen and O. Lessmann in [17] for homogeneous finite diagrams that are both simple

and stable.

The abstract approach to dependence relations goes back to the works of Van

der Waerden. In model theory, the abstract treatment of dependence was introduced
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in [2] by J. Baldwin, with many extensions in [3]. This part of the thesis was inspired

by [13], some results from which were presented by R. Grossberg in a model theory

course at Carnegie Mellon.

This chapter is organized as follows. In Section 1 we describe the general context

in which we define the notion of an abstract dependence relation and identify the

properties of abstract dependence that allow us to characterize totally transcendental,

stable, and simple classes. As we show later, the abstract dependence has to coincide

with the specific dependence relations introduced for the classes, i.e., is unique in

certain sense.

Section 2 deals with totally transcendental classes of atomic models. We present

motivation, basic definitions, and dependence relation for this case. The dependence

relation is not defined for all sets, it is restricted to good Tarski-Vaught pairs of

sets. We discuss the reasons for such restrictions. We then prove that a class of

atomic models with an abstract dependence relation must be totally transcendental.

Moreover, we prove that Shelah’s stable amalgamation relation must be the only

“reasonable” dependence relation in atomic models.

In Section 3 we discuss a similar case of totally transcendental homogeneous

finite diagrams. We find the situation there is analogous to the atomic case. The

major differences between the contexts are that the homogeneous finite diagrams

have a monster model that is a member of the class (while atomic models do not),

but the types in homogeneous finite diagrams are not necessarily isolated, as they are

in atomic case.

In Section 4 we prove that a homogeneous finite diagram is stable if and only

if it has a “stable” dependence relation. Moreover, we show that, over models, any

stable dependence relation must coincide with (non-)strong splitting. As a byproduct

of our study, we conclude that the strong splitting relation is optimal in the sense

that it has the smallest local character possible for a stable dependence relation.

Section 5 is devoted to analysis of dependence relations in a simple homogeneous

model with type amalgamation over all small sets. We prove an analogous result to the

characterization of forking and simplicity obtained for the first order case by B. Kim
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and A. Pillay; the main difficulty is getting around the failure of the compactness

theorem, as compactness is heavily used in the first order case.

1.1 Abstract dependence relations

We first describe the general context for the notion of an abstract dependence relation.

The context generalizes the cases of atomic models and homogeneous finite diagrams

that we study here. Background and motivation remarks for the classes of atomic

models and finite diagrams are postponed to the sections in which those classes are

studied.

1.1.1 Preliminary definitions

Fix a complete first order theory T , let C be a monster model of T .

Definition 1.1.1. For a set A ⊂ C, the set of types D(A) := {tp(ā/∅) | ā ∈ A} is

called the diagram of A. The diagram of T is D(T ) := D(C), where C is the monster

model of the first order theory T .

For a fixed D ⊂ D(T ), we call A a D-set if D(A) ⊂ D. If M |= T and D(M) ⊂ D,

we call M a D-model.

The object of our study is essentially the class of D-submodels of C for a fixed

diagram D, with some extra assumptions either on the diagram D (e.g., D is atomic)

or on the class of D-models. We restrict ourselves to those subsets of C because

even though the underlying theory T may be too complex from the classification

theory point of view, the collection of D-models could well have nice model-theoretic

properties.

Definition 1.1.2. We denote by Sn
D(A) the collection of all complete types in n

variables such that for all c̄ |= p the set A ∪ c̄ is a D-set. Accordingly, SD(A) :=
⋃

n<ω Sn
D(A).

A D-model M is called (D,λ)-homogeneous if M realizes all the types {p ∈
SD(A) | A ⊂ M, |A| < λ}.
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The compactness theorem no longer holds in our context, so the first-order intu-

ition, and many of the methods, do not work. In particular, it is not always possible

to realize D-types over sets in some D-model containing the set without any ad-

ditional assumptions on the class of all the D-structures. Two particular cases of

D-structures studied are (1) atomic models, when D is the collection of atomic types;

and (2) homogeneous finite diagrams, under the extra assumption of existence of a

monster D-model, i.e., (D, χ)-homogeneous model for some very large χ. In recent lit-

erature, homogeneous finite diagrams are called homogeneous models, and the subject

homogeneous model theory. Everywhere below, when we are talking about a finite

diagram, we always mean a finite diagram with the extra homogeneity assumption.

1.1.2 Abstract dependence relation

It is natural to define the dependence relation only on the “relevant” sets and models

in our context. Let A, B, and C be D-sets such that A∪B∪C is a D-set as well. The

expression A
(A)

^
C

B reads “A is independent from B over C,” we use the superscript (A)

to distinguish an abstract dependence relation from a concrete dependence relation

in each context.

Definition 1.1.3. We call a relation
(A)

^ on triples of D-sets A,B,C ⊂ C totally

transcendental if it satisfies the following conditions:

(1) Invariance: If f ∈ Aut(C), then

A
(A)

^
C

B if and only if f(A)
(A)

^
f(C)

f(B).

(2) Monotonicity: Suppose A
(A)

^
C

B. For any B′, C ′ such that C ⊆ C ′ ⊆ B′ ⊆ B

we have A
(A)

^
C′

B′.

(3) Finite Character: If A
(A)

/̂
C

B, then there are finite tuples ā ∈ A, b̄ ∈ B such

that ā
(A)

/̂
C

b̄.
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(4) Stationarity over finite subsets of models: Suppose that M is a (D,ℵ0)-

homogeneous model, and āM is a D-set. There is a finite tuple c̄ ∈ M such

that ā
(A)

^
c̄

M and for any D-set B containing c̄ the type tp(ā/c̄) can be uniquely

extended to a
(A)

^-independent D-type over B.

We use the name “totally transcendental” for such a dependence relation because

we prove in the subsequent sections that existence of such a relation implies that a

class of D-structures is totally transcendental as defined in Sections 1.2.3 and 1.3.

The properties (1)–(4) imply other properties of dependence (such as Extension,

Symmetry, and Transitivity). We say more about this after Definition 1.1.6.

In the totally transcendental case, the stationarity property holds over (D,ℵ0)-

homogeneous models; when we go to the stable case, stationarity can be guaranteed

for a smaller class of D-structures.

Definition 1.1.4. Let A be a D-set, suppose ā, b̄ are finite tuples such that Aāb̄ is

a D-set as well. We say that ā and b̄ have the same Lascar strong type over A and

write lstp(ā/A) = lstp(b̄/A) if āEb̄ for every A-invariant equivalence relation E with

fewer than |C | equivalence classes.

A D-model is Lascar (D,λ)-homogeneous if it realizes all the Lascar strong types

over its subsets of size less than λ.

Remark 1.1.5. In [18], the term “a-saturated” is used for Lascar (D, κ)-homogeneous,

for certain κ. We want the cardinal explicitly mentioned in the property.

Definition 1.1.6. Let A, B, C be as above. A relation
(A)

^ is stable if it has the

invariance, monotonicity, and finite character properties and in addition it satisfies:

Local Character: There is a cardinal κ such that for A = ā, there is C ⊂ B,

|C| < κ, with ā
(A)

^
C

B.

Stationarity over models: Let κ be as above and suppose that M is a Lascar

(D, κ)-homogeneous model, and āM is a D-set. Then for every D-set B ⊃ M

there is a unique p ∈ SD(B) such that for all ā′ |= p we have ā′
(A)

^
M

B.
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If κ = ℵ0, we call the above relation superstable.

The symmetry and transitivity properties for stable and totally transcendental

dependence relations do hold. We show this in a rather indirect way. We prove in

Subsections 1.2.5, 1.3.2 and 1.4.2 that abstract dependence has to coincide with the

relations of strong splitting (for the stable case) and splitting (for totally transcen-

dental). For those specific relations symmetry and transitivity hold, hence we can

conclude that abstract dependence relations must have them as well. For the first

order case, such an approach was used by J. Baldwin (see [3], Chapter 7). Beyond

the stable context, symmetry can no longer be derived from other properties.

In the case of simple D-structures, we work in the context described by S. Buechler

and O. Lessmann in [7]. They require the extension property over all the D-sets.

In totally transcendental and stable case extension is a part of stationarity, and is

guaranteed to hold over certain models only (or only for certain pairs of sets, see

Fact 1.2.13(10)).

Definition 1.1.7. Let A, B, C be as above. For an infinite cardinal κ, s relation
(A)

^ is

κ-simple if it has the invariance, monotonicity, finite and κ-local character properties

and in addition it satisfies:

Extension: If ā
(A)

^
B

A, B ⊂ A, then for all C there is ā′ |= tp(ā/A) such that

ā′
(A)

^
B

C.

Symmetry:

A
(A)

^
C

B if and only if B
(A)

^
C

A.

Transitivity: If B ⊂ C ⊂ D, then

A
(A)

^
B

C and A
(A)

^
C

D if and only if A^
B

D.

Type amalgamation: Suppose ā1, ā2 are tuples of length less than κ; b̄1, b̄2

are tuples of arbitrary size. If lstp(ā1/C) = lstp(ā2/C), b̄1

(A)

^
C

b̄2, and āi

(A)

^
C

b̄i,

i = 1, 2, then there is ā |= lstp(ā1/Cb̄1) ∪ lstp(ā2/Cb̄2) such that ā
(A)

^
C

b̄1b̄2.
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If κ = ℵ0, we call the above relation supersimple. If
(A)

^ is κ-simple for some κ, we

call the relation simple.

It is easy to see that if
(A)

^ is a totally transcendental dependence relation, then it

is stable (in fact, superstable). However, it does not follow that it is supersimple or

even simple. The problem is that extension (and other properties) hold over arbitrary

sets in the simple case.

1.2 Atomic models

In this section we give some background information about totally transcendental

classes of atomic models, in particular, we present the dependence relation for the

classes introduced by Shelah in [31]. We then prove that existence of an (abstract)

totally transcendental dependence relation on a class of atomic models implies that

the class is totally transcendental and that the abstract relation coincides with that

defined by Shelah.

1.2.1 Motivation

A major motivating question for developing classification theory in non-first order

situation is Shelah’s categoricity conjecture for Lω1,ω: if a sentence ψ ∈ Lω1,ω is

categorical in some cardinality above iω1 , then it is categorical in every cardinality

above iω1 .

One of the tools to deal with this context was introduced by Shelah in [28]. There

he suggests to expand the language with predicates that isolate complete types in the

sense of Lω1,ω, and deal with atomic sets, types, and models of the appropriate first

order theory. Of course, the class of atomic models is closely tied to the original class

of models as described in Theorem 1.2.1.

In [28] Shelah showed the following result (Lemmas 2.5 and 3.1); we state it in the

form closer to that in [31]. For a class of models K, let I(λ,K) denote the number of

non-isomorphic models in K of cardinality λ.
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Theorem 1.2.1 (Shelah). Let ψ be a complete Lω1,ω sentence, and suppose that in

some uncountable M∗ |= ψ only countably many Lω1,ω types are realized. Then there

is a first order theory T in an expanded language L(T ) such that, letting K be the

class of atomic models of T ,

(1) every formula in L(T ) is equivalent to an atomic formula modulo T ;

(2) K has an uncountable model, and if Mod(ψ) has arbitrarily large models, then

so does K;

(3) every model in K can be made into a model of ψ, so I(λ,K) ≤ I(λ, Mod(ψ))

for all λ. More precisely, I(λ,K) = I(λ, {M |= ψ | M ≡∞,ω M∗}.

The assumption on countably many Lω1,ω types in an uncountable model is not

too restricting. Shelah proved that this holds if ψ has countably many non-isomorphic

models in ℵ1, or if it has less than 2ℵ1 non-isomorphic models (the latter requires a

mild set-theoretic assumption). It is easy to see that if ψ has arbitrarily large models,

the assumption also holds no matter how many models there are in ℵ1.

Recall that for a first order theory T and a set of types Γ in the language of

T , an EC(T, Γ) class is a class of models of T that omit the types in Γ. For an

EC(T, Γ) class, Theorem 1.2.1 works when the class has arbitrarily large models; or

if it can be axiomatized by an Lω1,ω sentence with properties implying existence of

an uncountable model with countably many Lω1,ω types.

Assumptions 1.2.2. For the rest of this section, we fix a first order theory T in a

relational language such that every formula is equivalent to an atomic formula modulo

T . Let C be the monster model of T , and let K be the class of atomic elementary

submodels of C. By default, |= ϕ means satisfaction in C, and all the sets and elements

are in C. By a “model” we mean a model in K.

We further assume that K has an ℵ0-amalgamation property, that is for all count-

able models M ≺ M0,M1 there is a countable model N and elementary embeddings

fi : Mi → N , i = 0, 1 that coincide on M . The amalgamation property holds for

instance, if I(ℵ1,K) < 2ℵ1 and 2ℵ0 < 2ℵ1 by [31] for ℵ0-categorical K.
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1.2.2 Preliminary results and definitions

We introduce now some important definitions and basic results for the context. All

of the definitions and almost all the results are due to Shelah [31]. We will use them

extensively in this section.

Definition 1.2.3. (1) A set B is constructible over A if B = A ∪ {bi | i < α},
where for all i < α the type tp(bi/A ∪ {bj | j < i} is isolated. A constructible

model M over A is called primary over A.

(2) A model M is universal over A if A ⊂ M , ‖M‖ = |A|, and every N ⊃ A of the

same cardinality can be elementarily embedded into M over A.

(3) An atomic set A ⊂ C is good if for each ā ∈ A if |= ∃x̄ϕ(x̄, ā), then ϕ(x̄, ā)

belongs to a type p ∈ SD(A) (i.e., to an isolated type over A).

In [31], the set of types SD(A) is denoted DA.

Remark 1.2.4. If T is an ℵ0-stable countable first order theory, then every set A ⊂ C

is good. In our context, it is possible to have a situation when the class K is ℵ0-stable

(i.e., |SD(M)| = ℵ0 for all countable atomic M), but the underlying theory T is not.

The example in [15] shows in particular that not every set is good in general for an

ℵ0-stable class K. A simpler example of a non-good set can be found in [1].

Definition 1.2.5. The pair (A,B), A ⊂ B, satisfies the Tarski-Vaught condition if

for every b̄ ∈ B and ā ∈ A if |= ϕ[b̄, ā], then there is b̄′ ∈ A such that |= ϕ[b̄′, ā].

We call such pair (A,B) a Tarski-Vaught pair and write A ⊂TV B.

We list some properties of Tarski-Vaught pairs that we will use later.

Proposition 1.2.6. If M ∈ K and M ∪ B is atomic, then (M, M ∪ B) satisfies the

Tarski-Vaught condition.

Proof. Suppose ā ∈ |M |, b̄ ∈ B and |= ϕ[ā, b̄]. Since M ∪ B is atomic, there is

ψ(x̄, ȳ) isolating the type tp(āb̄/∅). Since |= ∃ȳψ(ā, ȳ), there is b̄′ ∈ |M | such that

M |= ψ[ā, b̄′]. Clearly, M |= ψ[ā, b̄′]. a
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Claim 1.2.7. Suppose B ⊂TV C, d̄C is atomic, and assume tp(d̄/B) is isolated by

ϕ(x̄, b̄) for some b̄ ∈ B. Then ϕ(x̄, b̄) isolates the type tp(d̄/C).

Proof. Let d̄ |= ψ(x̄, c̄) for some c̄ ∈ C. Since B ⊂TV C, there is c̄′ ∈ B such that

tp(c̄′/b̄) = tp(c̄/b̄). Since |= ∀x̄ϕ(x̄, b̄) → ψ(x̄, c̄′), conjugating c̄′ to c̄ over b̄ we get

|= ∀x̄ϕ(x̄, b̄) → ψ(x̄, c̄). a

Remark 1.2.8. The dependence relation for the class K that we describe in the

next subsection does not have the extension property in general. We can show that

extension holds for pairs that satisfy the Tarski-Vaught condition, and get a nice

description of the relation for this case. Shelah defined the dependence relation for

pairs that satisfy the Tarski-Vaught condition in [31]. Getting the extension property

is probably the main reason for introducing the concept in this context.

1.2.3 Rank and dependence relation in atomic models

Let K be a class of atomic models of a first order theory T such that Assumptions 1.2.2

hold. We give the definition of a rank function (it is due to Shelah [28], though we

present it in a slightly different form) and describe the resulting dependence relation

for the class.

Definition 1.2.9. Let M be a model, let p be a finite type over (finite) B ⊂ |M |.

(1) RM [p] ≥ 0 if p is realized in M .

(2) for α limit ordinal, RM [p] ≥ α if RM [p] ≥ β for all β < α.

(3) RM [p] ≥ α + 1 if

(a) there are ϕ(x̄, ȳ) and ā ∈ M such that

RM [p ∪ ϕ(x̄, ā)] ≥ α and RM [p ∪ ¬ϕ(x̄, ā)] ≥ α;

(b) for every b̄ ∈ |M | there is a complete formula ψ(x̄, ȳ) such that

RM [p ∪ ψ(x̄, b̄)] ≥ α.
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As usual, we say

RM [p] = −1 if RM [p] 6≥ 0;

RM [p] = α if RM [p] ≥ α and RM [p] 6≥ α + 1;

RM [p] = ∞ if RM [p] ≥ α for all α ∈ On;

for an arbitrary type q over a subset of M , we let

RM [q] := Min{RM [p] | p ⊆ q, p finite}.

If the model M ∈ K is clear from the context, we omit the subscript M in the

notation for the rank.

The following properties of the rank appeared in [28].

Fact 1.2.10 (Properties of the rank). (1) Invariance: if f ∈ Aut(C), then

RM [p] = RM [f(p)];

(2) Monotonicity: If p ` q, then RM [p] ≤ RM [q];

(3) If RM [p] ≥ ω1, then RM [p] = ∞;

(4) Stationarity: Suppose RM [x̄ = x̄] < ∞. Let N ∈ K be a submodel of M and

let p be a complete type over N . Then there exist b̄ ∈ N and a formula ϕ such

that RM [p] = RM [ϕ(x̄, b̄)]. Moreover, if A ⊂ M , b̄ ∈ A, then there is a unique

type pA containing ϕ(x̄, b̄) with the same rank.

Certainly, the rank can be unbounded in general. To define a dependence relation,

we need to assume that the rank is bounded. Boundedness of the rank can be obtained

if, for instance, the class comes from an Lω1,ω sentence that has less than 2ℵ1 models

of cardinality ℵ1 under the assumption 2ℵ0 < 2ℵ1 (it was done in [28] under CH, and

in [31] under weak CH). The class K is called totally transcendental if R is bounded.

For the rest of this subsection, we assume that the class K is totally transcendental.

Facts 1.2.11. (1) In this context, if M is a primary model over A, then it is unique

over A. If M is primary over A, then it is prime over A (i.e., can be elementarily

embedded in any N ⊃ A over A).
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(2) Let A be a countable set. A is good if and only if there is a countable primary

model over A.

(3) If A is countable, then A is not good if and only if |SD(A)| = 2ℵ0.

(4) Let A be countable good set. There is a countable model N that is (DA,ℵ0)-

homogeneous. The model is unique and universal over A. Moreover, a countable A

is good if and only if there is a countable universal model over it.

The usual way to define a dependence relation from a rank is by saying A is

independent of B over C if for all ā ∈ A the ranks of tp(ā/B) and tp(ā/C) coincide.

The limitation is of course that the rank is computed inside a model in K. In addition,

one can get the extension property for the rank only for types over models.

The following dependence relation for K was suggested by Shelah (see [31]). It is

defined only for good sets, essentially because these are the sets of interest here and

since one cannot expect a good dependence relation for all atomic sets. We discuss

this further in the next section.

Definition 1.2.12. Suppose A∪B∪C is atomic and C is good. Then A is independent

of B over C (we write A ^
C

B) if for each ā ∈ A, tp(ā/B) does not split over some

finite subset of C.

We summarize below the properties of this dependence relation. Many of the

properties were defined in Section 1, we restate some of them for this situation to

avoid any ambiguities.

Fact 1.2.13 (Properties of ^). The relation ^ has the following properties:

(1) Invariance;

(2) Monotonicity;

(3) Local Character: For all ā and B such that ā∪B is atomic and B is good, there

is a finite b̄ ∈ B such that ā ^
b̄

B.

(4) Existence: For all A, C such that A∪C is atomic and C is good we have A ^
C

C.
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(5) Extension: If ā ^
A

B and C is a good set such that B ⊂ C and A ⊂TV C,

then there is ā′ |= tp(ā/B) such that ā′ ^
A

C. In particular, there is always an

independent extension of a type over a model.

(6) Finite Character;

(7) Symmetry over models;

(8) Transitivity over Tarski-Vaught pairs: Suppose B ⊂TV C ⊂TV D, and B, C are

good. If ā ^
B

C and ā^
C

D, then ā ^
B

D.

(9) Stationarity over finite subsets of models: Suppose M ∈ K, ā ∪ M ∪ B is

atomic. There is a finite c̄ ∈ M such that ā ^
c̄

M . Moreover, if B is atomic,

B ⊃ M , then there is ā′ |= tp(ā/M) such that ā′ ^
c̄

B and such an extension is

unique over c̄. We say that tp(ā/c̄) is stationary, and the extension to B is a

stationarization of tp(ā/c̄) in this situation.

(10) Weak stationarity over good sets: Suppose A is good and āA is atomic. There

is finite c̄ ∈ A such that ā ^
c̄

A and for any atomic set B, A ⊂TV B, the type

tp(ā/c̄) can be uniquely extended to an independent atomic type over B. We say

that tp(ā/c̄) is weakly stationary over c̄, and the unique extension is the weak

stationarization in this case.

(1) and (2) are obvious from the definition. (3) is proved in Lemma 2.2(1), last

sentence, in [31] and (4) follows at once from (3). (5) is proved in Lemma 2.10(1)

in [31]. (6) is immediate by the definition. (7) appears in Theorem 1.4.1(c) in [31],

for a complete proof see [1]. (8) is in Lemma 2.10(1), second paragraph, in [31]. (9)

follows from Theorem 1.4.1(b) in [31]; (10) from local character and Lemma 2.10(1)

in Shelah.
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1.2.4 Some negative results

The purpose of this subsection is to complement the next section, where we prove

a uniqueness result assuming existence of a dependence relation with certain prop-

erties. Here we present various results showing that requiring less from an abstract

dependence relation is unreasonable.

We start by pointing out that we do need to restrict the dependence relation to

good sets. Suppose A is countable, not good. Then DA = {tp(ā/A) | Aā is atomic} is

uncountable by Facts 1.2.11 (in fact, it has size continuum). So we get an instability

phenomenon in this situation. The reason is that the theory T need not be ℵ0-stable

(or stable at all). Our intention, however, is to investigate the totally transcendental

atomic part of T , so we need to choose carefully which sets to deal with.

Next we show that one can define two dependence relations that coincide on

Tarski-Vaught pairs, but differ on other (countable) sets.

Claim 1.2.14. Let B, C be good countable with B ⊂TV C. Suppose further that

āC is atomic. Let MB, MC be primary models over B and C respectively. Suppose

ā ^
MB

MC. Then ā^
B

C.

Proof. By Theorem 1.6(1) of [31], the primary model MB is also prime over B, so we

may assume that MB ≺ MC . Let d̄ ∈ MB be such that tp(ā/d̄) is stationary. Since

d̄ ∈ MB and MB is primary over B, the type of d̄ over B is isolated. Let b ∈ B and

ϕ be such that ϕ(x̄, b̄) ` tp(d̄/B). Since B ⊂TV C and certainly d̄C is atomic, by

Claim 1.2.7 we get that ϕ(x̄, b̄) isolates tp(d̄/C).

Now by a standard argument we conclude that since tp(ā/MC) is stationary over

d̄, and ϕ(x̄, b̄) isolates tp(d̄/C), we have tp(ā/C) does not split over b̄. a

So we can define another dependence relation on good atomic subsets.

Definition 1.2.15. For B, C good, āC atomic ā is independent from C over B if

there are primary models MB ≺ MC over B and C respectively and ā ^
MB

MC (^ is

in the sense of non-splitting); if there is no primary model over one of the sets (they
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are not guaranteed to exist for uncountable good sets), then we leave the relation as

was defined before.

The new dependence relation coincides with the standard one for Tarski-Vaught

pairs by Claim 1.2.14. However, for a countable good B and all ā such that āB is

atomic we have ā is independent from MB over B according to Definition 1.2.15 (the

independence would mean ā ^
MB

MB, which holds for ^). If B is not a model and

MB contains at least two realizations ā, b̄ of an isolated type over B, then certainly

tp(ā/MB) splits over B and hence, it splits over every finite subset of B. We illustrate

this on the following simple example.

Example 1.2.16. Let ϕ be a Scott sentence for an algebraically closed field of char-

acteristic zero of infinite transcendence degree. Clearly, ϕ has models in every infinite

cardinality and is totally categorical. Let K be the class of atomic models in the ex-

panded language constructed as described in Theorem 1.1. The situation in class K
is actually very close to that in first order algebraically closed fields. Letting ā := i,

B := Q, and MB an algebraic closure of Q of infinite transcendence degree, we see

that ā is independent from MB over B according to Definition 1.2.15 of dependence.

It is also clear that tp(ā/MB) splits over B.

The example shows that, without restriction to the Tarski-Vaught pairs, one can-

not hope to uniquely characterize the dependence relations in atomic models.

We also can look at this example from another angle. Every type over a good

set can be split into a stationary and an isolated part (see Fact 1.2.17). As we show

in the next section, the dependence relation for stationary types can be uniquely

characterized (so the notion of stationarity is invariant in certain sense). Our example

also shows that dependence for isolated types can be decided positively or negatively

without affecting the stationary part.

Fact 1.2.17 (Shelah [31]). Suppose A is good. A type p is atomic over A if and only

if there are ā and d̄ such that p = tp(ā/A), the type tp(ā/d̄) is stationary, tp(ā/Ad̄)

is the non-splitting extension of tp(ā/d̄), and tp(d̄/A) is isolated.
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1.2.5 Abstract dependence characterization

In this subsection, we prove that if K has an abstract totally transcendental depen-

dence relation in the sense of the Definition 1.1.3, then the rank R has to be bounded

for K, i.e., K is totally transcendental. We also show that the relation
(A)

^ coincides

with the dependence relation introduced above over models. We show that a stronger

stationarity assumption for
(A)

^ implies that it coincides with ^ over all good sets.

Theorem 1.2.18. Suppose K has an abstract totally transcendental dependence re-

lation. Then the rank function R is bounded on K.

Proof. If the rank RM [p] is unbounded, then by Lemma 4.2 in [28] there is a count-

able model M such that |SD(M)| ≥ ℵ1. By stationarity, each of those types is
(A)

^-

independent over a finite subset of M . By the pigeonhole principle, there are at least

ℵ1 types in SD(M) that are independent over the same subset of M . Since there are

only countably many D-types over a finite set, by pigeonhole principle again we con-

clude that there are ℵ1 independent extensions of the same type over the stationarity

base. Contradiction to the stationarity over finite subsets of models. a

The following definition will facilitate the proofs characterizing the abstract de-

pendence relation in terms of ^ over models and over good sets in general.

Definition 1.2.19. Let C be a good set and ā be such that Cā is atomic. We say

that tp(ā/C) is
(A)

^-weakly stationary if there is c̄ ∈ C such that ā
(A)

^
c̄

C and for all

atomic B containing c̄, C ⊂TV B ∪ C, the type tp(ā/c̄) can be uniquely extended to

a
(A)

^-independent atomic type over B.

Remarks 1.2.20. (1) If K has an abstract totally transcendental dependence rela-

tion, and C is the universe of a model, then every type over C is
(A)

^-weakly stationary

for all atomic B ⊃ C. That is simply because of the stationary over models property.

(2) If K is totally transcendental, then types over good sets are ^-weakly station-

ary.
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We first prove that the relations are the same for
(A)

^-weakly stationary types. This

will imply that stationarity in the sense of
(A)

^ and in the sense of non-splitting ^ is

the same thing. So the dependence relation is unique for types over models.

Theorem 1.2.21. Let
(A)

^ be an abstract totally transcendental dependence relation

on K. Suppose ā is a finite atomic tuple, C is a good set, and B is atomic with

C ⊂TV B. Suppose that tp(ā/C) is
(A)

^-weakly stationary. Then

ā
(A)

^
C

B if and only if ā ^
C

B.

Proof. (⇒) Suppose ā
(A)

^
C

B. Let c̄ be as in the definition of weak stationarity. Then

we have ā
(A)

^
c̄

B by uniqueness of independent extension. We prove that tp(ā/B) does

not split over c̄. Suppose not; let b̄1, b̄2 ∈ B be such that tp(b̄1/c̄) = tp(b̄2/c̄), but the

types tp(āb̄1/c̄) and tp(āb̄2/c̄) are different. By monotonicity, we have

ā
(A)

^
c̄

c̄b̄1 and ā
(A)

^
c̄

c̄b̄2.

Let f ∈ Autc̄(C) be such that f(b̄1) = b̄2. Let ā1 := f(ā). Then by invariance

ā1

(A)

^
c̄

c̄b̄2. Thus we get two distinct
(A)

^-independent extensions of tp(ā/c̄) to c̄b̄2.

Since C ⊂TV C ∪ b̄2, we get a contradiction to weak stationarity.

(⇐) Suppose tp(ā/B) does not split over a finite subset c̄1 of C. Suppose for

contradiction that ā
(A)

/̂
C

B. Let ā′ |= p, p = tp(ā/C) be such that ā′
(A)

^
C

B (possible to

find by extension requirement). By the first part of the proof, tp(ā′/B) does not split

over a finite subset c̄2 ∈ C. By invariance, tp(ā/B) 6= tp(ā′/B), so there are ϕ(x̄, ȳ)

and d̄ ∈ B such that ϕ(x̄, d̄) ∈ tp(ā/B) and ¬ϕ(x̄, d̄) ∈ tp(ā′/B). Since C ⊂TV B,

we can find ē ∈ C such that tp(d̄/c̄1 ∪ c̄2) = tp(ē/c̄1 ∪ c̄2). Since ϕ(x̄, d̄) ∈ tp(ā/B),

necessarily ¬ϕ(x̄, ē) /∈ p (otherwise, tp(ā/B) splits over c̄1). Similarly, ϕ(x̄, ē) /∈ p by

¬ϕ(x̄, d̄) ∈ tp(ā′/B). So we get a contradiction to completeness of the type p. a

Now from the remarks above and Theorem 1.2.21 we conclude:
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Corollary 1.2.22. If K has a totally transcendental dependence relation
(A)

^, M ∈ K
is a model, B ⊃ M , and āB is atomic, then

ā
(A)

^
M

B if and only if ā ^
M

B.

Note that we did not require the symmetry property for the abstract dependence

relation. The following is a (rather indirect) proof that symmetry property over

models follows.

Corollary 1.2.23 (Symmetry property). Suppose K has an abstract dependence

relation
(A)

^ satisfying (1)–(4). For M ∈ K, ā, b̄ such that Māb̄ is atomic we have

ā
(A)

^
M

Mb̄ ⇐⇒ b̄
(A)

^
M

Mā.

Proof. By Theorem 1.2.18 the rank R is bounded for the class K. By Lemmas 4.2

and 6.4 in [28], the dependence relation ^ has the symmetry property. By Corol-

lary 1.2.22,
(A)

^ has the symmetry over models property as well. a

Suppose now that
(A)

^ satisfies the following additional property:

Uniqueness of extension:

Assume that C is good, āC is atomic. There is finite c̄ ∈ C such that ā
(A)

^
c̄

C and

for any atomic set B, C ⊂TV B ∪C, the type tp(ā/c̄) can be uniquely extended to a
(A)

^-independent atomic type over B.

Remarks 1.2.24. (1) Certainly, the Uniqueness of extension property implies Sta-

tionarity over models. We have seen above that having Stationarity over models

property already allows to draw many conclusion about the class K. Perhaps, in the

non-first order situation, types over models are the right objects to look at.

(2) Assuming Uniqueness property, we characterize the dependence not only for

stationary types, but also for Tarski-Vaught good pairs. That is because with Unique-

ness, the types are
(A)

^-weakly stationary.
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Corollary 1.2.25. If K has a totally transcendental dependence relation satisfying

the Uniqueness property, C is good and C ⊂TV B. If āB is atomic, then

ā
(A)

^
C

B if and only if ā ^
C

B.

1.3 Totally transcendental finite diagrams

The goal of this section is to establish results parallel to those of Section 2 in the con-

text of finite diagrams. The subject here is a class of models of a first order theory

T such that each model omits a set of types Γ. Such classes are denoted EC(T, Γ).

A homogeneous finite diagram is a class EC(T, Γ) with one extra assumption: ev-

erything happens inside a big homogeneous model that also belongs to the class. In

other words we assume existence of a monster model that omits all the types in Γ.

Another way to look at the class EC(T, Γ) is to treat it as a class of D-models, where

D = D(T ) \ Γ. So the extra assumptions translate into existence of a large homoge-

neous D-model. As the result of this assumption, we can, for instance, realize unions

of D-types over sets of cardinality less than the cardinality of the monster model. For

the remainder of the section, we agree to use the symbol C for the monster D-model.

Homogeneous finite diagrams in the stable context were introduced by S. She-

lah in [27], with recent extensions due to R. Grossberg and O. Lessmann [12] and

T. Hyttinen and S. Shelah [18, 19]. The totally transcendental case was studied by

O. Lessmann in [24].

Although there is a similarity in methods in the contexts of atomic models and

homogeneous finite diagrams, it is not true that either one case is a subcase of the

other, so we cannot directly apply the results of the previous section.

1.3.1 Rank and dependence relation

A dependence relation for ℵ0-stable finite diagrams was introduced by Olivier Less-

mann in [24]. The dependence relation is defined via the rank function. The challenge

is to make sure that unbounded rank gives uncountably many types over a countable
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set, and that the types are realized in the monster model. This is achieved by adding

an extra condition to the definition of the 2-rank (due to Lessmann) that we give

now. Note the similarity between this rank and the rank in Subsection 1.2.3

Definition 1.3.1. Let p be a type over a finite B ⊂ |C |.

(1) R[p] ≥ 0 if p is realized in C.

(2) for α limit ordinal, R[p] ≥ α if R[p] ≥ β for all β < α.

(3) R[p] ≥ α + 1 if

(a) there are ϕ(x̄, ȳ) and ā ∈ C such that

R[p ∪ ϕ(x̄, ā)] ≥ α and R[p ∪ ¬ϕ(x̄, ā)] ≥ α;

(b) for every b̄ ∈ |C | there is a complete type q(x̄, ȳ) ∈ D such that

R[p ∪ q(x̄, b̄)] ≥ α.

As usual,

R[p] = −1 if R[p] 6≥ 0;

R[p] = α if R[p] ≥ α and R[p] 6≥ α + 1;

R[p] = ∞ if R[p] ≥ α for all α ∈ On;

if q is a type over a subset of C which is not necessarily finite, we let

R[q] := Min{R[p] | p ⊆ q, dom(p) finite}.

The rank function has similar properties to the one defined in the previous section.

For the rest of this subsection we assume that the diagram is totally transcendental,

that is, the rank is bounded. Thus we can define the dependence relation by equality

of the ranks:

Definition 1.3.2. Suppose A, B, C are subsets of C such that B ⊂ A. Then A^
B

C

if and only if for all ā ∈ A R[tp(ā/B)] = R[tp(ā/C)].
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One of the key notions is stationarity. We give a definition formally different from

the one suggested by Olivier Lessmann although the concepts we define are the same.

Definition 1.3.3. A D-type p is stationary over B ⊆ dom(p) if it has a unique

^-independent extension to any superset of B.

For finite diagrams, stationary types are the most natural candidates for studying

dependence relations. As well as in the atomic case, every type “splits” into stationary

and isolated parts, for the right notion of isolation. We give now some definitions and

facts, all of them due to Olivier Lessmann [24].

Definition 1.3.4. A type p ∈ SD(A) is Ds
λ-isolated if there is B ⊂ A, |B| < λ, such

that for any q ∈ SD(A) extending p ¹ B we have p = q.

Facts 1.3.5. (1) Let p ∈ SD(A) realized by ā. There is d̄ such that the type tp(ā/d̄)

is stationary, tp(ā/Ad̄) is the unique independent extension of tp(ā/d̄), and tp(d̄/A)

is Ds
ℵ0

-isolated.

(2) If M is a (D,ℵ0)-homogeneous model and p ∈ SD(M), then p is stationary

over a finite subset of M .

(3) If tp(ā/B) is stationary, then ā ^
B

C if and only if tp(ā/C) does not split over

a finite subset of B.

1.3.2 Abstract dependence characterization

Fact 1.3.6. The dependence relation defined in [24] satisfies the properties of a totally

transcendental abstract dependence relation. In addition, this dependence relation has

symmetry and transitivity properties.

Same theorems we proved in the previous section are true here as well. The proofs

are almost the same, so we just state the results.

Theorem 1.3.7. Suppose C has a totally transcendental dependence relation. Then

the rank function R is bounded on C.
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Theorem 1.3.8. If C has a totally transcendental dependence relation, M is a (D,ℵ0)-

homogeneous model, and B ⊃ M , then

ā
(A)

^
M

B if and only if ā ^
M

B.

Note that the stationary bases may be different in different dependence relations.

As before, we also get symmetry property for types over models.

Corollary 1.3.9 (Symmetry property). Suppose
(A)

^ is a totally transcendental

dependence relation on C. If M is a (D,ℵ0)-homogeneous model, then

ā
(A)

^
M

Mb̄ ⇐⇒ b̄
(A)

^
M

Mā.

We can extend our results to more sets, similar to what was done in the first

section. We need the notion of a Tarski-Vaught pair. In finite diagrams, it translates

to a relative saturation requirement; but we keep the Tarski-Vaught name.

Definition 1.3.10. We say that a pair of sets (A,B), A ⊂ B, satisfies the D-Tarski-

Vaught condition if for every b̄ ∈ B, ā ∈ A, and q(x̄, ȳ) ∈ D if b̄ |= q(x̄, ā), then there

is b̄′ ∈ A such that b̄′ |= q(x̄, ā). We write A ⊂TV B.

Now if we replace Stationarity over finite subsets of models in the definition of a

totally transcendental dependence relation by a stronger condition

Uniqueness of extension:

Assume in addition that A =: ā is finite. There is finite c̄ ∈ C such that tp(ā/C) is

weakly stationary over c̄. That is, for any B, C ⊂TV B, there is ā′ |= tp(ā/C) such

that ā′
(A)

^
c̄

B, and such an extension is unique over c̄.

then we can get a stronger result:

Theorem 1.3.11. Suppose
(A)

^ is a totally transcendental dependence relation on C.

Suppose ā is a finite tuple, C is a set, and B is such that C ⊂TV B. Then

ā
(A)

^
C

B if and only if ā ^
C

B.
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1.4 Stable homogeneous finite diagrams

In this section, we prove that a finite diagram is stable if and only if it has a stable

dependence relation (see Definition 1.1.6). Moreover, we show that, over models, any

stable dependence relation must coincide with (non) strong splitting.

1.4.1 Preliminary results

Fix a diagram D, and let C be a monster D-model. The following definitions are due

to Shelah.

Definition 1.4.1. (1) The diagram D is stable in λ if for every A ⊂ C of cardi-

nality at most λ we have |SD(A)| ≤ λ.

(2) The diagram D is stable if it is stable in some λ; D is superstable if there is λ

such that D is stable in µ for all µ ≥ λ.

(3) A type tp(c̄/A) splits strongly over B ⊂ A if there is an indiscernible sequence

{ai | i < ω} over B such that ā0 ∈ A and for some ϕ(x̄, ȳ) we have c̄ |=
ϕ(x̄, ā0) ∧ ¬ϕ(x̄, ā1).

(4) We write A^
C

B if for every finite ā ∈ A, tp(ā/B) does not split strongly over

C.

Much is known about the structure/non-structure theory of stable finite diagrams

(see [27, 12, 19]) as well as dependence relation of strong splitting ([18]). It is worth

pointing out that the dependence relation in [18] is slightly different from the one we

define. In [18] extension property is a part of the definition. Therefore, the Existence

property (ā^
B

B) and the more so Local Character hold only over extension bases.

For the strong splitting relation, both properties hold over arbitrary D-sets in a stable

finite diagram.

Fact 1.4.2. If D is a stable finite diagram, then the relation ^ is a stable dependence

relation. In addition, if D is superstable, then the local character of strong splitting

is ℵ0.
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The invariance, monotonicity, and finite character properties are clear; local char-

acter is established in a convenient for us form in [12], Theorem 4.11 (see also [27, 18]).

The local character of non strong splitting κs is less than or equal to the least stability

cardinal. Stationarity is established in [18], Lemma 3.4 (remember that a-saturated

is Lascar (D, κ)-homogeneous in our terminology).

Under the assumption of stability with local character κ = κs, there are many

Lascar (D, κ)-homogeneous models. Namely, the following holds.

Facts 1.4.3. (1) (Stability Spectrum theorem) If D is stable, λD is the least stability

cardinal, and µ ≥ λD, then D is stable in µ if and only if µ<κs = µ.

(2) If D is stable in λ and λ<κ = λ for a regular κ, then every set of cardinality

at most λ is contained in a Lascar (D, κ)-homogeneous model of cardinality λ.

(1) is presented in [27, 12]; (2) is essentially Lemma 1.9(ii) in [18].

In the next subsection, we will need to use stationarity over Lascar (D, κ)-homoge-

neous models, for κ the local character of
(A)

^, without the stability assumption (our

goal is to deduce stability from existence of a stable dependence relation).

Accordingly, we need to know that such models exist. First we state a few facts.

Facts 1.4.4 ([7]). (1) If I is an indiscernible sequence over A, then lstp(ā/A) =

lstp(b̄/A) for all ā, b̄ ∈ I.

(2) There are fewer than i(2|A|)+ distinct Lascar strong types (in finitely many vari-

ables) over a set A.

(3) Equality of Lascar strong types over a set A is the finest bounded A-invariant

equivalence relation over A.

Lemma 1.4.5. Let κ be a fixed cardinal. For every set A, there is a Lascar (D, κ)-

homogeneous model M containing A. If in addition |A| ≥ i(2κ)+ and |A|<κ = |A|,
then M could be chosen of the same cardinality as A.

Proof. Let λ := max{i(2κ)+ , |A|}. Construct {Mi | i < κ+} such that

(1) M0 := A, |Mi| ≤ λ;
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(2) Mi+1 is a model that contains Mi and realizes all Lascar strong types in finitely

many variables over all the subsets of Mi of size less than κ;

(3) if i is a limit ordinal, Mi :=
⋃

j<i Mj.

To carry out the construction at the successor step, observe that there are at most

λ many subsets of Mi of size less than κ since the cofinality of λ is at least κ. Over

each such subset, there are at most λ many Lascar strong types. So a set Ai+1 of

representatives of each Lascar strong types over all subsets of Mi of size less than κ

has cardinality at most λ. We let Mi+1 be a model containing Ai+1, |Mi+1| ≤ λ.

Let M :=
⋃

i<κ+ Mi. Clearly, M is as needed: if B ⊂ M , |B| < κ, then B ⊂ Mi

for some i < κ, and so all Lascar strong types over B are realized in M . a

Note that if κ is a regular cardinal, then it is enough to construct Mi for i < κ.

1.4.2 Abstract dependence characterization

Proposition 1.4.6. If the finite diagram D has a stable dependence relation
(A)

^, then

D is stable.

Proof. Let κ be the local character of
(A)

^ and let λ := i(2κ)+ . We prove that D is

stable in µ := 2λ. Suppose for contradiction that there is A is such that |A| = µ, and

|SD(A)| ≥ µ+. By Lemma 1.4.5 we may assume that A is the universe of a Lascar

(D, κ)-homogeneous model.

Let {ai | i < µ+} be realizations of distinct types over A. By local character,

there are {Bi | i < µ+} such that |Bi| < κ and āi

(A)

^
Bi

A for all i < µ+. Since there

are µ many subsets of A of size less than κ, by the pigeonhole principle we may

assume that for some B ⊂ A, |B| < κ, āi

(A)

^
B

A for all i < µ+. Let M be a Lascar

(D, κ)-homogeneous model containing B. By Lemma 1.4.5 M could be chosen so that

|M | ≤ λ, and M ⊂ A. Monotonicity now gives āi

(A)

^
M

A for i < µ+. Since there are

at most µ different types over M , by the pigeonhole principle we may assume that

all {āi | i < µ+} realize the same type p ∈ SD(M). This contradicts the stationarity

property. a
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We now prove that the stable dependence relation
(A)

^ is exactly that of non strong

splitting over Lascar (D, κ)-homogeneous models.

Lemma 1.4.7. Let
(A)

^ be a stable dependence relation. Suppose A, B are D-sets and

a model M is Lascar (D, κ)-homogeneous. If A
(A)

^
M

B, then A^
M

B.

Proof. By finite character, we may assume A = Mā, B = Mb̄ for finite ā, b̄. Assume

ā
(A)

^
M

Mb̄, but tp(ā/Mb̄) strongly splits over M . Let {b̄i | i < ω} witness strong

splitting, with b̄0 = b̄. By extension, there is ā′ |= tp(ā/Mb̄) such that ā′
(A)

^
M

M{b̄i |
i < ω}. Let f ∈ AutM(C) be such that f(b̄0) = b̄1. By monotonicity, we have

ā′
(A)

^
M

Mb̄0 and ā′
(A)

^
M

Mb̄1.

Let ā1 := f(ā′). Then by invariance ā1

(A)

^
M

Mb̄1. Thus we get two distinct
(A)

^-

independent extensions of tp(ā/M) to Mb̄1. Contradiction to stationarity over mod-

els. a

To prove the converse, we need to establish the connection between the local

character κ of
(A)

^ and the local character κs of non-strong splitting. Without loss

of generality, we may assume that κ is a regular cardinal (clearly, κ-local character

implies κ+-local character).

Lemma 1.4.8. Suppose D has a stable dependence relation
(A)

^. Let κ be the (regular)

local character cardinal of
(A)

^. Then κs ≤ κ.

Proof. Suppose for contradiction that κ < κs. By Proposition 1.4.6, the finite diagram

D is stable. Let λD be the least stability cardinal. We know that κs < λD, so κ < λD.

Let µ > λD be a cardinal such that µ<κ = µ and µ<κs > µ (for example, the κth

successor of λD will work, here we use regularity of κ). By Stability Spectrum theorem,

D is unstable in µ, so let A be a set of cardinality µ such that |SD(A)| ≥ µ+.
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Claim 1.4.9. We may assume that A has the following property. For every B ⊂ A,

|B| < κ, there is a Lascar (D, κ)-homogeneous model M ⊂ A, |M | = λD containing

B.

Proof. Construct a sequence {Ai | i < κ} such that

(1) A0 := A, |Ai| = µ;

(2) for every B ⊂ Ai of size less than κ, Ai+1 contains a Lascar (D, κ)-homogeneous

model M ⊃ B.

(3) if i is a limit ordinal, Ai :=
⋃

j<i Aj.

For the successor step, let {Bα | α < µ} be an enumeration of all the subsets of

Ai of size less than κ (there are µ many of them since µ<κ = µ. By stability in λD

we have λ<κ
D ≤ λ<κs

D = λD, so the conditions of Fact 1.4.3(2) are satisfied. Therefore,

for every α < µ, there is a Lascar (D, κ)-homogeneous model Mα containing Bα such

that |Mα| = λD. Let Ai+1 :=
⋃

α<µ Mα. Clearly, Ai+1 is as needed.

The set Aκ has the property required in the claim: if B ⊂ Aκ, |B| < κ, then

B ∈ Ai for some i < κ (here we use regularity of κ again). So Ai+1 (and therefore

Aκ) contain the needed model. It is clear that |Aκ| = µ, and since A ⊂ Aκ, there are

at least µ+ many types over Aκ. So we may take Aκ in place of A. a

Let {ai | i < µ+} be an enumeration of distinct types over A. By local character,

there are {Bi ⊂ A | i < µ+}, |Bi| < κ, such that āi

(A)

^
Bi

A. By pigeonhole principle,

we may assume that for all i < µ+ āi

(A)

^
B

A for some B ⊂ A. Let M ⊂ A be a

Lascar (D, κ)-homogeneous model of cardinality λD containing B. By stability in

λD, there are at most λD types over M . By pigeonhole principle we may assume that

{āi | i < µ+} realize the same type over M . By monotonicity, āi

(A)

^
M

A for each i < µ+,

so we get a contradiction to stationarity over models. a
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Theorem 1.4.10. Suppose D has a stable dependence relation
(A)

^. Suppose A, B

are D-sets and a model M is Lascar (D, κ)-homogeneous. Then A ^
M

B if and only if

A
(A)

^
M

B.

Proof. One direction is established in Lemma 1.4.7.

We may assume A = Mā for finite ā. Suppose ā^
M

B but ā
(A)

/̂
M

B. Since ā
(A)

^
M

M ,

by extension there is ā′ |= tp(ā/M) such that ā′
(A)

^
M

B. Since ā
(A)

/̂
M

B by invariance,

tp(ā′/B) 6= tp(ā/B). Now Lemma 1.4.7 gives ā′ ^
M

B. Since κs ≤ κ, M is also Lascar

(D, κs)-homogeneous. So we get a contradiction to stationarity over models of non

strong splitting. a

Since strong splitting has symmetry and transitivity properties over Lascar (D, κs)-

homogeneous models, we also get the properties for
(A)

^.

Corollary 1.4.11. The relation
(A)

^ is symmetric and transitive over Lascar (D, κ)-

homogeneous models.

If we let κ := ℵ0, we get the following

Corollary 1.4.12. A finite diagram D is superstable if and only if it has a superstable

dependence relation
(A)

^. Moreover, the relation must coincide with that of non-strong

splitting over Lascar (D,ℵ0)-homogeneous models. In particular,
(A)

^ must be symmet-

ric and transitive over those models.

1.5 Simple homogeneous models

1.5.1 Preliminaries

We work in the context described in the paper [7] by Steven Buechler and Olivier

Lessmann. The class of structures we are dealing with here is formally larger than

in the homogeneous finite diagrams framework. Namely, we study logical structures
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(M,R), where M is a structure in a first order language and R is a collection of

finitary relations on M closed under some reasonable operations.

We further assume that (M,R) is strongly λ-homogeneous for a large λ, see

Definition 1.3 in [7]. By large we mean the following: if we are interested in types

over set of size at most π in less than π many variables, then λ should be at least

i(2π)+ . The strong homogeneity assumption means that, for practical purposes, we

can treat a logical structure as a homogeneous finite diagram.

For the rest of the section, we fix π and agree to consider the types in less than π

many variables over sets of cardinality at most π. Furthermore, we identify the sets

of size less than π with some enumeration of those sets.

The following is an important property of strongly homogeneous structures (it

appears in [7] in Lemmas 1.3 and 1.4; see also assumption Π in Section 2 there).

Fact 1.5.1. Let (M,R) be a strongly λ-homogeneous structure. There is a cardinal

π′ ≤ λ such that for every type p(x̄) over a A set of cardinality less than π in less

than π many variables, if {āi | i ∈ X} is a sequence of realizations of p indexed

by a linear order X, |X| ≥ π′, then for every linear order Y , |Y | ≤ λ there is an

indiscernible over A sequence {b̄i | i ∈ Y } with tp(bi0 , . . . , b̄in/A) realized by some

increasing sequence {āj0 , . . . , ājn} for all n < ω.

The following concept is a substitute for algebraic types in our context.

Definition 1.5.2. A type p is small, if the set of realizations of p has cardinality less

than π′ (from Fact 1.5.1). A type p is called large otherwise.

The dependence relation in this situation is given by dividing.

Definition 1.5.3. (1) A type p(x̄, b̄) divides over A, if there is an infinite indiscernible

sequence {bi | i ∈ X} such that b̄ = b̄i for some i ∈ X and the type
⋃

i∈X p(x̄, b̄) is

inconsistent.

(2) We say that A is free from B over C (A ^
C

B) if for all finite tuples ā ∈ A and

b̄ ∈ B ∪ C we have tp(ā, b̄) does not divide over C.
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It is clear that if tp(b̄/A) is small, then p(x̄, b̄) does not divide over A.

In [7], it is established that in a κ-simple homogeneous model dividing has the all

properties of a simple dependence relation, except type amalgamation, which does

hold in the following “local” form.

Fact 1.5.4 (Buechler, Lessmann). Suppose |C| < κ and āi, b̄i, i = 1, 2, are tuples

of length less than κ. If lstp(ā1/C) = lstp(ā2/C), b̄1

(A)

^
C

b̄2, and āi

(A)

^
C

b̄i, i = 1, 2, then

there is ā |= lstp(ā1/Cb̄1) ∪ lstp(ā2/Cb̄2) such that ā
(A)

^
C

b̄1b̄2.

Remark 1.5.5. In the definition of a simple dependence relation we require the type

amalgamation to hold over any small b̄i, i = 1, 2, and C not necessarily of size less

than κ. It is not clear whether this type amalgamation property would follow from

the local version in general.

However, the local type amalgamation implies type amalgamation over all small

sets for compact homogeneous models; and any counterexample would have to be

quite exotic: it will be an example of a κ-simple homogeneous model which is not

κ′-simple for some κ′ > κ.

Definition 1.5.6. We say that a strongly λ-homogeneous structure (M,R) is κ-

simple with type amalgamation over all small sets if (M,R) is κ-simple and the type

amalgamation property holds for b̄1, b̄2, and C of arbitrary small size.

Fact 1.5.7 (Buechler, Lessmann). If the homogeneous structure is κ-simple with

type amalgamation over all small sets, then dividing is a simple dependence relation

with local character κ.

Remark 1.5.8. In [7], the extension property for large types is required by the

definition of a simple structure. For small types, extension for non-dividing holds

trivially by Lemma 2.6 in [7] and transitivity. For the purpose of characterizing the

dependence relations, it is essential to formulate the extension for both large and

small types.
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Even for first order simple theories, one can define a dependence relation different

from dividing that satisfies all the properties of a simple relation, but not the extension

property for small (algebraic, in first order) types.

1.5.2 Abstract dependence characterization.

The following result generalizes Kim-Pillay’s theorem for the simple case. Though

the idea of the proof is similar, there are some added difficulties due to the failure of

compactness and a different definition of a Lascar strong type.

Theorem 1.5.9. A strongly λ-homogeneous logical structure (M,R) is simple with

type amalgamation over all small sets if and only if it has a simple dependence rela-

tion. In addition, the abstract dependence relation coincides with the one defined by

dividing.

Proof. One direction is given by Fact 1.5.7.

Suppose now that we have a simple dependence relation
(A)

^. First we prove that
(A)

^ relation coincides with the one defined by dividing. By Finite Character of
(A)

^, it

is enough to show that for all finite ā, b̄ ∈ M , A ⊂ M

ā
(A)

^
A

Ab̄ if and only if tp(ā/Ab̄) does not divide over A.

We split the proof into several lemmas.

Lemma 1.5.10 (Existence of
(A)

^-Morley sequences). Let ā ∈ M , B ⊂ M , and

A ⊂ B be such that ā
(A)

^
A

B. Let X be an infinite order. If tp(ā/B) is large, then M

contains a
(A)

^-Morley sequence I = {āi | i ∈ X} for tp(ā/B) over A.

Proof. Use the same argument as in Lemma 2.4 in [7]. a

Lemma 1.5.11. If ā
(A)

/̂
A

Ab̄, then tp(ā/Ab̄) divides over A.
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Proof. Denote p(x̄, b̄) := tp(ā/Ab̄). First we prove that ā
(A)

/̂
A

Ab̄ implies that tp(b̄/A)

is large. Suppose tp(b̄/A) is small. Let D be the set of all realizations of tp(b̄/A),

let b̄′ |= tp(b̄/A) be such that b̄′
(A)

^
A

A ∪ D. Since b̄′ ∈ D, we get b̄′
(A)

^
A

Ab̄′ by mono-

tonicity, so invariance implies b̄
(A)

^
A

Ab̄. By extension property, there is b̄′′ |= tp(b̄/Ab̄)

such that b̄′′
(A)

^
A

Ab̄. Clearly, b̄′′ = b̄, so we have b̄
(A)

^
A

Aāb̄, and by symmetry ā
(A)

^
A

Ab̄,

contradiction.

Since tp(b̄/A) is large, we can find I := {b̄i | i < κ} a
(A)

^-Morley sequence for

tp(b̄/A). We claim that
⋃

i<κ p(x̄, b̄i) is inconsistent.

Suppose for contradiction that it is consistent and let ā′ |= ⋃
i<κ p(x̄, b̄i). By

invariance, ā
(A)

/̂
A

Ab̄ implies ā′
(A)

^
A

Ab̄i for all i < κ. On the other hand, by local

character ā′
(A)

^
A∪J

A∪ I for some J ⊂ I, |J | < κ. Let i < κ be such that J < i, then by

symmetry and transitivity of
(A)

^ we have ā′
(A)

^
A

Ab̄i, contradiction. a

Lemma 1.5.12. If ā
(A)

^
A

Ab̄, then tp(ā/Ab̄) does not divide over A.

Proof. If tp(b̄/A) is small, then tp(ā/Ab̄) does not divide over A, so we are done.

Suppose now that tp(b̄/A) is large. Let I = {b̄i | i ∈ X} be an indiscernible

sequence in tp(b̄/A), with b̄0 = b̄. We need to prove that
⋃

i∈X p(x̄, b̄i) is consistent.

Take a long extension of the sequence {b̄i | i ∈ X}: let X̄ be a linear order that

extends X, we take it to be κ+ copies of X, where κ is the local character of
(A)

^,

with an extra last element i∗. Accordingly, Ī is an indiscernible sequence that has κ+

copies of I, with an extra element b̄i∗ .

By the local character of
(A)

^, there is a subsequence I ′ ⊂ Ī, |I ′| < κ, such that

b̄i∗
(A)

^
AI′

Ī. By regularity of κ+, there is δ < κ+ such that I ′ ⊂ {Īα | α < δ}, where Īα is

the αth copy of I in Ī. By monotonicity,

b̄i∗
(A)

^
A{Īα|α<δ}

Īδ. (∗)
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Since Īδ is a copy of I, we may assume that in fact Īδ = {b̄i | i ∈ X}, i.e., Īδ = I.

For a subset Y ⊂ X, and an index i ∈ X we say Y < i when i is greater than

any element in Y ; the symbol b̄Y stands for the sequence {b̄j | j ∈ Y }. With these

notations, for any Y ⊂ X and any i > Y , by indiscernibility of Ī over A, we have

tp(b̄i∗/AI ′b̄Y ) = tp(b̄i/AI ′b̄Y ). By invariance and (∗), from this we can conclude

b̄i

(A)

^
AI′

b̄Y

for any Y ⊂ X and i > Y . Therefore {b̄i | i ∈ X} is a
(A)

^-Morley sequence over AI ′.

We will need two implications of this fact.

First, all b̄i realize the same Lascar strong type over AI ′. Second, by a stan-

dard argument, symmetry and transitivity imply that for any rearrangement of I is

a
(A)

^-independent sequence over AI ′ (of course, not necessarily indiscernible). Let

λ := |X|. Rearranging the elements of I in some order, we may assume that I is

a
(A)

^-independent sequence over AI ′ (not necessarily indiscernible), and that all the

elements of I have the same Lascar strong type over AI ′.

For i < λ, let fi be a strong automorphism over AI ′ such that fi(b̄0) = b̄i. Let

āi := fi(ā). By invariance, we then have āi

(A)

^
AI′

b̄i.

Let ā′0 be in a
(A)

^-Morley sequence in tp(ā0/AI ′b̄0) over AI ′. We can choose ā′0 so

that ā′0
(A)

^
AI′

I. Then ā0

(A)

^
AI′

b̄0ā
′
0, lstp(ā′0/AI ′) = lstp(ā0/AI ′), and ā′0b̄0

(A)

^
AI′
{b̄j | 1 ≤ j <

λ}.
Let q(x̄, b̄0, ā

′
0) := tp(ā0/AI ′b̄0ā

′
0). By induction on 1 ≤ α ≤ λ we construct

complete types qα(x̄) such that

(1) q1(x̄) := q(x̄, b̄0, ā
′
0); dom(qα) = AI ′ā′0{b̄i | i < α};

(2) qα ⊂ qβ for α < β < λ, and qα(x̄) ⊃ ⋃
i<α p(x̄, b̄i);

(3) if c̄α |= qα, then lstp(c̄α/AI ′) = lstp(ā0/AI ′) and

(4) c̄α

(A)

^
AI′

ā′0{b̄i | i < α};
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The case α = 1 is clear. Note that the Lascar strong type of ā0 over AI ′ became

type definable when we added ā′0. Hence, any independent realization of q1(x̄) will

have the same Lascar strong type over AI ′ as ā0.

For the successor case, suppose we have a complete qα(x̄) as in (1)–(4) above.

By the choice of ā′0, we have dom(qα)
(A)

^
AI′

b̄α. Also lstp(āα/AI ′) = lstp(ā0/AI ′) =

lstp(c̄α/AI ′). So we can apply type amalgamation (Property 7) and get c̄α+1 that real-

izes qα(x̄)∪p(x̄, b̄α) such that c̄α+1

(A)

^
AI′

ā′0{b̄i | i < α+1}. Let qα+1 := tp(c̄α+1/AI ′ā′0{b̄i |
i < α + 1}). Clearly, qα+1 is as needed.

For the limit case, we apply Lemma 1.2 in [7] to the sequence of types {qi(x̄) |
i < α} to conclude that the union

⋃
i<α qi(x̄) is consistent. By the choice of the type

q1(x̄), the realization c̄α has the same Lascar strong type over AI ′ as does ā′0, which

coincides with the Lascar strong type of ā0 over AI ′. So lstp(c̄α/AI ′) = lstp(ā0/AI ′).

Condition (4) in the construction holds for the union by finite character of
(A)

^.

Finally, the construction gives that the union
⋃

i∈X p(x̄, b̄i) is consistent. a

Thus, we have proved that
(A)

^ relation coincides with the relation given by dividing.

Therefore, dividing has the properties of a simple dependence relation, and hence the

logical structure (M,R) is simple. a



Chapter 2

Strong n-simplicity

Introduction

Simple theories were introduced by Shelah [30] in 1980 as a part of his program to

draw further dividing lines within the class of first order theories.

In the early nineties, model-theorists identified a natural unstable first-order the-

ory of algebraically closed fields with a generic automorphism (ACFA) with many

stability-like properties. This prompted researchers to look for a wider class of “nice”

first-order structures than that of stable theories. An important discovery came in

1996 when B. Kim [20] established that the dependence relation forking has the sym-

metry property in simple theories. B. Kim and A. Pillay proved in [22] that forking

satisfies all the good properties it has in the stable case, except for stationarity, and

they found a substitute for stationarity, called the Independence Theorem. The theory

of ACFA fits in the class of simple but unstable first order theories. For background

on simple theories, we refer the reader to the expositions such as [11, 33].

Following the work of Kim and Pillay, the field started to develop very rapidly.

However, some fundamental questions remain open. In paper [32], Shelah conjectured

that the class of all simple theories can be split into ω + 1 subclasses by some family

of syntactic properties that would reflect the difference in behavior with respect to

the following question: Does a model of size λ have a κ-saturated extension of size λ?

40
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The idea is that theories at “simpler” levels would have more pairs (λ, κ) for which

the answer is positive.

Our research was originally motivated by an attempt to understand when the n-

dimensional amalgamation property (defined in Section 4) holds in a simple theory,

and was strongly influenced by Shelah’s conjecture. While it is not clear if the ω + 1

subclasses with different saturated pairs correspond to a family of n-simple theories

(research in this direction is ongoing), there are some strong connections.

As it turns out, there are several reasonable meanings of the n-dimensional amal-

gamation property, and accordingly, of what to mean by the corresponding syntactic

properties. In this Chapter, we investigate one of the families of properties, that

we call strong n-simplicity. It offers a convenient test case for developing the tools

necessary to prove a rather strong form of n-dimensional amalgamation, and for un-

derstanding what n-dimensional amalgamation implies about a simple theory. The

next Chapter deals with another family of properties, n-simplicity.

In the stable theories, stationarity guarantees that generalized amalgamation

properties hold for all dimensions. That the strongly ω-simple (n-simple for all n)

theories form an interesting class is supported by the fact that generalized amalga-

mation properties hold for the theory of ACFA ([8]). In general, existence of the

generalized amalgamation properties for all dimensions means that the theory does

not interpret tetrahedron-free hypergraphs (see Sections 1 and 2 for the definitions) of

any dimension. We expect that ω-simple theories will have other good properties that

put them a lot closer to the stable theories than all the simple theories in general.

In Section 1, we introduce a family of properties of a first order theory T that

divide the class of simple theories into ω + 1 subclasses in the following way: We

define the family of ranks D∗
n, 1 ≤ n < ω that generalize the “simplicity” D-rank. A

theory is strongly n-simple is the ranks D∗
k for k ≤ n are bounded. If the rank D∗

n

is unbounded, it is witnessed by an appropriate strong n-dimensional tree property.

We develop the basic properties of ranks D∗
n, and prove that all stable theories are

strongly ω-simple.

Examples of simple theories in each n-simplicity level are given in the beginning
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of Section 1 to provide an intuition for the definitions. They are carefully worked out

in Section 2. The theory of random graphs is an example of an unstable ω-simple

theory.

Section 3 deals with the key property of a strongly n-simple theory. We introduce

the notion of strong n-dividing and prove a characterization of n-simplicity in terms

of it. The implication “non-dividing implies the failure of strong n-dividing” and the

resulting conclusions for Lascar strong types proved to be useful in [25].

It is quite clear that strong 2-simplicity has strong implications on the behavior

of Lascar strong types. However, it is not entirely clear what additional structure is

obtained with strong n-simplicity for n > 2.

Another property of strongly 2-simple theories, namely the 3-dimensional amal-

gamation property for Lascar strong types was also used in [25]. Section 4 of our

paper contains the definition of the (strong) n-dimensional amalgamation property

and some its implications.

Section 5 contains helpful results about (n + 1)-dimensional amalgamation that

are used to prove 3-amalgamation for 2-simple theories and, with an additional as-

sumption, the (n + 1)-dimensional amalgamation for n-simple theories. The proofs

of these amalgamation properties are given in Section 6. There we also discuss the

extra assumptions and the open questions.

The author would like to thank Byunghan Kim and Akito Tsuboi for their interest.

I am also grateful to John Baldwin and Ikuo Yoneda for many helpful comments.

2.1 Strong n-simplicity

In this section we introduce one of the families of properties that divide the class

of all simple theories into ω + 1 subclasses. Another family is studied in Chapter

3. Particular examples of theories in each subclass are fully worked out in the next

section. We provide the examples here in an abbreviated form for the benefit of the

reader.

The theories Tk, k ≥ 3, below are all simple theories with distinct behaviors.
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The definitions of strong n-simplicity (as well as n-simplicity) capture some of the

differences. The distinction between the different versions of n-simplicity is more

subtle, and becomes apparent only when a part of the general theory is developed.

That is why we defer the definition of (the non-strong version of) n-simplicity.

Fix k ≥ 3, let Lk := {P,R, S}, where P is an unary predicate, S and R are k-ary

predicates. Let Tk be the model completion of the following set of sentences in Lk:

(1) “R ⊂ P k;”

(2) “R is symmetric (with respect to all permutations), irreflexive;”

(3) “S ⊂ P k−1 × ¬P” (we use the notation x̄ S y, x̄ is understood to be a tuple in

P k−1);

(4) “S is symmetric irreflexive in the first k − 1 variables;”

(5) “if R(x1, . . . , xk), then no y ∈ ¬P is connected via S to all the (k − 1)-element

subtuples of x1, . . . , xk.”

The main purpose of the first two sections is to show that we have the following

picture, where Trg is the theory of a random graph.

T3 T4 · · · Tk · · · Trg Stable

· · · ︸ ︷︷ ︸
(strongly) ω-simple

· · · ︸ ︷︷ ︸
(strongly) (k−2)-simple

︸ ︷︷ ︸
(strongly) 1-simple or simple

One of the equivalent definitions for simple theories is via the boundedness of the

rank D[p, ϕ, k] for all formulas ϕ and natural numbers k. Below, we present one of

the “n-dimensional” generalization of the rank D, namely the family of the ranks

D∗
n[p, ϕ, k]. Then we use them to define the n-simplicity property similar to the way

the D-rank defines simplicity.
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Notation 2.1.1. Fix 1 ≤ n < ω. If I is a linearly ordered set, |I| ≥ n, we use the

symbol [I]n to denote the set {(i0, . . . in−1) | i0 < · · · < in−1 ∈ I}. We denote the

elements of [I]n by bold-face ı̄, ̄, etc. Observe that [I]n lists all the n-element subsets

of I without repetitions.

If {āi | i ∈ I} is a sequence of tuples of the same length l, and ı̄ ∈ [I]n, then we

agree to use the symbol āı̄ for the tuple āı̄[0] . . . āı̄[n−1] of the length l · n.

Let ϕ(x̄; ȳ0, . . . , ȳn−1) be a formula where `(ȳi) = `(ȳj) = l for i, j < n, {ā0 . . . , ān−1}
be a sequence of tuples of the length l. We agree to abbreviate ϕ(x̄; ā0, . . . , ān−1) as

ϕ(x̄; ān̄).

Definition 2.1.2. Let {āi | i ∈ I} be a sequence of tuples of length l. We say that

the set {ϕ(x̄, āı̄) | ı̄ ∈ [I]n} is [k]n-contradictory if for any J ⊂ I of size k, we have

|= ¬∃x̄
∧

̄∈[J ]n

ϕ(x̄, ā̄).

Example 2.1.3. Fix n ≥ 2. In the monster model of Tn+1 let I = {ai | i < ω} be

an indiscernible sequence such that R(a0, . . . an). Then the set {āı̄ S x | ı̄ ∈ [ω]n} is

[n + 1]n-contradictory.

The rank we define below generalizes the D-rank for simple theories to “higher

dimensions.”

For n ≥ 2, let the symbol Ind(x̄; ȳ0, . . . , ȳn−1) denote the type expressing that

ȳ0, . . . , ȳn−1 are indiscernible over x̄.

Definition 2.1.4. Fix 1 ≤ n < ω. Take a formula ϕ(x̄; ȳ0, . . . , ȳn−1), natural number

k > n, and a partial type p(x̄). Define D∗
n[p, ϕ, k] ≥ α by induction on α.

(1) D∗
n[p, ϕ, k] ≥ 0 if p is consistent.

(2) for α limit, D∗
n[p, ϕ, k] ≥ α if D∗

n[p, ϕ, k] ≥ β for all β < α;

(3) D∗
n[p, ϕ, k] ≥ α + 1 if for every finite r ⊆ p(x̄) there is a sequence {āi | i < ω}

such that for all ı̄ ∈ [ω]n

D∗
n[r ∪ {ϕ(x̄, āı̄)} ∪ Ind(x̄; āı̄[0], . . . , āı̄[n−1]), ϕ, k] ≥ α
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and the set {ϕ(x̄, āı̄) | ı̄ ∈ [ω]n} is [k]n-contradictory.

The expressions D∗
n[p, ϕ, k] = α, D∗

n[p, ϕ, k] = −1, and D∗
n[p, ϕ, k] = ∞ are defined

as usual.

The rank D∗
n can be defined in a more general setting, generalizing the rank

D[p, ∆, λ, k] that appears in [30].

When n = 1, the indiscernibility requirement in (3) of the above definition col-

lapses, so D∗
1 is the familiar simplicity D-rank. To explain the reason for introducing

that requirement at all, we need another definition.

Definition 2.1.5. Fix 1 ≤ n < ω. Given a formula ϕ(x̄; ȳ0, . . . , ȳn−1) and parameters

ā0, . . . , ān−1, we say that ϕ(x̄, ā0, . . . ān−1) is n-admissible over a type p(x̄) if there is

b̄ |= p(x̄) ∪ {ϕ(x̄, ā0, . . . ān−1)} such that the sequence {ā0, . . . , ān−1} is indiscernible

over b̄.

We make the extra demand in (3) of Definition 2.1.4 to make sure that every

ϕ(x̄; āı̄) is n-admissible over r at every successor step. Otherwise, the n-rank can be

unbounded for a trivial reason. Consider for example the theory of random graph

with the edge relation E. Let ϕ(x, y0, y1) := xEy0 ∧ ¬(xEy1). If we drop the extra

requirement in Definition 2.1.4(1), then we would have D∗
2[x = x, ϕ, 3] = ∞, for a

purely syntactic reason.

A standard application of compactness theorem gives the following.

Remark 2.1.6. In the Definition 2.1.4(3), we may require the sequence {āi | i < ω}
to be indiscernible over dom(p). In addition, the index set for the sequence may be

any infinite linearly ordered set.

Definition 2.1.7. Let α ≤ ω. We say that a complete theory T is strongly α-simple

if for all n < α, for all ϕ(x̄, ȳ0, . . . , ȳn) and k > n + 1 the rank D∗
n+1[x̄ = x̄, ϕ, k] is

bounded (i.e., is less than ∞).

So every simple theory is automatically strongly 1-simple; in the next section we

show that Tk, k ≥ 3, is strongly (k − 2)-simple, but not strongly (k − 1)-simple, and

the theory of random graph is strongly ω-simple.
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We now establish some useful properties of the ranks D∗
n.

Proposition 2.1.8 (Basic Properties). Fix n < ω.

(1) Monotonicity: If p1 ` p2 and k1 ≤ k2, then

D∗
n[p1(x̄), ϕ, k1] ≤ D∗

n[p2(x̄), ϕ, k2].

(2) Invariance: If f ∈ Aut(C), then

D∗
n[p(x̄), ϕ, k] = D∗

n[f(p(x̄), ϕ, k].

(3) Finite Character: For every p(x̄) and T , there is finite r ⊂ p such that

D∗
n[p, ϕ, k] = D∗

n[r, ϕ, k].

Proof. We prove (1). By induction on α, we show that

D∗
n[p1, ϕ, k1] ≥ α implies D∗

n[p2, ϕ, k2] ≥ α.

The cases α = 0 and α limit ordinal are obvious. Suppose

D∗
n[p1, ϕ, k1] ≥ α + 1.

Take an arbitrary finite r2 ⊂ p2. Since p1 ` p2, there is a finite r1 ` r2. By definition

of the rank there is a sequence {āi | i < ω} such that for all ı̄ ∈ [ω]n

D∗
n[r1(x̄) ∪ Ind(x̄; āı̄) ∪ {ϕ(x̄, āı̄)}, ϕ, k1] ≥ α,

and the set {ϕ(x̄, āı̄) | ı̄ ∈ [ω]n} is [k1]
n-contradictory. By induction hypothesis

D∗
n[r2(x̄) ∪ Ind(x̄; āı̄) ∪ {ϕ(x̄, āı̄)}, ϕ, k2] ≥ α

and since k2 ≥ k1 the set {ϕ(x̄, āı̄) | ı̄ ∈ [ω]n} is [k2]
n-contradictory. By definition of

the rank it means

D∗
n[p2, ϕ, k2] ≥ α + 1.

The proofs of (2) and (3) are routine. a
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Lemma 2.1.9 (Ultrametric Property). For every m,n, k < ω, type p(x̄), and

formulas {ψ(x̄, b̄l) | l < m} we have

D∗
n[p(x̄) ∪

∨

l<m

ψ(x̄, b̄l), ϕ, k] = max
l<m

D∗
n[p(x̄) ∪ ψ(x̄, b̄l), ϕ, k].

Proof. By the monotonicity property, for all l < m we have

D∗
n[p(x̄) ∪

∨

l<m

ψ(x̄, b̄l), ϕ, k] ≥ D∗
n[p(x̄) ∪ ψ(x̄, b̄l), ϕ, k].

Therefore, D∗
n[p(x̄) ∪∨

l<m ψ(x̄, b̄l), ϕ, k] ≥ max
l<m

D∗
n[p(x̄) ∪ ψ(x̄, b̄l), ϕ, k].

To prove the reverse inequality, we establish that for all p(x̄) and {ψ(x̄, b̄l) | l < m}

D∗
n[p(x̄) ∪

∨

l<m

ψ(x̄, b̄l), ϕ, k] ≥ α

implies max
l<m

D∗
n[p(x̄) ∪ ψ(x̄, b̄l), ϕ, k] ≥ α

by induction on α. If α = 0 or α is a limit ordinal, the implication is obvious.

Suppose that the statement holds for an ordinal α, and let

D∗
n[p(x̄) ∪

∨

l<m

ψ(x̄, b̄l), ϕ, k] ≥ α + 1.

Suppose for contradiction that for all l < m

D∗
n[p(x̄) ∪ {ψ(x̄, b̄l)}, ϕ, k] ≤ α.

By finite character, we can find a finite subset rl ⊂ p such that D∗
n[rl(x̄)∪ψ(x̄, b̄l), ϕ, k] ≤

α. Letting r(x̄) :=
⋃

l<m rl(x̄), by monotonicity we have

D∗
n[r(x̄) ∪

∨

l<m

ψ(x̄, b̄l), ϕ, k] ≥ α + 1 but

max
l<m

D∗
n[r(x̄) ∪ ψ(x̄, b̄l), ϕ, k] ≤ α.

By the definition of the rank D∗
n, there is a sequence {āi | i < ω} such that

D∗
n[r(x̄) ∪

∨

l<m

ψ(x̄, b̄l) ∪ Ind(x̄; āı̄) ∪ {ϕ(x̄, āı̄)}, ϕ, k] ≥ α
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for all ı̄ ∈ [ω]n and the set {ϕ(x̄, āı̄) | ı̄ ∈ [ω]n} is [k]n-contradictory. By induction

hypothesis, for every ı̄ ∈ [ω]n, there is l(ı̄) < m such that

D∗
n[r(x̄) ∪ {ψ(x̄, b̄l(̄ı))} ∪ Ind(x̄; āı̄) ∪ {ϕ(x̄, āı̄)}, ϕ, k] ≥ α.

By Ramsey’s theorem, we may assume that there is l∗ < m such that for all ı̄ ∈ [ω]n

D∗
n[r(x̄) ∪ {ψ(x̄, b̄l∗)} ∪ Ind(x̄; āı̄) ∪ {ϕ(x̄, āı̄)}, ϕ, k] ≥ α.

By the definition of the rank, we have

D∗
n[r(x̄) ∪ {ψ(x̄, b̄l∗)}, ϕ, k] ≥ α + 1,

a contradiction. a

By a standard argument, the Ultrametric property gives the following.

Lemma 2.1.10 (Extension property). Let k, n < ω and ϕ ∈ L(T ) be fixed. Let p

be a type, possibly with parameters. For every set A, there is a complete type q over

A such that

D∗
n[p, ϕ, k] = D∗

n[p ∪ q, ϕ, k].

It is convenient for many reasons to view the rank D∗
n as the foundation rank on

a certain tree. The next lemma describes an appropriate tree for the rank D∗
n.

Lemma 2.1.11 (Tree characterization). Let p(x̄) be a type, k a natural number,

and α ≤ ω. Then the following are equivalent:

(1) D∗
n[p, ϕ, k] ≥ α;

(2) for every η ∈ ([ω]n)<α there is a sequence Iη = {āη
i | i < ω} such that

(a) for each η ∈ ([ω]n)α, there is

b̄η |= p(x̄) ∪ {ϕ(x̄; āη¹β
i0

, . . . , āη¹β
in−1

)

| āη¹β
i0

, . . . , āη¹β
in−1

∈ Iη¹β, 〈i0, . . . , in−1〉 = η[β], β < α}

such that {āη¹β
i0

, . . . , āη¹β
in−1

}, 〈i0, . . . , in−1〉 = η[β], are indiscernible over b̄η

for all β < α;
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(b) for every η ∈ ([ω]n)<α the set {ϕ(x̄, āη

ı̄) | ı̄ ∈ [ω]n} is [k]n-contradictory.

Remark 2.1.12. Similar to our previous notation agreements, we write the sequence

{āη¹β
i0

, . . . , āη¹β
in−1

}, 〈i0, . . . , in−1〉 = η[β], simply as āη¹β
η[β].

Proof. First we use induction for α < ω. By finite character, it is enough to prove

the claim for finite p.

The base case α = 0 is clear. For the induction step, using the definition of D∗
n

and the induction hypothesis, we get D∗
n[p, ϕ, k] ≥ α + 1 if and only if there is a

sequence I = {āi | i < ω} such that for all ı̄ ∈ [ω]n for all η ∈ ([ω]n)<α there is a

sequence Iη,̄ı = {āη,̄ı
i | i < ω} such that

(a) for each η ∈ ([ω]n)α and ı̄ ∈ [ω]n there is

b̄η,̄ı |= p(x̄) ∪ {ϕ(x̄, āı̄)} ∪ {ϕ(x̄; āη¹β,̄ı
η[β] ) | β < α}

such that sequences āı̄ and āη¹β,̄ı
η[β] are indiscernible over b̄η,̄ı for all β < α;

(b) for every η ∈ ([ω]n)<α and ı̄ ∈ [ω]n the set {ϕ(x̄, āη,̄ı
̄ ) | ̄ ∈ [ω]n} is [k]n-

contradictory.

In addition, we have {ϕ(x̄, āı̄) | ı̄ ∈ [ω]n} is [k]n-contradictory.

It remains to observe that this gives us the desired equivalence for (α+1). Indeed,

the sequence I corresponds to I〈〉 in the tree characterization for the level α + 1. The

sequences Iη,̄ı, for η ∈ ([ω]n)<α and ı̄ ∈ [ω]n, correspond to Iı̄ˆη in the tree for α + 1.

Similarly, the elements b̄η,̄ı are b̄ı̄ˆη.

This completes the induction step. Finally, the claim for α = ω follows by com-

pactness theorem. a

Using the tree characterization for the rank D∗
n we get the following.

Proposition 2.1.13. For every n < ω, type p(x̄), and k < ω, D∗
n[p, ϕ, k] = ∞ if and

only if D∗
n[p, ϕ, k] ≥ ω.
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Proof. Necessity is clear, we prove sufficiency. We show by induction on α ≥ ω that

D∗
n[p, ϕ, k] ≥ α implies D∗

n[p∪, ϕ, k] ≥ α + 1.

Base case: α = ω. Use Lemma 2.1.11, to find Iη = {āη
i | i < ω} for each η ∈ ([ω]n)<ω

with the properties guaranteed by D∗
n[p, ϕ, k] ≥ ω. Now fix ı̄ ∈ [ω]n. Observe that

the sequences Iı̄ˆη, η ∈ ([ω]n)<ω, and elements b̄ı̄ˆη, η ∈ ([ω]n)ω, witness

D∗
n[p ∪ {ϕ(x̄; ā

〈〉
ı̄ )} ∪ Ind(x̄; āı̄), ϕ, k] ≥ ω.

Since the set {ϕ(x̄, ā
〈〉
ı̄ ) | ı̄ ∈ [ω]n} is [k]n-contradictory, we conclude D∗

n[p, ϕ, k] ≥
ω + 1.

The rest of the induction is immediate by the definition of the rank. a

A useful characterization of simple theories involves the notion of a tree property.

In fact, Shelah originally defined simple theories as those without the tree property.

In [32], he conjectured that there are syntactic properties that split the class of simple

theories into ω+1 subclasses, each class having different saturated pairs spectrum (see

[32] for the definition.

The family of strong n-tree properties defined shortly characterize strong n-simpli-

city, and there are examples of strongly n-simple, not strongly n + 1-simple theories

for n ≥ 1 (we present those in Section 2). It is not yet clear if different levels of

simplicity imply different saturated pairs spectra.

Definition 2.1.14. (1) A formula ϕ(x̄, ȳ0, . . . , ȳn−1), a set of sequences {Iη | η ∈
([ω]n)<ω}, and k < ω witness the strong n-tree property if for every η ∈ ([ω]n)ω, the

type {ϕ(x̄; āη¹l
η[l]) | l < ω} is realized by b̄η such that sequences āη¹l

η[l] are indiscernible

over b̄η for each l < ω and for every η ∈ ([ω]n)<ω the set {ϕ(x̄, āη

ı̄) | ı̄ ∈ [ω]n} is

[k]n-contradictory.

(2) A theory T has the strong n-tree property if there exist a formula, a set of

parameters, and a number k witnessing the n-tree property.

Proposition 2.1.15. A theory T is strongly α-simple if and only if it does not have

a strong (n + 1)-tree property for any n < α.
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Proof. Follows from the definition of strong n-simplicity and Lemma 2.1.11. a

We finish the section by proving that all stable theories are strongly ω-simple.

Theorem 2.1.16. Every stable theory T is strongly ω-simple.

Proof. First we need to isolate a useful combinatorial property.

Fix 1 ≤ n < ω. Let I be a linearly ordered set. The pair (ı̄, ̄) of tuples in [I]n is

good if tpI(ı̄/ı̄∩ ̄) = tpI(̄/ı̄∩ ̄), where tpI denotes a type in the structure 〈I,<I〉.
Given k ≥ n + 1 and J ⊂ I of size k, define the graph GJ . The vertex set

is V (GJ) := [J ]n, and E(ı̄, ̄) if and only if (ı̄, ̄) is a good pair (for the structure

〈J,<〉). The following is easy to see.

Claim 2.1.17. If I is an infinite linearly ordered set, then the graph GJ is connected

for all 1 ≤ n < ω and k ≥ n + 1.

Continuing with the proof of the theorem, we observe that since the rank R[p, ϕ,ℵ0]

is finite for stable theories, it is enough to prove that for all n < ω, for every ϕ and

n + 1 ≤ k < ω we have

D∗
n[x̄ = x̄, ϕ, k] ≤ R[x̄ = x̄, ϕ,ℵ0].

By induction on α ≤ ω we show that for all types p(x̄), formulas ϕ, and k < ω

D∗
n[p(x̄), ϕ, k] ≥ α implies R[p(x̄), ϕ,ℵ0] ≥ α.

When α = 0 or α = ω the implication is clear.

Suppose D∗
n[p(x̄), ϕ, k] ≥ α+1, and let r ⊂ p be a finite subtype. By Remark 2.1.6,

there is an indiscernible sequence indexed by the rationals {āi | i ∈ Q} such that

D∗
n[r(x̄) ∪ {ϕ(x̄, āı̄)}, ϕ, k] ≥ α for all ı̄ ∈ [Q]n and the set {ϕ(x̄, āı̄) | ı̄ ∈ [Q]n} is

[k]n-contradictory. Let A := {āi | i ∈ Q}. The Extension property now gives the

ϕ-types qı̄ such that

D∗
n[r(x̄) ∪ ϕ(x̄, āı̄), ϕ, k] = D∗

n[r(x̄) ∪ {ϕ(x̄, āı̄)} ∪ qı̄(x̄), ϕ, k].

Note that ϕ(x̄, āı̄) ∈ qı̄(x̄), so we have D∗
n[r(x̄)∪qı̄(x̄), ϕ, k] ≥ α. Induction hypothesis

now gives R[r(x̄)∪qı̄(x̄), ϕ,ℵ0] ≥ α for all ı̄ ∈ [Q]n. Since the set {ϕ(x̄, āı̄) | ı̄ ∈ [Q]n}
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is [k]n-contradictory, for every J ⊂ Q of size k, there is at least one pair (ı̄, ̄) in [J ]n

such that qı̄ and q̄ are explicitly contradictory. Since the graph GJ is connected,

there must also be a good pair (ı̄, ̄) with qı̄ and q̄ explicitly contradictory. Since

ı̄ 6= ̄, the common type tpQ(ı̄/ı̄ ∩ ̄) = tpQ(̄/ı̄ ∩ ̄) is non-algebraic (in Qn). Let

{ı̄n | n < ω} be infinitely many realizations of that type in Qn. By indiscernibility of

{āi | i ∈ Q}, we get that the types {qı̄n
| n < ω} are pairwise explicitly contradictory.

By the definition of the rank R, it means that R[r(x̄), ϕ,ℵ0] ≥ α + 1. a

2.2 Motivating examples

The theories Tk we present below are all simple theories such that for every k ≥ 3

the theory Tk is strongly (k − 2)-simple. The theory Trg is an example of a strongly

ω-simple unstable theory.

Fix k ≥ 3, let Lk := {P,R, S}, where P is an unary predicate, S and R are k-ary

predicates. Let Tk be the model completion of the following set of sentences in Lk:

(1) “R ⊂ P k;”

(2) “R is symmetric irreflexive;”

(3) “S ⊂ P k−1 × ¬P” (we use the notation x̄ S y, x̄ is understood to be a tuple in

P k−1);

(4) “S is symmetric irreflexive in the first k − 1 variables;”

(5) ∀x1 . . . xk, y

[
R(x1, . . . , xk) →

∨
w⊂{1,...,k}
|w|=k−1

¬(x̄w S y)

]
, where for w = {i1, . . . , ik−1}

we put x̄w := xi1 . . . xik−1
.

Before we write out the axioms of Tk explicitly, we define basic formulas. The

intuition is that these formulas isolate all the types in finitely many variables over

the empty set in the models of Tk.
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Definition 2.2.1. Given m,n < ω, let

Q(m,n) :=
{ ∧

i<j<n

xi 6= xj ∧
∧

i<j<m

yi 6= yj ∧
∧
i<n

P (xi) ∧
∧
j<m

¬P (yj)

∧
∧

w∈[n]k

R(x̄w)if w∈I ∧
∧
j<m

∧

u∈[n]k−1

(x̄u S yj)
if u∈Ij

∣∣∣∣∣
I ⊂ [n]k, and Ij ⊂ [n]k−1, no k elements in Ij

form all the (k − 1)-subsets of any w ∈ I

}

If m or n are too small for the R or S parts to make sense, we restrict the formulas

in Q(m,n) in the obvious way.

A basic formula is a formula of the following sort:

q(x̄, ȳ) ∧
∧

n≤i<N

xi = xn−1 ∧
∧

m≤i<M

yi = ym−1,

where q(x̄, ȳ) ∈ Q(m,n) and m ≤ M , n ≤ N .

We now give a formal definition of Tk:

(1) ∀x0, . . . , xk−1 R(x0, . . . , xk−1) →
∧

i<k P (xi);

(2) ∀x0, . . . , xk−1

∨
i<j<k xi = xj → ¬R(x0, . . . , xk−1);

(3) ∀x0, . . . , xk−1 R(x0, . . . , xk−1) →
∧

σ∈Sk

R(xσ(0), . . . , xσ(k−1)), where Sk is the set

of all permutations of k;

(4) ∀x0, . . . , xk−2, y (x0 . . . xk−2) S y → (∧
i<k−1 P (xi) ∧ ¬P (y)

)
;

(5) ∀x0, . . . , xk−2, y
∨

i<j<k−1 xi = xj → ¬(x0, . . . , xk−2) S y;

(6) ∀x0, . . . , xk−2, y (x0, . . . , xk−1) S y → ∧
σ∈Sk−1

(xσ(0), . . . , xσ(k−2)) S y;

(7) ∀x0, . . . , xk−1, y R(x0, . . . , xk−1) →
∨

w⊂k
|w|=k−1

¬(x̄w S y);

(8) for each q(x̄, v, ȳ) ∈ Q(m + 1, n) ∪Q(m,n + 1), m,n < ω: ∀x̄, ȳ ∃vq(x̄, v, ȳ)
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It is not hard to see that Tk is a consistent theory for every k ≥ 3. Namely,

one can build a chain of finite approximations Mi, i < ω, of an infinite model of Tk.

Let M0 := ∅; and having constructed Mi, let |Mi+1| := |Mi| ∪ Ai, where Ai is the

set of witnesses for |= ∃vq(ā, v, b̄). Here ā = P (Mi), b̄ = ¬P (Mi), and q(x̄, v, ȳ) ∈
Q(m + 1, n) ∪ Q(m,n + 1), where m is the length of ā, n is the length of b̄, and

we expand R and S on A in any way consistent with Axioms (1)–(7). The union

M :=
⋃

Mi is clearly a model of Tk.

Claim 2.2.2. For k ≥ 3, the theory Tk admits elimination of quantifiers. Moreover,

every type in finitely many variables over the empty set is isolated by a basic formula.

Proof. The following are easy to observe:

(1) For a fixed pair M , N , there are finitely many distinct basic formulas.

(2) Every finite tuple d̄ in a model of Tk satisfies a basic formula (possibly after a

renumbering the elements of d̄).

(3) If ϕ(x0, . . . , xn−1) is a quantifier-free formula that is satisfied in some model of

Tk, then for all basic ψ(x0, . . . , xn−1) we have Tk ` ψ → ϕ or Tk ` ψ → ¬ϕ.

From (1)–(3), it follows that the quantifier-free type of every finite tuple in a

model of Tk is isolated by a basic formula. In addition, every quantifier-free formula

is equivalent modulo Tk to either x0 6= x0 or to a finite disjunction of basic formulas.

Indeed, if ϕ is inconsistent, then ϕ is equivalent to x0 6= x0. Otherwise, for d̄ |= ϕ,

find ψd̄ isolating the quantifier-free type of d̄. The set {ψd̄ | d̄ |= ϕ} is finite, let θ be

the disjunction of those formulas. Clearly, θ is equivalent to ϕ modulo Tk.

To show that Tk has the quantifier elimination property, it is enough to show

that the formula ∃vψ(x̄, ȳ) is Tk-equivalent to a quantifier-free formula for a basic ψ

where v is possibly among the free variables x̄, ȳ of ψ. Moreover, we may assume

that ψ(x̄, ȳ) ∈ Q(m,n) for some m, n < ω. If v is not among x̄, ȳ, then the formula

is equivalent to ψ(x̄, ȳ), and we are done. Otherwise, by axioms 7 and 8 ∃vψ(x̄, ȳ)

is either true for any choice of x̄, ȳ or is false. In either case, it is equivalent to a

quantifier-free formula modulo Tk.
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We have shown that Tk admits elimination of quantifiers. To derive the second

statement of the claim, it is enough to observe that the basic formulas isolate the

quantifier-free types over the empty set. a

By Ryll–Nardzewski’s theorem it follows that Tk is an ℵ0-categorical theory. In

particular, Tk is complete.

We summarize the main results of the first two sections in the following theorem.

Theorem 2.2.3. The notion strong n-simplicity divides the class of all simple theories

into ω + 1 many subclasses in the following way.

(1) All simple theories are strongly 1-simple.

(2) For m > n ≥ 1, T strongly m-simple implies that T is strongly n-simple.

(3) The ω subclasses are: for 1 ≤ n < ω we have strongly n-simple, not strongly

(n + 1)-simple theories. The theory Tn+2 serves as an example of an strongly

n-simple, not strongly (n + 1)-simple theory.

(4) The ωth subclass contains the theories that are strongly n-simple for all 1 ≤
n < ω. All stable theories are strongly ω-simple. An example of an strongly

ω-simple unstable theory is the theory Trg.

(1) and (2) and the first part of (4) are immediate from the definitions. We proved

that all stable theories are strongly ω-simple in Theorem 2.1.16. We split the proof

of (3) into several claims.

Proposition 2.2.4. Fix n ≥ 2. The theory Tn+1 is not strongly n-simple.

Proof. Fix the theory Tn+1 for some n ≥ 2. We claim that the formula x̄ S y has the

strong n-tree property for y.

Construct the sequences {Iη | η ∈ ([ω]n)<ω by induction on the length of η. Let

I〈〉 := {a〈〉i | i < ω} be such that R(a
〈〉
i0
, . . . , a

〈〉
in

) for all i0 < · · · < in < ω. Having

constructed Iη for all sequences of length up to k, take ν = ηˆ̄ı for some ı̄ ∈ [ω]n. Let

Iηˆ̄ı := {aν
i | i < ω} be such that



56

(1) R(aν
i0
, . . . , aν

in) for all i0 < · · · < in < ω;

(2) Iν is disjoint from the set {āν¹l
ν[l] | l < k + 1}.

Condition 2 and genericity imply that for every η ∈ ([ω]n)ω, the type {āη¹l
η[l] S y |

l < ω} is realized by some element bη, since none of the sequences {āη¹l
η[l] | l < ω} form

all the n-element subsets of an (n + 1)-element set.

From the formula isolating the type tp(bη/ā
η¹l
η[l]) for any l < ω we see that each

sequence āη¹l
η[l] is indiscernible over bη.

Finally, Condition 1 and the axioms of Tn+1 imply that the set {āη

ı̄ S y | ı̄ ∈ [ω]n}
is [n + 1]n-contradictory for every η ∈ ([ω]n)<ω. a

Our next goal is to prove that for any n ≥ 2 the theory Tn+1 is strongly (n− 1)-

simple. We find it convenient to separate the (1-) simplicity case and deal with it

first.

Claim 2.2.5. Fix n ≥ 2. The theory Tn+1 is simple.

Proof. We claim that actually D[v̄ = v̄, ϕ(v̄, p̄), 2] ≤ 1 for any ϕ.

Suppose D[v̄ = v̄, ϕ(v̄, p̄), 2] > 1 as witnessed by an indiscernible over the empty

set sequence {āi | i < ω}.
By the structure of Tn+1, ϕ(v̄, p̄) is equivalent to a disjunction of basic formulas,

ϕ(v̄, p̄) ⇐⇒ ∨
l ϕl(v̄, p̄). Since the set {ϕ(v̄, āi) | i < ω} is pairwise contradictory,

for each l the set {ϕl(v̄, āi) | i < ω} is pairwise contradictory, for a basic ϕl(v̄, p̄).

Our next step is to prove that if ϕl(v̄, p̄) is a basic formula such that {ϕl(v̄, āi) |
i < ω} is pairwise contradictory for some {āi | i < ω} indiscernible over the empty

set, then ϕl(v̄, p̄) ` vi = pj for some vi ∈ v̄, pj ∈ p̄.

Suppose this is not the case. We may assume then that ϕl does not have positive

equalities at all. Indeed, if there are equalities of the form vi = vj or pi = pj, then we

can ignore the “extra” variables, and we supposed for contradiction that there are no

equalities if the form vi = pj. Note that since ϕl is basic, it isolates a complete type

over the empty set.
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So we have ϕl(v̄, ā0) is consistent, but the conjunction ϕl(v̄, ā0) ∧ ϕl(v̄, ā1) is not.

Let ψl(p̄0, p̄1) isolate the type tp(ā0ā1/∅). Then certainly

ψl(p̄0, p̄1) ∧ ϕl(v̄, p̄0) ∧ ϕl(v̄, p̄1) (∗)

is inconsistent. Since the formula ϕl does not contain positive equalities, there could

be only two reasons for the inconsistency of (∗): (1) there is an atomic formula and

its negation inside (∗) and (2) inconsistency coming from Axiom 7.

(1) cannot be the case, since ϕl(v̄, p̄0) and ϕl(x̄, p̄1) are both consistent with

ψ(p̄0, p̄1).

We now deal with (2). Renumbering the variables if necessary we may assume

that (∗) has the following subformulas:

x̄ı̄ S y for ı̄ ∈ [n + 1]n, R(x0, . . . , xn). (∗∗)

There are 3 terms in the conjunction (∗) and n + 2 ≥ 4 formulas in (∗∗), so at least

two subformulas in (∗∗) must be subformulas in one of the terms in (∗). Observe now

that any two terms in (∗∗) involve all of the variables x0, . . . , xn and y. Since each

formula in (∗) isolates a complete type and (1) is not the case, then the subformula

in (∗) that has at least two of the terms in (∗∗) must have all the terms in (∗∗). This

contradicts the consistency of ϕl(v̄, āi).

Thus we proved that a basic formula with no equalities of the form vi = pj cannot

be 2-contradictory for any choice of parameters.

Let {āi | i < ω} be such that {ϕ(v̄, āi) | i < ω} is pairwise contradictory, with

ā0 = ā. By the above and using monotonicity of D we have

D[
∨

l

vil = ajl
, ϕ(v̄, p̄), 2] ≥ D[ϕ(v̄, ā), ϕ(v̄, p̄), 2].

It remains to observe that modulo
∨

l vil = ajl
, the formula ϕ(v̄, p̄) is equivalent to a

disjunction of basic formulas with no positive equalities. Hence,

0 = D[
∨

l

vil = ajl
, ϕ(v̄, p̄), 2] ≥ D[ϕ(v̄, ā), ϕ(v̄, p̄), 2]

and therefore, D[v̄ = v̄, ϕ(v̄, p̄), 2] ≤ 1. a
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Proposition 2.2.6. Fix n ≥ 2. The theory Tn+1 is strongly (n− 1)-simple.

Proof. We prove that D∗
k[v̄ = v̄, ϕ(v̄, p̄0 . . . , p̄k−1), n] = 0 for 1 < k < n.

Claim 2.2.7. It is enough to prove that D∗
k[v̄ = v̄, ϕ(v̄, p̄0 . . . , p̄k−1), k +1] = 0 for all

formulas ϕ.

Proof. Let m be minimal such that there is ϕ(v̄, p̄0 . . . , p̄k−1) with

D∗
k[v̄ = v̄, ϕ(v̄, p̄0 . . . , p̄k−1),m] > 0.

Suppose for contradiction that m > k + 1.

Take an indiscernible sequence {āı̄ | i < ω} and b̄ witnessing

D∗
k[v̄ = v̄, ϕ(v̄, p̄0 . . . , p̄k−1),m] ≥ 1.

That is {ϕ(x̄; āı̄) | ı̄ ∈ [ω]k} is [m]k-contradictory and b̄ |= ϕ(v̄, ā0, . . . , āk−1) is such

that {ā0, . . . , āk−1} is indiscernible over b̄. Let p(x̄; ā0, . . . , āk−1) := tp(b̄/ā0, . . . , āk−1).

Case 1. The union
⋃

ı̄∈[k+1]k p(x̄, āı̄) is inconsistent. Let {ψ(x̄, āı̄) | ı̄ ∈ [n + 1]n}
be a witness for it. Then D∗

k[v̄ = v̄, ψ(v̄, p̄0 . . . , p̄k−1), k +1] ≥ 1 as witnessed by b̄ and

{āi | i < ω}, and we get a contradiction to m > k + 1.

Case 2. Otherwise let b̄′ |= ⋃
ı̄∈[k+1]k p(x̄, āı̄). Note that {ā0, . . . , āk} is indis-

cernible over b̄′. Let c̄i := ā0āi+1, i < ω. Then {c̄0, . . . , c̄k−1} are indiscernible over b̄′.

Let

ψ(x̄; c̄0, . . . , c̄k−1) :=
∧

ı̄∈[k+1]k

ϕ(x̄; āı̄).

Then D∗
k[v̄ = v̄, ψ, m − 1] ≥ 1 as witnessed by b̄′ and {c̄i | i < ω}. Contradiction to

minimality of m. a

Continuing with the proof of the proposition, suppose for contradiction that

D∗
k[v̄ = v̄, ϕ(v̄, p̄0, . . . , p̄k−1), k + 1] ≥ 1 and take {āi | i < ω} and b̄ witnesses for

it. Since ϕ is a disjunction of basic formulas each of which isolates a complete type,

b̄ satisfies exactly one of those formulas. Since each of the basic formulas must be

also [k+1]k-contradictory, we may assume that there is a basic ϕ(v̄, p̄0, . . . , p̄k−1) such

that D∗
k[v̄ = v̄, ϕ(v̄, p̄0, . . . , p̄k−1), k + 1] ≥ 1.
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We agree to write ϕ(v̄, p̄0, . . . , p̄k−1) as ϕ(v̄, m̄, p̄0, . . . , p̄k−1), where m̄ is the com-

mon part of parameters {āi | i < ω}. That is, if āi = āc̄i for i < ω, where the sets of

elements in c̄i’s are pairwise disjoint, then the variable m̄ is reserved for ā, and the

variables p̄i for c̄i’s.

If one of the conjunctive terms in the basic formula ϕ(v̄, m̄, p̄0, . . . , p̄k−1) is of

the form vi = vj or vi = mj, then we can ignore the “extra” variables, as it does

not change the value of the rank. If we write p̄i as p0
i . . . pl−1

i , then in view of the

agreement in the paragraph above, ϕ cannot have equalities of the form ps
i = pt

j for

i 6= j. If ϕ ` ps
i = pt

i for some i < k, then ϕ ` ps
j = pt

j for all j < k by indiscernibility

of {āi | i < ω} over the empty set. In this case too we simply ignore the extra

variables. It remains to note that ϕ cannot have equalities of the form vi = ps
j for any

i, s. Otherwise, by indiscernibility of {āi | i < ω} over b̄ we would have vi = ps
j for

all j < k, and since k ≥ 2 this would imply ps
i = ps

j for i 6= j < k, which is impossible

by our agreement.

Thus, we get a basic formula ϕ with no positive equalities, an indiscernible se-

quence {āi | i < ω} such that {ā0, . . . , āk−1} is indiscernible over b̄ |= ϕ(v̄, ā0, . . . , āk−1).

So the conjunction ∧

ı̄∈[k+1]k

ϕ(v̄, āı̄)

is inconsistent. Let ψ(p̄0, . . . , p̄k) isolate the type tp(ā0, . . . , āk/∅). Then certainly

ψ(p̄0, . . . , p̄k) ∧
∧

ı̄∈[k+1]k

ϕ(v̄, p̄ı̄) (∗)

is inconsistent. As before, since the formula ϕ does not contain positive equalities,

there could be only two reasons for the inconsistency of (∗): (1) there is an atomic

formula and its negation inside (∗) and (2) inconsistency coming from Axiom 7.

If (1) is the case, since ϕ(v̄, p̄ı̄) ∧ ψ(p̄0, . . . , p̄k) is consistent for all ı̄ ∈ [n]n−1, the

“bad” atomic formula θ and its negation must be inside ϕ(v̄, p̄ı̄) and ϕ(v̄, p̄̄) respec-

tively for some ı̄ 6= ̄. Without loss of generality, we may assume that ı̄ = 〈0, . . . , k−
1〉, ̄ = 〈1, . . . , k〉. So the variables of the formula θ must be among v̄ and p̄1, . . . , p̄k−1,

so θ = θ(v̄, p̄1, . . . , p̄k−1). Since ϕ is a conjunction of atomic formulas, we have
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` ϕ(v̄, p̄0, . . . , p̄k−1) → θ(v̄, p̄1, . . . , p̄k−1) and ` ϕ(v̄, p̄1, . . . , p̄k) → ¬θ(v̄, p̄1, . . . , p̄k−1).

From the last implication we get ` ϕ(v̄, p̄0, . . . , p̄k−1) → ¬θ(v̄, p̄0, . . . , p̄k−2). Thus we

get that {p̄0, . . . , p̄k−2} and {p̄1, . . . , p̄k−1} have different types over v̄, which contra-

dicts the assumption. Therefore, (1) can never be the case.

We now deal with (2). Renumbering the variables if necessary we may assume

that (∗) has the following subformulas:

x̄ı̄ S y for ı̄ ∈ [n + 1]n, R(x0, . . . , xn). (∗∗)

Since k < n, there are k + 2 ≤ n + 1 terms in the conjunction (∗) and n + 2 formulas

in (∗∗), so at least two subformulas in (∗∗) must be subformulas in one of the terms

in (∗). The proof now reduces to checking that in this case ϕ(v̄, p̄̄)∧ψ(p̄0, . . . , p̄n−1)

is inconsistent for some ̄, which contradicts the assumptions on the formula ϕ and

the sequence {āi | i < ω}.
Since any two terms in (∗∗) involve all of the variables x0, . . . , xn and y, each

formula in (∗) isolates a complete type, and (1) is not the case, then the subformula

in (∗) that has at least two of the terms in (∗∗) must have all the terms in (∗∗). This

contradicts the consistency of ϕ(v̄, ā0, . . . , āk−1).

To sum up, we know that the rank D∗
1 is at most 1 for the theory Tn+1, and the

ranks D∗
k, 1 < k < n are all 0. Therefore, Tn+1 is strongly (n− 1)-simple. a

Proof of Theorem 2.2.3. As we remarked earlier, (1) and (2) are immediate from the

definitions. Statement (3) follows from the two propositions above.

The theory of a random graph is unstable because of the independence property.

It is straightforward that the rank D∗
1 (of any parameters) is at most 1. The ranks

D∗
n, for 1 < n < ω, are 0. The verification is similar to, and simpler than, what we

did in the proposition above. a

Definition 2.2.8. A first order theory T is strongly n-supersimple if it is supersimple

and strongly n-simple.

Remark 2.2.9. From analysis of Tk, k ≥ 3, it follows that the theory is supersimple,

the only formula witnessing dividing is the equality. So the dependence relation
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A^
C

B is just A∩ (B ∪C) ⊂ A∩C. Thus, the theory Tn+2 is strongly n-supersimple,

not strongly n + 1-simple.

Every set in a model of Tk is algebraically closed. By the known facts (e.g. [Bu],

[Shami]), in Tk the Lascar strong types coincide with the strong types, so we have

independent amalgamation over arbitrary sets.

2.3 A key property of strongly n-simple theories

Definition 2.3.1. For n < ω, we say that a formula ϕ(x̄, ā0, . . . , ān−1) strongly n-

divides over A if there is an indiscernible over A sequence {āi | i < ω} that starts

with {ā0, . . . , ān−1} and there is b̄ |= ϕ(x̄, ā0, . . . , ān−1) such that {ā0, . . . , ān−1} are

indiscernible over b̄ and the set {ϕ(x̄; āı̄) | ı̄ ∈ [ω]n} is [k]n-contradictory for some k.

Remarks 2.3.2. It’s clear that for n = 1 the definition is the same as that of dividing.

We now describe the connection between strong n-dividing and dividing for strongly

n-simple theories, n ≥ 2.

The possible parameters from A in the formula ϕ are assumed to be a part of the

variables ȳi, i < n.

Recall that the symbol Ind(x̄; ȳ0, . . . , ȳn−1) denotes the partial type expressing

that ȳ0, . . . , ȳn−1 are indiscernible over x̄.

It is easy to see (from examples in Section 2) that the property stated in Lemma 2.3.3

may fail outside the n-simple theories. Moreover, we prove in Theorem 2.3.8 that the

property is equivalent to strong n-simplicity.

Lemma 2.3.3. Given n ≥ 2, suppose that the theory T is strongly n-simple. Let

ϕ(x̄, ā0, . . . , ān−1) be a formula such that the partial type

ϕ(x̄, ā0, . . . , ān−1) ∪ Ind(x̄; ā0, . . . , ān−1)

does not divide over A. Then ϕ(x̄, ā0, . . . , ān−1) does not strongly n-divide over A.

Proof. Suppose not. Then we can find an indiscernible over A sequence I := {āi |
i < ω} and b̄ |= ϕ(x̄, ā0, . . . , ān−1) such that {ā0, . . . , ān−1} are indiscernible over b̄
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and the set {ϕ(x̄; āı̄) | ı̄ ∈ [ω]n} is [k]n-contradictory for some k. We now build the

strong n-tree property with ϕ.

Let I〈〉 := I. For η ∈ ([ω]n)<ω of length k + 1, for all i < ω let

āη
i := ā(max(η[k−1])+1)⊕i, and Iη := {āη

i | i < ω},

where max(η[k− 1]) is the maximal (i.e., the last) member of the n-sequence η[k− 1]

(we assume max(〈〉) := −1); and⊕means that we add the natural number (max(η[k−
1]) + 1) to each entry in the n-sequence η[k].

By construction, the set {ϕ(x̄, āη

ı̄) | ı̄ ∈ [ω]n} is [k]n-contradictory for every

η ∈ ([ω]n)<ω. Moreover, for each η ∈ ([ω]n)ω the sequence {āη¹l
η[l] | l < ω} is indis-

cernible over A in tp(āη[0]/A) = tp(ā0, . . . , ān−1/A). Since the type ϕ(x̄, ȳ0, . . . , ȳn−1)∪
Ind(x̄; ȳ0, . . . , ȳn−1) does not divide over A, there is b̄η realizing

⋃

l<ω

ϕ(x̄, āη¹l
η[l]) ∪ Ind(x̄; āη¹l

η[l]).

So the constants b̄η for η ∈ ([ω]n)ω}, sequences Iη, η ∈ ([ω]n)<ω}, the formula ϕ,

and k < ω witness the strong n-tree property for T . We get a contradiction by

Proposition 2.1.15. a

Thus we see that the non-dividing assumption has stronger consequences in strongly

n-simple theories.

It is well known that if a type p(x̄, ā) does not divide over C, then for any indis-

cernible sequence I over C containing ā there is b̄ |= p(x̄, ā) such that I is indiscernible

over Cb̄. Our next goal is to generalize this statement. To illustrate the significance

of statement (2): take n = 2. Then the Lemma essentially says: if the Lascar strong

types of ā0, ā1 over C are the same and ā0, ā1 have the same type over Cb̄, then

the Lascar strong types (not just the types) of ā0, ā1 over Cb̄ coincide provided b̄ is

independent from ā0, ā1 over C. The precise statement is in Corollary 2.3.6. This

property does actually hold in all the examples from the previous section, but simply

because in Tk the notions of Lascar strong type and strong type coincide, and every

set is algebraically closed.
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The property mentioned in Corollary 2.3.6 also helps to understand the reason

why strong n-simplicity is indeed “strong.” The property is “too good” for certain

simple theories that we would want to treat as 2-simple. Chapter 3 is devoted to this

topic.

Lemma 2.3.4. Suppose that T is strongly n-simple. Let I := {āi | i < ω} be an

indiscernible sequence over C and b̄ ^
C

ā0 . . . ān−1. Suppose that {ā0, . . . , ān−1} are

indiscernible over Cb̄.

Denote the type tp(b̄/Cā0, . . . , ān−1) by p(x̄, ā0, . . . , ān−1) . For ı̄ ∈ [ω]n, p(x̄, āı̄)

stands for the type obtained from p(x̄, ā0, . . . , ān−1) by replacing āk with āı̄[k] for k < n.

Then

(1) the type q(x̄) :=
⋃

ı̄∈[ω]n p(x̄, āı̄) is consistent;

(2) there is a sequence I ′ containing ā0, . . . , ān−1 that is indiscernible over Cb̄.

Proof. (1) Otherwise, by compactness and indiscernibility we obtain a formula

ϕ(x̄, ȳ0, . . . , ȳn−1), possibly with parameters from C and k < ω such that {ϕ(x̄, āı̄) |
ı̄ ∈ [ω]n} is [k]n-contradictory. We may assume that the parameters from C are

absorbed in each of the āi’s. Since b̄ |= ϕ(x̄, ā0, . . . , ān−1) ∪ Ind(x̄; ā0, . . . , ān−1)

and b̄ ^
C

ā0 . . . ān−1, the type ϕ(x̄, ȳ0, . . . , ȳn−1) ∪ Ind(x̄; ȳ0, . . . , ȳn−1) does not divide

over C. By the Lemma2.3.3 ϕ(x̄, ȳ0, . . . , ȳn−1) does not strongly n-divide over C, so

{ϕ(x̄, āı̄) | ı̄ ∈ [ω]n} cannot be [k]n-contradictory.

(2) We first prove that the following set of formulas is consistent:

Γ(x̄) := q(x̄) ∪ {ϕ(x̄, ā0, . . . , āk−1, c̄) ↔ ϕ(x̄, āi0 , . . . , āik−1
, c̄)

| k < ω, i0 < · · · < ik−1 < ω, ϕ ∈ Fml(L(T )), c̄ ∈ C}.

By Compactness it’s enough to show that for each i0 < · · · < ik−1 < ω, and every

ϕ(x̄, ȳ0, . . . , ȳk−1, z̄) ∈ Fml(L(T )), and ψ(x̄, ā0, . . . , āik−1
, c̄) ∈ q(x̄) we have consis-

tency of

ψ(x̄, ā0, . . . , āik−1
, c̄) ∧ [ϕ(x̄, ā0, . . . , āk−1, c̄) ↔ ϕ(x̄, āi0 , . . . , āik−1

, c̄)]. (∗)
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Let b̄∗ |= q(x̄). By Ramsey’s theorem there is an infinite J ⊂ I such that J is ϕ-indis-

cernible over c̄b̄∗ (i.e., for any āj1 , . . . , ājk−1
∈ J the truth value of ϕ(b̄∗, āj1 , . . . , ājk−1

, c̄)

is fixed). For ā′0, . . . , a
′
ik−1

∈ J we have

ψ(d̄∗, ā′0, . . . , ā
′
ik−1

, c̄) ∧ [ϕ(d̄∗, ā′0, . . . , ā
′
k−1, c̄) ↔ ϕ(d̄∗, ā′i0 , . . . , ā

′
ik−1

, c̄)].

Now indiscernibility of I over c̄ gives (∗), so Γ(x̄) is consistent. Let f ∈ AutCā0...ān−1(C)

map b̄∗∗ |= Γ to b̄. Then I ′ := f(I) is as needed. a

A standard argument gives the following:

Corollary 2.3.5. Suppose that T is strongly n-simple. Let I := {āi | i < ω} be an

Morley sequence over C and b̄ ^
C

ā0 . . . ān−1. Suppose that {ā0, . . . , ān−1} are indis-

cernible over Cb̄.

Let p(x̄, ā0, . . . , ān−1) := tp(b̄/Cā0 . . . ān−1). Then the type
⋃

ı̄∈[ω]n p(x̄, āı̄) does

not fork over C.

For n = 2, Lemma 2.3.4 has a very important corollary.

Corollary 2.3.6. Let T be strongly 2-simple. Suppose that ā0 and ā1 realize the

same Lascar strong type over C and b̄ is such that b̄ ^
C

āi, i = 0, 1 and tp(ā0/Cb̄) =

tp(ā1/Cb̄). Then lstp(ā0/Cb̄) = lstp(ā1/Cb̄).

Proof. First we prove

Subclaim 2.3.7. In the conditions of the Corollary, if in addition b̄ is such that

b̄ ^
C

ā0ā1 and ā0, ā1 are independent over C, then lstp(ā0/Cb̄) = lstp(ā1/Cb̄).

Proof. By (1-)simplicity, there is a Morley sequence I = {āi | i < ω} over C that

begins with ā0, ā1. By Lemma 2.3.4, there is a sequence I ′ that begins with ā0, ā1

and is indiscernible over Cb̄. Therefore, lstp(ā0/Cb̄) = lstp(ā1/Cb̄). a

By simplicity, we can take a model M of T such that M ⊃ Cb̄ and ā0 ^
C

M . By

extension, there is ā∗ |= tp(ā0/M) such that ā∗ ^
C

Mā0ā1. In particular, ā∗ has the

same Lascar strong type as ā0 over C, āi ^
C

ā∗, and b̄ ^
C

āiā
∗, for i = 0, 1. By the
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Claim, lstp(ā0/Cb̄) = lstp(ā∗/Cb̄) and lstp(ā∗/Cb̄) = lstp(ā1/Cb̄), so lstp(ā0/Cb̄) =

lstp(ā1/Cb̄). a

We now prove the converse to Lemma 2.3.3.

Theorem 2.3.8. Let T be a complete first order theory. T is strongly n-simple if and

only if for every 1 ≤ k ≤ n, every A, ā0, . . . , āk−1, and ϕ(x̄, ȳ0, . . . , ȳk−1) the following

property holds:

if there is a Morley sequence {c̄i[0] . . . c̄i[k−1] | i < ω} in tp(ā0 . . . āk−1/A)

such that
⋃
i<ω

ϕ(x̄, c̄i[0], . . . , c̄i[k − 1]) ∪ Ind(x̄; ȳi[0], . . . , ȳi[k − 1])

is consistent then ϕ(x̄, ȳ0, . . . , ȳk−1) does not strongly k-divide over A.

Proof of Theorem 2.3.8. For n = 1, i.e., for simple theories the statement was proved

by Kim in [21]. With that in mind, the theorem essentially asserts that strong

n-simplicity is equivalent to the situation when non-dividing implies not strong k-

dividing for all 1 ≤ k ≤ n.

One direction is given by Lemma 2.3.3 and the fact that “strong n-simple” implies

“strong k-simple for all 1 ≤ k ≤ n.” We prove the other direction by induction on n.

The base n = 1 is given by Kim’s result.

Suppose now that n ≥ 2 and that T is strongly (n−1)-simple. Here is the general

idea for the rest of the proof. Suppose the theory is not strongly n-simple, and take

the corresponding n-dimensional tree. By compactness, we may assume the tree is

ω-branching (i.e., every node has ω-many immediate successors) and its height is as

big as we like. We show that we can extract a “uniform subtree” from it, the one

that will be used to contradict the assumptions of the theorem. We start by proving

the technical partition result, but first we need some definitions.

Definition 2.3.9. Given a cardinal κ, let T be the natural tree structure on ω<λ,

where λ is a regular cardinal, λ > κ. Suppose that the nodes of T are colored in

κ-many colors. We will assume that the colors are the members of κ. For a node t of

T and n ∈ ω, we say that there exists a monochromatic n-tree of color α above t if
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– for n = 0: if there is a node t∗ of color α above t;

– for n = k + 1: there is t∗ Â t of color α such that above every immediate

successor of t∗ there is a monochromatic k-tree of color α.

We say that there is a monochromatic ω-tree of color α above t if there are n-trees

of color α above t for all n < ω.

Lemma 2.3.10. For some α < κ, there is a monochromatic ω-tree of color α above

some t ∈ T .

Proof. Suppose not. Then for every α < κ, for every t ∈ T , the height of a monochro-

matic tree of color α above t is at most h(t, α) < ω. We show that in this case we

can find {tα | α < κ} ⊂ T such that

(1) tα ≺ tβ for α < β < κ;

(2) there is no node of color α above tα.

This is clearly enough to get a contradiction, since the length of each tα is less than

λ for each α < κ, so t∗ :=
⋃

α<κ tα is a sequence whose length has cofinality at most

that of κ. Since this is less than λ, t∗ ∈ T , and the nodes above t∗ would have to be

colorless.

Now we do the construction. Let t′0 := 〈〉. If there are no nodes of color 0 above t′0,

then we are done: let t0 := t′0. Otherwise let n0 := h(〈〉, 0), the maximal height of the

color 0 monochromatic tree above t′0. Find t00 of color 0 such that h(t00, 0) = n0. By

definition, there is i0 < ω such that h(t00 〈̂i0〉) = n0 − 1. Again by the definition, we

get that there exists t10 of color 0 and i1 < ω such that h(t10 〈̂i1〉) = n0− 2. Repeating

this for n0 many steps, we get a node tn0
0 of color 0 and in0 < ω such that there are

no nodes of color 0 above t0 := tn0
0 〈̂n0〉.

Given t′α+1 := tα, let nα+1 := h(t′α+1, α + 1). Similar to the above, construct

t
nα+1

α+1 of color α + 1 and inα+1 such that there are no nodes of color α + 1 above

tα+1 := t
nα+1

α+1 〈̂inα+1〉.
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For the limit stage, take {tα | α < β}. Let t′β :=
⋃

α<β tα. By a cofinality

argument, t′β ∈ T , and there are no nodes of color α for all α < β above t′β. Now it

remains to eliminate the color β: let tβ := t
nβ

β 〈̂inβ
〉, where nβ := h(t′β, β). a

Continuing with the proof of the theorem, suppose the theory is not strongly n-

simple, and take a formula ϕ(x̄, ȳ0, . . . , ȳn−1), a set of sequences {Iη | η ∈ ([ω]n)<ω},
and k < ω witnessing the strong n-tree property. That is, we have that for every

η ∈ ([ω]n)ω, the type {ϕ(x̄; āη¹l
η[l]) | l < ω} is realized by b̄η such that sequences āη¹l

η[l] are

indiscernible over b̄η for each l < ω and for every η ∈ ([ω]n)<ω the set {ϕ(x̄, āη

ı̄) | ı̄ ∈
[ω]n} is [k]n-contradictory. By compactness we may assume that the n-dimensional

tree has the height λ := (2|T |)+, i.e., we have sequences Iη for η ∈ ([ω]n)<λ. In

addition we may assume that each Iη is indiscernible over {āη¹l
η[l] | l < lh(η)}.

Since |[ω]n| = ℵ0, after enumerating the elements of [ω]n by ω in some way we

get an ω-branching tree of height λ. Let the color of the node corresponding to the

sequence η ∈ ([ω]n)<λ be the type of first n (or any n) elements over the empty set.

Clearly, the number of colors is at most κ = 2|T |. By Lemma 2.3.10 and compactness,

we obtain an n-dimensional tree witnessed by ϕ, k < ω, and {Iη | η ∈ ([ω]n)<ω+ω}
such that in addition to the usual requirements we have

(1) for every η ∈ ([ω]n)<ω the type of āη
n̄ over the empty set is the same;

(2) Iη is indiscernible over {āη¹l
η[l] | l < lh(η)}

By Ramsey’s theorem and compactness, we may assume that for some fixed η∗ ∈
([ω]n)<ω, the sequence {āη∗¹l

η∗[l] | l < ω + ω} is indiscernible over the empty set. Let

A := {āη∗¹l
η∗[l] | l < ω}. Then I := {āη∗¹l

η∗[l] | ω ≤ l < ω + ω} is a Morley sequence over A,

and by our construction J := Iη∗¹ω is indiscernible over A.

Then the Morley sequence I and the element b̄η∗ witness that

ϕ(x̄, ȳ0, . . . , ȳn−1) ∪ Ind(x̄; ȳ0, . . . , ȳn−1)

does not divide over A. However, the sequence J witnesses that the formula

ϕ(x̄, ȳ0, . . . , ȳn−1) strongly n-divides over A. a
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2.4 Strong n-dimensional amalgamation

In this section we define the stronger version of n-dimensional amalgamation property

and investigate its implications for theories that are at least strongly 2-simple. So

for the remainder of this part, “n-simplicity” will refer to the strong n-simplicity and

the “n-dimensional amalgamation” will refer to the stronger version of amalgamation

property which we define below. Subsequently, we discuss the reasons why this family

of amalgamation properties is called strong.

It is convenient to view an n-dimensional cube as the set P(n) (recall that n =

{0, 1, . . . , n−1}). Roughly speaking, the n-dimensional amalgamation is about being

able to place the “top” element into the n-dimensional cube. We use the notation

P−(n) for the collection of all the proper subsets of n (i.e., the cube without the top).

Definition 2.4.1. Fix n < ω. A system of types {pw(x̄) | w ∈ P−(n)} is said to be

an n-dimensional independent system of types over A if

(1) dom(p∅) = A;

(2) if w1, w2 ∈ P−(n) and w1 ⊃ w2, then pw1 is a non-forking extension of pw2 ;

(3) if w1, w2 ∈ P−(n), then dom(pw1) ^
dom(pw1∩w2 )

dom(pw2).

If in addition for each w1, w2 ∈ P−(n) the types pw1 , pw2 extend the same Lascar

strong type over dom(pw1∩w2), we call the system n-dimensional independent system

of Lascar strong types over A.

Remark 2.4.2. We are interested in the generalized amalgamation properties for

strongly n-simple theories, n ≥ 2. If T is strongly 2-simple, then Corollary 2.3.6

gives us the following. Suppose that an n-dimensional independent system of types

{pw(x̄) | w ∈ P−(n)} over A is such that every pw extends the same Lascar strong

type over A. Then {pw(x̄) | w ∈ P−(n)} is an n-dimensional independent system of

Lascar strong types over A.



69

For the remainder of this Chapter, we are dealing with T that is (at least) strongly

2-simple. So we can work with the weaker notion of the n-dimensional independent

system of Lascar strong types over A, which generally gives more n-dimensional in-

dependent systems. Thus, being able to amalgamate those is a stronger condition.

Definition 2.4.3. We say that an n-dimensional independent system of types over B

can be independently amalgamated if there is a common non-forking extension p∗(x̄)

of each pw(x̄), w ∈ P−(n).

A theory T has the strong n-dimensional amalgamation property over models if

for every M |= T any n-dimensional independent system of types over M can be

independently amalgamated.

A theory T has strong n-dimensional amalgamation for Lascar strong types if every

independent system of Lascar strong types over a set A has a common independent

extension.

One of the corollaries of the Independence (or 2-amalgamation) theorem is that for

any two independent over A elements with the same Lascar strong type over A there

is an indiscernible over A sequence containing them. Also, the Independence theorem

allows us to amalgamate over Morley sequences in the sense of Proposition 2.4.6. We

prove analogs of these facts for strong n-dimensional amalgamation.

Once again, for the remainder of this Chapter we use the strong n-dimensional

amalgamation. Occasionally, we drop the “strong” part, especially in the proofs, not

to clutter the text unnecessarily.

Proposition 2.4.4. Fix n ≥ 2 and N ≥ n. Let {pı̄(x̄) | ı̄ ∈ [N ]n−1} be an indepen-

dent system of Lascar strong types over A. Suppose T has the strong n-dimensional

amalgamation property for Lascar strong types. Then the system {pı̄(x̄) | ı̄ ∈ [N ]n−1}
can be independently amalgamated.

Proof. The base N = n is just the n-dimensional amalgamation property. Suppose

the statement is true for some N ≥ n, and fix an independent system {pı̄(x̄) | ı̄ ∈
[N + 1]n−1}. Consider the following n types:
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– for every s ⊂ {N − (n− 2), . . . , N} of size n− 2, we take the amalgam qs(x̄) of

{pı̄(x̄) | ı̄ ∈ [{0, . . . , N − (n− 1)}︸ ︷︷ ︸
N−n+2 elements

∪s]n−1}.

It exists by the induction hypothesis.

– the type p{N−(n−2),...,N}(x̄).

It is easy to see that these n types form an n-dimensional independent system of

Lascar strong types over A, so there is an independent amalgam q(x̄). It remains to

observe q is a non-forking extension of each pı̄, ı̄ ∈ [N + 1]n−1. a

Now we prove that strong n-dimensional amalgamation implies that we can extend

a finite Morley sequence {āi | i < n} over a set A to an infinite Morley sequence

assuming that {āı̄ | ı̄ ∈ [n]n−1} realize the same Lascar strong type over A. Notice

that the assumption of the same Lascar strong types is clearly necessary.

Lemma 2.4.5. Fix n ≥ 2. Suppose T has the strong n-dimensional amalgamation

property for Lascar strong types. Suppose {āi | i < n} is an independent sequence

such that for all ı̄, ̄ ∈ [n]n−1 we have lstp(āı̄/A) = lstp(ā̄/A). Then {āi | i < n} can

be extended to an infinite Morley sequence over A.

Proof. We first construct an independent sequence {āi | i < ω} such that all the āı̄,

ı̄ ∈ [ω]n−1, realize the same Lascar strong type over A. In particular, we will have

tp(ā0 . . . ān−1/A) = tp(āı̄/A) for each ı̄ ∈ [ω]n

We begin with the original sequence. Suppose we have constructed an independent

sequence {āi | i < N} for some N ≥ n such that lstp(āi/A) = lstp(ā̄/A) for all

ı̄, ̄ ∈ [N ]n−1. Therefore, for every ı̄ ∈ [N ]n−1 we can pick fı̄ ∈ SautA(C) such that

f(ā0 . . . ān−2) = āı̄. Let p(x̄) := tp(ān−1/Mā0 . . . ān−2), and consider the family of

types {fı̄(p) | ı̄ ∈ [N ]n−1}. By Proposition 2.4.4, there is a common non-forking

extension q of these types that extends the Lascar strong types as well. Letting

āN |= q(x̄), we get lstp(ān−1/Aā0 . . . ān−2) = lstp(āN/Aāı̄) for each ı̄ ∈ [N ]n−1 and

āN ^
A
{āi | i < N}.
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So we get an infinite independent sequence {āi | i < ω} such that for each

ı̄ ∈ [ω]n−1, the sequences āı̄[0], . . . , āı̄[n−1] have the same type over A. By Ram-

sey’s theorem and compactness, we get an indiscernible independent sequence over A

so we are done. a

Proposition 2.4.6. Suppose that T is strongly 2-simple and has strong n-dimensional

amalgamation for Lascar strong types. Let I := {āi | i < ω} be a Morley sequence over

A and b̄ ^
A

ā0 . . . ān−1. Suppose that {ā0, . . . , ān−1} are indiscernible over Ab̄. Denote

by p(x̄, ā0, . . . , ān−1) the type of b̄ over Aā0, . . . , ān−1. For ı̄ ∈ [ω]n, p(x̄, āı̄) stands for

the type obtained from p(x̄, ā0, . . . , ān−1) by replacing āk with āı̄[k] for k < n. Then

the type q(x̄) :=
⋃

ı̄∈[ω]n p(x̄, āı̄) is consistent.

Proof. By compactness it is enough to prove that for every N < ω the type q(x̄) :=
⋃

ı̄∈[N ]n p(x̄, āı̄) is consistent. For every ı̄ ∈ [N ]n pick fı̄ ∈ SautA(C) such that

f(ā0 . . . ān−1) = āı̄. Consider the family of types {fı̄(p) | ı̄ ∈ [N ]n}.
To apply Proposition 2.4.4, we need to show that this is an independent system

of Lascar strong types over A. Independence of the system is clear.

Let b̄ı̄ := fı̄(b̄). It is enough to show that for ı̄, ̄ ∈ [n+1]n we have lstp(b̄ı̄/A(āı̄∩
ā̄)) = lstp(b̄̄/A(āı̄ ∩ ā̄)). We have lstp(b̄ı̄/A) = lstp(b̄̄/A). Since {ā0, . . . , ān−1}
are indiscernible over Ab̄, we have tp(b̄ı̄/A(āı̄∩ ā̄)) = tp(b̄̄/A(āı̄∩ ā̄)). In addition,

we may assume b̄ı̄ ^
A

b̄̄ by extension property. So Corollary 2.3.6 gives

lstp(b̄ı̄/A(āı̄ ∩ ā̄)) = lstp(b̄̄/A(āı̄ ∩ ā̄)).

By Proposition 2.4.4, there is a common non-forking extension q of all these types.

a

2.5 Toward strong amalgamation in strongly

n-simple theories

In this section we prove some auxiliary results that will help in the proof of strong

(n + 1)-dimensional amalgamation.
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The following is a standard well-known fact for which I was not able to find a

reference.

Fact 2.5.1 (Exchange property). If A^
D

B ∪ C and B ^
D

C, then C ^
D

A ∪B.

Proof. By monotonicity, A^
D

B ∪ C implies A ^
D∪B

C. By symmetry, C ^
D∪B

A and

C ^
D

B. By transitivity, C ^
D

A ∪B. a

Lemma 2.5.2. Let T be a theory with strong n-dimensional amalgamation property

for Lascar strong types. Let {pw(x̄) | w ∈ P−(n + 1)} be an independent system of

Lascar strong types over A such that dom(pw) = A ∪ {āi | i ∈ w} for w ∈ P−(n + 1)

where āi ^
A
{āj | j < i} for all 1 ≤ i < n + 1. There exists ā′n such that

(1) ā′n |=
⋃

v⊂n
|v|=n−1

tp(ān/Aāv);

(2) the type
⋃

w∈P−(n+1) p′w(x̄) does not fork over A, where p′w(x̄) is obtained from

pw(x̄) by replacing ān with ā′n.

Proof. Let {pw(x̄) | w ∈ P−(n + 1)} be an independent system of Lascar strong

types over A. By finite character and monotonicity of forking, we may assume that

there are {āi | i < n + 1} such that āi ^
A
{āj | j < i} for all 1 ≤ i < n + 1, and

dom(pw) = A ∪ {āi | i ∈ w} for w ∈ P−(n + 1).

For i = 0, . . . , n, let wi := {0, . . . , n} \ {n − i}. Let d̄i |= pwi
(x̄). By Extension

we may assume that d̄i ^
A
{bj | j < n + 1}. By the definition of an independent

system of Lascar strong types, lstp(d̄i/Aāwi∩wj
) = lstp(d̄j/Aāwi∩wj

) for all i, j <

n + 1. In particular, letting vi := {0, . . . , n − 1} \ {n − i} for i = 1, . . . , n, we

have lstp(d̄0/Aāvi
) = lstp(d̄i/Aāvi

). Let fi ∈ SautAāvi
(C) be such that fi(d̄i) = d̄0,

i = 1, . . . , n. Let c̄i := fi(ān).

We plan to amalgamate the types tp(c̄i/Ad̄0āvi
), for i = 1, . . . , n. It is clear

that the system of types is independent over Ad̄0 and extends the same Lascar

strong type over Ad̄0. By n-dimensional amalgamation, we get an element ā′n |=
⋃

i<n tp(c̄i/Ad̄0āvi
) such that tp(ā′n/Aāvi

) = tp(ān/Aāvi
) for 1 ≤ i < n. In addition,

d̄0 |=
⋃

w∈P−(n+1)

p′w(x̄),
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where p′w(x̄) is obtained from pw(x̄) by replacing ān with ā′n. a

Lemma 2.5.3. Let T be strongly n-simple and suppose that T has the strong n-

dimensional amalgamation property for Lascar strong types. Suppose that the ele-

ments {ā0, . . . , ān−1, b̄0, . . . , b̄n−1} are independent over A. Let

{pı̄(x̄, āı̄, b̄ı̄) | ı̄ ∈ [n]n−1} ∪ {q(x̄, ā0, . . . , ān−1)}

be an independent system of types that extend the same Lascar strong type over A.

Then the system can be independently amalgamated.

Proof. For ı̄ ∈ [n − 1]n−2, consider the types rı̄ over āı̄, b̄ı̄, ān−1. Namely, let rı̄ be

the (2-dimensional) amalgam of

pı̄ˆ(n−1)(x̄, āı̄ˆ(n−1), b̄ı̄ˆ(n−1)) ¹ (āı̄, b̄ı̄, ān−1) and q(x̄, ā0, . . . , ān−1)

over Aāı̄[0], . . . , āı̄[n−3]ān−1. It is possible to amalgamate since the types agree over

the intersection of their domains and extend the same Lascar strong type over A.

Now note that

{rı̄(x̄, āı̄, b̄ı̄, ān−1) | ı̄ ∈ [n− 1]n−2}, q(x̄, ā0, . . . , ān−1)

form an n-dimensional independent system over Aā0, . . . , ān−2. They extend the same

Lascar strong type over Aā0, . . . , ān−2 because each type is an independent extension

of the same Lascar strong type over A, and all the types agree on Aā0, . . . , ān−2. The

amalgam of this system gives

p∗〈0,...,n−2〉(x̄, ā0, . . . , ān−2, b̄0, . . . , b̄n−2, ān−1)

that extends both p〈0,...,n−2〉 and q; and agrees with pı̄ for other ı̄ ∈ [n]n−1. So now

we have

p∗〈0,...,n−2〉, {pı̄ | ı̄ ∈ [n]n−1, ı̄ 6= 〈0, . . . , n− 2〉}

an n-dimensional independent system over Aān−1. Its independent amalgam gives

the needed type. a
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Theorem 2.5.4. Suppose T is strongly n-simple. Then the following conditions are

equivalent:

(1) for all 1 ≤ k ≤ n, T has the strong (k + 1)-dimensional amalgamation property

for Lascar strong types;

(2) for all 1 ≤ k ≤ n, every (k + 1)-element Morley sequence {c̄i | i < k + 1} over

A such that lstp(c̄ı̄/A) = lstp(c̄̄/A) for ı̄, ̄ ∈ [k + 1]k can be extended to an

infinite Morley sequence over A;

(3) for all 1 ≤ k ≤ n, every (k+1)-element Morley sequence {c̄i | i < k +1} over A

such that lstp(c̄ı̄/A) = lstp(c̄̄/A) for ı̄, ̄ ∈ [k+1]k can be extended by one more

element. Namely, there is an element c̄k+1 such that c̄k+1 ^
A
{c̄i | i < k + 1} and

tp(c̄ı̄/A) = tp(c̄̄/A) for ı̄, ̄ ∈ [k + 2]k+1.

Proof. (1) implies (2) was proved in Lemma 2.4.5; (2) implies (3) is obvious.

For the remaining implications, we proceed by induction on n. For n = 1, all the

three statements are well-known to be true. Now we assume that the statements are

equivalent for k = 1, . . . , n− 1, it remains to prove the two implications for k = n.

(3) ⇒ (2). Suppose that for every set A, every Morley sequence {c̄i | i < n + 1}
over A such that lstp(c̄ı̄/A) = lstp(c̄̄/A) for ı̄, ̄ ∈ [n + 1]n can be extended by one

more element. Take {c̄i | i < n + 1}, we show that it can be extended to an infinite

Morley sequence over A. By Ramsey’s and compactness theorems it is enough to build

an infinite independent over A sequence such that every (n+1)-element subsequence

of it realizes the type of {c̄0, . . . , c̄n} over A.

By induction on k < ω, k ≥ n + 1, construct a sequence {c̄i | i < k} such that

(∗) {c̄i | i < k} is an independent sequence over A;

(∗∗) lstp(c̄ı̄/Ac̄0 . . . c̄k−n−2) = lstp(c̄̄/Ac̄0 . . . c̄k−n−2) for ı̄, ̄ ∈ [k− n− 1, . . . k − 1]n;

(∗ ∗ ∗) for all ı̄ ∈ [k]n+1, tp(c̄ı̄/A) = tp(c̄0, . . . , c̄n/A)

Suppose we have {c̄i | i < k} satisfying (∗) and (∗∗) above; for k = n + 1 we start

with the original sequence.
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Then {c̄i | k − n − 1 ≤ i < k} is a Morley sequence over Ac̄0 . . . c̄k−n−2 (for

k = n+1 we take it simply over A). Also the following Lascar strong types are equal:

lstp(c̄ı̄/Ac̄0 . . . c̄k−n−2) = lstp(c̄̄/Ac̄0 . . . c̄k−n−2) for ı̄, ̄ ∈ [k − n− 1, . . . k − 1]n.

By the assumption, there is an element c̄k such that

c̄k ^
Ac̄0...c̄k−n−2

{c̄i | k − n− 1 ≤ i < k}

and tp(c̄ı̄/Ac̄0 . . . c̄k−n−2) = tp(c̄̄/Ac̄0 . . . c̄k−n−2) for ı̄, ̄ ∈ [k− n− 1, . . . k− 1, k]n+1.

In particular, tp(c̄k/Ac̄0 . . . c̄k−n−2) = tp(c̄k−n−1/Ac̄0 . . . c̄k−n−2), so c̄k ^
A

c̄0 . . . c̄k−n−2.

By transitivity, c̄k ^
A

c̄0 . . . c̄k−1, so (∗) is satisfied for {c̄i | i < k + 1}.
Now we get (∗∗). The equality of types for sequences of length n + 1

tp(c̄ı̄/Ac̄0 . . . c̄k−n−2) = tp(c̄̄/Ac̄0 . . . c̄k−n−2), ı̄, ̄ ∈ [k − n− 1, . . . k − 1, k]n+1

has the following implications for sequences of length n:

· tp(c̄ı̄/Ac̄0 . . . c̄k−n−1) = tp(c̄̄/Ac̄0 . . . c̄k−n−1) for ı̄, ̄ ∈ [k − n, . . . k]n;

· lstp(c̄ı̄/A) = lstp(c̄̄/A) for ı̄, ̄ ∈ [k − n, . . . k]n.

This easily gives (∗∗) by Lemma 2.3.6.

Finally, for (∗ ∗ ∗) there are two cases to consider:

Case 1. ı̄[n] < k. Then the equality tp(c̄ı̄/A) = tp(c̄0, . . . , c̄n/A) holds by induc-

tion hypothesis.

Case 2. ı̄[n] = k. We show that there is ̄ ∈ [k]n+1 with ̄[n] < k such that

tp(c̄ı̄/A) = tp(c̄̄/A), the rest will follow from Case 1. Let l be the smallest such that

ı̄[l] > k − n − 1. Define ̄ as follows: ̄[`] := ı̄[`] for ` < l; and ̄[l + `] := k − n + `.

Then ̄ is as needed.

This completes the construction of the independent sequence {c̄i | i < ω} such

that its every (n + 1)-element subsequence realizes the type of {c̄0, . . . , c̄n} over A.

By Ramsey’s and compactness theorems, the sequence {c̄0, . . . , c̄n} can be extended

to an infinite Morley sequence over A.

(2) ⇒ (1). By induction hypothesis, we may assume that T has the amalgamation

properties up to the dimension n. Let {pı̄(x̄, āı̄) | ı̄ ∈ [n + 1]n} be an independent
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(n + 1)-dimensional system of Lascar strong types over A. (The tuples āi may have

different lengths, and realize different types over A.) We want to construct a Morley

sequence {c̄i | i < n + 1} with certain properties such that its extension to an infinite

Morley sequence over A together with strong n-simplicity gives the needed strong

(n + 1)-dimensional amalgam.

Claim 2.5.5. There is a sequence {c̄i | i < n} and an element b̄ such that

(1) the length of each c̄i is `(ā0) + · · · + `(ān); c̄i[j] refers to the jth block of c̄i of

length `(āj);

(2) b̄ realizes ⋃

ı̄∈[n+1]n

pı̄(x̄, c̄0 [̄ı[0]], . . . , c̄n−1 [̄ı[n− 1]]);

(3) {c̄i | i < n} is a (finite) Morley sequence over Ab̄;

(4) b̄^
A
{c̄i | i < n};

(5) every subsequence of {c̄i | i < n} with n−1 members has the same Lascar strong

type over Ab̄.

Proof of Claim 2.5.5. By Lemma 2.5.2, we obtain ā′n such that the system of types p̄ı̄

can be amalgamated over ā0, . . . , ān−1, ā
′
n. So take the amalgam b̄ ^

A
ā0, . . . , ān−1, ā

′
n.

Let c̄0 := ā0 . . . , ān−1, ā
′
n; we use c̄0[i] to refer to āi. Since b̄ ^

A
c̄0 and the compo-

nents of c̄0 are independent, by exchange we have

c̄0[n] ^
A

b̄c̄0[0] . . . c̄0[n− 1].

Therefore there is a Morley sequence In in tp(c̄0[n]/Ab̄c̄0[0] . . . c̄0[n − 1]) such that

In ^
A

b̄c̄0[0] . . . c̄0[n− 1]. By exchange, we will also have b̄ ^
A

c̄0[0] . . . c̄0[n− 1]In.

Proceed by induction to construct sequences In−k, k = 0, . . . , n such that

(1) In−k is a Morley sequence in

tp(c̄0[n− k]/Ab̄c̄0[0] . . . c̄0[n− k − 1]In−k+1 . . . In);
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(2) In−k ^
A

b̄c̄0[0] . . . c̄0[n− k − 1]In−k+1 . . . In;

(3) b̄^
A

c̄0[0] . . . c̄0[n− k − 1]In−k . . . In.

Let c̄i[j] be the ith member of the sequence Ij. Let c̄i := c̄i[0] . . . c̄i[n]. It is routine

to check that {c̄i | i < ω} is an independent sequence over Ab̄. (Unfortunately, it

does not have to be indiscernible, so we have to work.)

By indiscernibility of the sequences Ij, for all i0 < · · · < in−1 and every ı̄ ∈ [n+1]n

we have

tp(c̄i0 [̄ı[0]], . . . , c̄in−1 [̄ı[n− 1]]/Ab̄) = tp(c̄0[0], . . . , c̄n−1[n− 1]/Ab̄),

so

b̄ |=
⋃

ı̄∈[n+1]n

pı̄(x̄, c̄i0 [̄ı[0]], . . . , c̄in−1 [̄ı[n− 1]])

for all i0 < · · · < in−1 < ω.

To sum up, we have a independent over Ab̄ sequence I := {c̄i | i < ω} such that

b̄ |=
⋃

ı̄∈[n+1]n

pı̄(x̄, c̄i0 [̄ı[0]], . . . , c̄in−1 [̄ı[n− 1]])

for all i0 < · · · < in−1 < ω. By Ramsey’s and compactness theorems, we may assume

that I is indiscernible over Ab̄. The first n terms of the sequence are as needed. a

Our approach to building the sequence {c̄i | i < n + 1} is this:

r r r r

r r r r

r r r r

r r r r

ā0

ā1

ā2

ā3

c̄0

c̄1

c̄2

. . .

position the elements āi, i < n+1

diagonally in the sequence c̄i, i <

n + 1; where the first n elements

of sequence c̄i are “good” in the

sense of Claim 2.5.5. Claim 2.5.5

provides the first n elements of

the sequence c̄i. The purpose of

the construction below is to give

the element c̄n.
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By construction of the sequence {c̄i | i < n}, the diagonal elements {c̄i[i] | i < n}
realize the same type over A as {āi | i < n}. So we may assume that the diagonal

elements are the āi’s.

Let q(x̄, ā0, . . . , ān−1) be the type of ān over Aā0, . . . , ān−1. Let

t〈0,...,n−2〉(x̄, c̄0, . . . , c̄n−2) := tp(c̄n−1[n]/Ac̄0, . . . , c̄n−2)

and for ı̄ ∈ [n]n−1 let tı̄(x̄, c̄ı̄) be the corresponding translate of t〈0,...,n−2〉. (We use t

because pı̄ is reserved for the system of types we want to amalgamate.) By the conclu-

sions of Lemma 2.5.2, the types q and tı̄ are a coherent independent system of types. It

is clear that the types extend the same Lascar strong type over A. Thus we can apply

Lemma 2.5.3, taking the “off-diagonal” members of c̄i as b̄i there. By Lemma 2.5.3,

there is a common non-forking realization of the types pı̄ and q, so there is an ele-

ment c̄n[n] such that tp(c̄n[n]/Aā0, . . . , ān−1) = tp(ān/Aā0, . . . , ān−1), and there are

strong automorphisms fı̄, ı̄ ∈ [n]n−1, over A such that fı̄ : c̄0, . . . , c̄n−2c̄n−1[n] 7→
c̄ı̄[0], . . . , c̄ı̄[n−2]c̄n[n]. For ı̄ ∈ [n]n−1, let

qı̄(ȳ, c̄ı̄, c̄n[n]) := fı̄(tp(c̄n−1[0] . . . c̄n−1[n− 1]/Ac̄0, . . . , c̄n−2c̄n−1[n]).

This is an independent system of Lascar strong types over Ac̄n[n], its amalgam gives

the first n members of the tuple c̄n.

To sum up, we have an independent sequence {c̄i | i < n + 1} such that each

n-element subsequence realizes the same Lascar strong type over A. The diagonal

elements in {c̄i | i < n + 1} realize the type of ā0, . . . , ān over A. Also, there is an

element b̄^
A

c̄0 . . . c̄n−1 such that

b̄ |=
⋃

ı̄∈[n+1]n

pı̄(x̄, c̄0 [̄ı[0]], . . . , c̄n−1 [̄ı[n− 1]])

and {c̄i | i < n} are indiscernible over Ab̄. Let r(x̄, c̄0, . . . , c̄n−1) := tp(b̄/Ac̄0 . . . c̄n−1).

Let I be a Morley sequence that extends {c̄i | i < n + 1}. By Lemma 2.3.4, and

the corollary after it, there is an independent realization b̄∗ of

⋃

ı̄∈[n+1]n

r(x̄, c̄ı̄).
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Then

b̄∗ |=
⋃

ı̄∈[n+1]n

pı̄(x̄, c̄ı̄[0] [̄ı[0]], . . . , c̄ı̄[n−1] [̄ı[n− 1]]),

this gives the needed amalgam. a

Remark 2.5.6. The equivalence (2) ⇐⇒ (3) and the implication (1) ⇒ (2) in

Theorem 2.5.4 hold “level-by-level.” However, we did use the strong n-amalgamation

property in the proof of (2) ⇒ (1). It is not clear if (2) ⇒ (1) would also hold without

the strong n-amalgamation.

2.6 Strong (n+1)-amalgamation in strongly n-simple

theories

In the previous section we saw that in strongly n-simple theories strong (n + 1)-

dimensional amalgamation property boils down to extending the (n + 1)-element

Morley sequences to infinite ones. In this section, we prove this property for strongly

n-simple theories for all n ≥ 2 under an additional assumption.

For strongly 2-simple theories, we prove the strong 3-dimensional amalgamation

without any extra assumptions.

Definition 2.6.1. Let {āi | i < n} be a sequence of tuples. We say that

Ln(ā0, . . . , ān−1/A) holds if there is an element ā∗ ^
A
{āi | i < n} such that all the

n-subsequences of {ā0, ā
∗, ā1, . . . , ān−1} that contain ā∗ realize the same type over A

and the sequence {ā∗, ā1, . . . , ān−1} can be extended to an infinite Morley sequence

over A.

To visualize the property given in the above definition for n = 3, picture the

elements {ā0, ā1, ā2} as the base of a tetrahedron. The property L3 would hold if

there is an element ā∗ (top of the tetrahedron) such that the side faces are contained

in infinite Morley sequences. In particular, L3 would hold if the three elements already

belong to a Morley sequence over A.
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For simple theories, the property L2 over A is simply the equality of Lascar strong

types over A. Our goal is to find a suitable n-ary generalization. The extra assump-

tion (Assumption Ln below) that we are making in the proof of n + 1-dimensional

amalgamation property essentially states that the property Ln is determined by the

equality of certain Lascar strong types.

Assumption 2.6.2. Let {āi | i < n} be a finite Morley sequence over A.

Ln is the following assumption:

For any such sequence, if all increasing (n−1)-element subsequences realize

the same Lascar strong type over A, then Ln(ā0, . . . , ān−1/A) holds.

Clearly, if {ā0, . . . , ān−1} belong to an infinite Morley sequence over A, then

Ln(ā0, . . . , ān−1/A) holds. So certainly Ln follows from strong n-dimensional amalga-

mation. However, it is not clear if it follows from strong n-simplicity for n > 2.

Intuitively, the type of an n-sequence that can be extended to an infinite indis-

cernible sequence is “good.” So the assumption Ln says that even if {ā0, ā1, . . . , ān−1}
is “bad,” there exists an n-dimensional tetrahedron with the bad base and upper ver-

tex ā∗ all the sides of which are good.

Theorem 2.6.3. Let n ≥ 2, let T be strongly n-simple and let the properties Lk+1,

2 ≤ k ≤ n hold. Suppose that {āi | i < n + 1} is a Morley sequence over A such that

every n-subsequence realizes the same Lascar strong type over A. Then the sequence

can be extended by one more element. Namely, there is an element āk+1 such that

āk+1 ^
A
{āi | i < k + 1} and tp(āı̄/A) = tp(ā̄/A) for ı̄, ̄ ∈ [k + 2]k+1.

Proof. Suppose for contradiction that there is a Morley sequence {āi | i < n+1} over

A such that every n-subsequence realizes the same Lascar strong type over A; and

that this sequence cannot be extended by one more element. By the property Ln+1,

there is an element ā∗ such that all the (n + 1)-subsequences of {ā0, ā
∗, ā1, . . . , ān}

that contain ā∗ realize the same type over A and the sequence {ā∗, ā1, . . . , ān} can be

extended to an infinite Morley sequence over A. Let

qb(x̄0, . . . , x̄n) := tp(ā0, . . . , ān/A) and qg(x̄0, . . . , x̄n) := tp(ā∗, ā1, . . . , ān/A),
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we think of them as of bad and good types respectively.

Let I be an infinite Morley sequence over A that extends {ā∗, ā1, . . . , ān}. Since

{ā1, . . . , ān} are indiscernible over Aā0ā
∗ and ā1, . . . , ān ^

A
ā0ā

∗, by Lemma 2.3.4 we

may assume that {ā1 . . . , āk, . . . } is indiscernible over Aā0ā
∗. In particular, we have

that for all i1 < · · · < in we have ā0āi1 . . . āin |= qb and ā0ā
∗āi1 . . . āin−1 |= qg.

Let fi ∈ AutA(C), i = 1, . . . , be such that fi : ā∗, ā1, . . . 7→ āi, āi+1, . . . . By invari-

ance, fi(ā0) ^
A

āi, āi+1, . . . and by extension we may assume that fi(ā0) ^
A

I{fj(ā0) |
j < i}

Let c̄0 := ā0ā
∗, c̄i := fi(ā0)āi. Then the sequence {c̄i | i < ω} is independent over

A and for all i0 < · · · < in we have

c̄i0 [0]c̄i1 [1] . . . c̄in [1] |= qb and c̄i0 [0]c̄i0 [1]c̄i1 [1] . . . c̄in−1 [1] |= qg.

So by Ramsey’s theorem and the compactness theorem we may assume that the

sequence {c̄i | i < ω} is a Morley sequence over A satisfying the above property.

Our next step is to show that the types {qb(x̄, b̄ı̄) | ı̄ ∈ [n + 1]n} can be amal-

gamated over any {b̄0, . . . , b̄n} that realize the type qg over A. Indeed, take b̄∗ |=
qb(x̄, b̄0, . . . , b̄n−1). By the definition of qb, b∗ ^

A
b̄0, . . . , b̄n−1, the sequence {b̄0, . . . , b̄n−1}

is indiscernible over Ab̄∗, and by definition of qg, there is an infinite Morley se-

quence over A that extends {b̄0, . . . , b̄n}. By Corollary 2.3.5, there is an independent

b̄′ |= ⋃
ı̄∈[n+1]n qb(x̄, b̄ı̄). This is what we need.

Since c̄0[0]c̄0[1]c̄1[1] . . . c̄n−1[1] |= qg, there is an independent realization b̄ of the

system of bad types over c̄0[0]c̄0[1]c̄1[1] . . . c̄n−1[1].

Let q∗(x̄, c̄0[0], c̄0[1], c̄1[1], . . . , c̄n−1[1]) be the type of b̄ over the set

Ac̄0[0]c̄0[1]c̄1[1] . . . c̄n−1[1], let t(x̄, c̄0, . . . , c̄n−2) be the type of b̄ over Ac̄0 . . . c̄n−2, and

for ı̄ ∈ [n− 1]n−2 let t(x̄, c̄ı̄) be the translate of t over A.

The types t(x̄, c̄ı̄), ı̄ ∈ [n]n−1, and q∗(x̄, c̄0, . . . , c̄n−1) form a coherent system,

so we can apply Lemma 2.5.3 (using the n-dimensional amalgamation property).

By Lemma 2.5.3, there is b̄∗ an independent realization of the type q∗ such that

{c̄i | i < n} are indiscernible over Ab̄∗. By Corollary 2.3.5, there is an independent
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realization of the union ⋃

ı̄∈[n+1]n

q∗(x̄, c̄ı̄).

In particular, we get an independent b̄ such that
⋃

ı̄∈[n+1]n qb(x̄, āı̄). Thus, we have

an extension of the finite Morley sequence by one more element. a

From Theorem 2.6.3 and Theorem 2.5.4 we get:

Corollary 2.6.4. Let n ≥ 2, let T be strongly n-simple and let the properties Lk+1,

2 ≤ k ≤ n hold. Then T has the strong (k + 1)-dimensional amalgamation property

for all 1 ≤ k ≤ n.

Now we get the strong 3-dimensional amalgamation property without the extra

assumption.

Theorem 2.6.5. Let T be strongly 2-simple. Given {āi | i < 3}, suppose that

{pı̄(x̄, āı̄) | ı̄ ∈ [3]2} form an independent 3-dimensional system of Lascar strong

types over A. Then the union
⋃{pı̄(x̄, āı̄) | ı̄ ∈ [3]2} is consistent.

Proof. We describe the initial construction for any n ≥ 2, and only at the end of the

proof we use the assumption n = 2 in an essential way.

Claim 2.6.6. Let lk := `(āk), l∗ :=
∑

k<n lk. There is a Morley sequence {c̄i | i < ω}
over A such that

(1) for all i, c̄i = c̄i[0] . . . c̄i[n] and `(ci[k]) = lk for all k < n + 1;

(2) c̄i[i] = āi for i < n + 1 (i.e., āi’s are positioned diagonally in the first n + 1

elements of the sequence c̄i).

Proof. The construction is similar to the one in Claim 2.5.5. a

Our goal is to realize the types pı̄ over the n+1 diagonal elements of the sequence

c̄i with the aid of non-n-dividing. So first we need to “project” this system of types

onto the first n elements of the sequence. By the projected system of types we mean
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{pı̄(x̄, c̄0 [̄ı[0]], . . . , c̄n−1 [̄ı[n− 1]]) | ı̄ ∈ [n + 1]n}. (Compare this to the construction in

the proof of (2) ⇒ (1) in Theorem 2.5.4.)

The reason we are interested in such a system is that finding a solution to it

guarantees (with n-simplicity) a solution to the original system of types:

Claim 2.6.7. Suppose that d̄ is a non-forking realization of the system of projected

system of types such that c̄0, . . . , c̄n−1 are indiscernible over Ad̄. Then there is a d̄′

that realizes the original system of types {pı̄(x̄, āı̄) | ı̄ ∈ [n + 1]n}.

Proof. By n-simplicity, the type of d̄ over Ac̄0 . . . c̄n−1 (denote it by q(x̄, c̄0, . . . , c̄n−1))

does not n-divide over A. So in particular the type
⋃

ı̄∈[n+1]n q(x̄, c̄ı̄) is consistent. By

construction of q it is clear that q(x̄, c̄ı̄) ` pı̄(x̄, āı̄), so there is d̄′ |= ⋃
ı̄∈[n+1]n pı̄(x̄, āı̄).

a

So it remains to show that the projected system of types does have a solution as

required by the Claim 2.6.7. Amalgamating the projected system of types itself is

easy for any n. It is the extra indiscernibility requirement that makes things difficult.

For the remainder of the proof n = 2, we have a Morley sequence {c̄i | i < ω} over

A such that c̄i[i] = āi for i < 3. The projected system of types in this case is

p01(x̄, c̄0[0], c̄1[1]), p02(x̄, c̄0[0], c̄1[2]), p12(x̄, c̄0[1], c̄1[2]).

By 2-amalgamation and 2-simplicity (in particular using Corollary 2.3.6) we can find

the independent amalgam of the types p01(x̄, c̄0[0], c̄1[1]) and p02(x̄, c̄0[0], c̄1[2]) over

Ac̄0[0] and then the independent amalgam of p01(x̄, c̄0[0], c̄1[1])∪p02(x̄, c̄0[0], c̄1[2]) with

p12(x̄, c̄0[1], c̄1[2]) over Ac̄1[2]. Let

d̄0 |=
⋃

ı̄∈[3]2

pı̄(x̄, c̄0 [̄ı[0]], c̄1 [̄ı[1]]).

Let q1(x̄, c̄0[0], c̄0[1]) be the type of d̄0 over Ac̄0[0], c̄0[1]; let q2(x̄, c̄0[1], c̄0[2]) be the

translate of the type of d̄0 over Ac̄1[1], c̄1[2] to Ac̄0[1], c̄0[2] over A. By construction

of d̄0 and the definition of the independent system of types, the types q1 and q2 agree
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over Ac̄0[1]. So there is q(x̄, c̄0), an independent amalgam of q1(x̄, c̄0[0], c̄0[1]) and

q2(x̄, c̄0[1], c̄0[2]) over Ac̄0[1]. Finally, let

d̄ |= tp(d̄0/A{c̄0[0], c̄0[1], c̄1[1], c̄1[2]}) ∪ q(x̄, c̄0) ∪ q(x̄, c̄1).

It is clear that d̄ is as needed. a

Corollary 2.6.8. Let T be a strongly 2-simple theory. Then

(1) T has (strong) 3-dimensional amalgamation property for Lascar strong types;

(2) In the monster model of T , every 3-element Morley sequence over A such that

every 2-subsequence realizes the same Lascar strong type over A can be extended to

an infinite Morley sequence;

(3) T has the property L3.

Question 2.6.9. Does strong n-simplicity imply the strong (n+1)-dimensional amal-

gamation property? Alternatively, does the property Ln+1 hold for strongly n-simple

theories?



Chapter 3

n-simplicity

Introduction

The purpose of this introduction is to describe why a better definitions of n-simplicity

(and of n-dimensional amalgamation) are needed. Let me start with two examples

where 3-dimensional amalgamation property, as defined in the previous chapter, fails.

An example of a smoothly approximable SU -rank 1 structure in which a certain

triple of types cannot be amalgamated was known in the nineties to Bradd Hart,

Ambar Chowdhury, Byunghan Kim and others. I would like to thank Bradd Hart for

communicating it; however, any mistakes in its presentation are mine.

Example 1. Let V be an infinite vector space over a finite field equipped with a

non-degenerate symplectic bilinear form 〈·, ·〉. Let A be the affine part: namely, let

A be a set on which V acts regularly and transitively.

Let c0, c1, c2 ∈ A be distinct and such that 〈c2− c0, c1− c0〉 = 0. The claim is that

the following system of types is inconsistent:

p01(x) := {〈x, c1 − c0〉 = 1}, p02(x) := {〈x, c2 − c0〉 = 1},
p12(x) := {〈x, c2 − c1〉 = 1}.

Indeed, whenever x satisfies both 〈x, c1 − c0〉 = 1 and 〈x, c2 − c0〉 = 1 by bilinearity

we get 〈x, c2 − c1〉 = 0, contradicting p12(x).

85
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The system of types is clearly coherent, and the required independence conditions

hold. What happens in this example is: every vector v ∈ V defines a finite equivalence

relation on A: Ev(x, y) ⇐⇒ 〈v, x− y〉 = 0. If the field has two elements, the system

of types says precisely that c0 is not x-equivalent to c1, c1 is not x-equivalent to c2,

and c2 not x-equivalent to c0. But there are only 2 x-equivalence classes!

It can be easily seen that the complete first order theory describing this structure is

not strongly 2-simple. Indeed, we have if v ∈ V , and a, b ∈ A such that 〈v, a− b〉 6= 0,

then from lstp(av) = lstp(bv) it does not follow that lstp(a/v) = lstp(b/v) (and this

cannot happen under strong 2-simplicity).

The strange part about this example is that the 3-amalgamation does not hold

for Lascar strong types, but does over models: in fact, if one takes the base of

amalgamation to be a model, then there is an A-point in the base. Therefore, when

one allows elements of A as parameters, the entire structure will look like two copies

of the vector space V .

The idea for the following example was given by Frank Wagner:

Example 2. Let M be a random graph with the edge relation R. Consider

a0, a1 ∈ M and b = {c, d} ∈ M eq such that

R(a0, c) ∧ ¬R(a0, d) ∧R(a1, d) ∧ ¬R(a1, c).

Let p(x, a0, a1) := tp(b/a0a1). Let a2 be another point in M , and consider the

system {p(x, a0, a1), p(x, a1, a2), p(x, a0, a2)}. The types in the system are pairwise

consistent (the type will say that ai, aj are related to exactly one element of the pair

x and that element is different for ai and aj), and all the needed independence holds.

But again the union is inconsistent, since modulo p we have an x-equivalence relation

with two classes, and the 3-system says that there are 3 distinct equivalence classes.

Therefore, for the theory of random graph Trg, the theory T eq
rg does not have

3-amalgamation in the sense of last chapter.

It also can easily be seen that T eq
rg is not strongly 2-simple (but the “home sort”

is strongly ω-simple).
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In this chapter, we develop a definition of n-simplicity under which T eq
rg remains

ω-simple. In fact, we develop the notion of n-simplicity in Cheq. We also present an

appropriate definition of n-dimensional amalgamation.

3.1 Preliminary definitions

Let T be a simple complete first order theory. In this Chapter, we work in the

structure Cheq. The construction and properties of Cheq are fully described in [33].

We recall some of the key definitions here.

Definition 3.1.1. (1) If x̄ and ȳ are tuples of length α ∈ On, we say that an

equivalence relation E(x̄, ȳ) on Cα is type-definable over A if there is a partial

type p(x̄, ȳ) over A such that E(x̄, ȳ) ⇐⇒ C |= p(x̄, ȳ).

(2) A type-definable equivalence relation E is called countable if both α and the

partial type p defining E are countable.

(3) Let E(x̄, ȳ) be a type-definable equivalence relation on Cα. If ā ∈ Cα, we denote

the equivalence class of ā modulo E by āE. The equivalence class āE is called

a hyperimaginary element of type E.

(4) A hyperimaginary āE is countable if the type definable-equivalence relation E

is countable.

The structure Cheq is the model C with the collection of all countable hyperimag-

inaries modulo type-definable equivalence relations over ∅. Just as with Ceq, it is

easy to see that Cheq contains all the countable hyperimaginaries over A ⊂ C. It is

shown in [33] that any type-definable equivalence relation can be described in terms

of countable ones. So it is enough to consider only countable hyperimaginaries.

We now describe the closure operators on Cheq.

Definition 3.1.2. (1) The hyperimaginary definable closure of A, dcl(A), is the

collection of all countable hyperimaginaries fixed under all automorphisms in

AutA(C).
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(2) The hyperimaginary algebraic closure of A, acl(A), is the collection of all count-

able hyperimaginaries that have finitely many images under automorphisms in

AutA(C).

(3) The hyperimaginary bounded closure of A, bdd(A), is the collection of all count-

able hyperimaginaries that have boundedly many (i.e., less than |C | many)

images under all automorphisms in AutA(C).

Fact 3.1.3 ([33]). For every A, A ⊆ dcl(A) ⊆ acl(A) ⊆ bdd(A).

Another important fact involves characterization of Lascar strong types over A in

terms of types over the bounded closure of A.

Fact 3.1.4 ([33]). For every A, ā, b̄, lstp(ā/A) = lstp(b̄/A) if and only if

tp(ā/ bdd(A)) = tp(b̄/ bdd(A)).

We finish by presenting several facts that are probably well-known, but for which

we have not found a convenient reference.

Proposition 3.1.5. Let T be simple, work in Cheq.

(1) If ā^
A

b̄, then bdd(Aā) ^
A

bdd(Ab̄).

(2) If I = {āi | i < ω} is a Morley sequence over A, then there is a Morley

sequence I ′ = {ā′i | i < ω} with tp(I/A) = tp(I ′/A) such that the sequence

{bdd(Aı̄) | i < ω} is a Morley sequence over A.

(3) Even stronger: If I = {āi | i < ω} is a Morley sequence over A, then there is

a Morley sequence I ′ = {ā′i | i < ω} with tp(I/A) = tp(I ′/A) such that for any

n < ω and i0 < · · · < in−1 < ω the type tp(bdd(Aāi0 . . . āin−1)) is fixed.

(4) Suppose ā^
c̄

b̄. Then bdd(āc̄) ∩ bdd(b̄c̄) = bdd(c̄).

Proof. (1) By symmetry, it is enough to prove that ā ^
A

bdd(Ab̄). By transitivity, we

just need to prove ā^
Ab̄

bdd(Ab̄). But this is obvious, since for any c̄ ∈ bdd(Ab̄) there

is no infinite Ab̄-indiscernible sequence starting with c̄.
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(2) By (1), the sequence {bdd(Aāi) | i < ω} is A-independent. Extending I to

a long indiscernible sequence with the same type diagram over A, we apply Mor-

ley’s method to find a sequence such that bdd(Aāi) are both A-independent and

A-indiscernible.

(3) Essentially the same argument as in (2): we use Morley’s method, but control

not only tp(bdd(Aāi0) . . . bdd(Aāin−1)), but the type of the entire bdd(Aāi0 . . . āin−1).

(4) By (1), we get bdd(āc̄) ^
bdd(c̄)

bdd(b̄c̄). This implies the statement.

a

3.2 n-simplicity and n + 1-dimensional amalgama-

tion

We define n-simplicity by a property similar to the one in Section 2.3. The difference

is that the “indiscernibility” assumptions are more restrictive. We are working in the

structure Cheq, where C |= T .

Definition 3.2.1. Given n ≥ 1, we say that the theory T is n-simple if for any 1 ≤
k ≤ n, Morley sequence I = {ai | i < ω} over A, and a partial type p(x̄, ā0, . . . , āk−1),

with parameters from bdd(Aā0 . . . āk−1), such that

(1) there is b̄ |= p such that b̄ = bdd(Ab̄);

(2) for all ı̄, ̄ ∈ [k]k−1 we have tp(bdd(Aāı̄)/b̄) = tp(bdd(Aā̄)/b̄);

(3) b̄^
A

ā0 . . . āk−1

we have the union ⋃

ı̄∈[ω]k

p(x̄, āı̄)

is consistent.
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Lemma 3.2.2. Let I = {ai | i < ω} be a Morley sequence over A and p(x̄, ā0, . . . , āk−1)

be such that the union ⋃

ı̄∈[ω]k

p(x̄, āı̄)

is consistent. Then the union does not fork over A.

Proof. Suppose the union does fork over A. By finite character, there is N < ω such

that ⋃

ı̄∈[N ]k

p(x̄, āı̄)

forks over A. Define the sequence c̄m := āmN . . . āmN+N−1 of “N -blocks” from the

sequence I. It has to be a Morley sequence over A, and

q(x̄, c̄0) :=
⋃

ı̄∈[N ]k

p(x̄, āı̄)

forks over A by our assumption. On the other hand,

⋃

ı̄∈[ω]k

p(x̄, āı̄) `
⋃

m<ω

⋃

ı̄∈[mN,mN+N−1]k

p(x̄, āı̄) =
⋃

m<ω

q(x̄, c̄m).

so the union
⋃

m<ω q(x̄, c̄m) is consistent. Contradiction by Kim’s characterization of

forking and dividing. a

Similar to Section 2.3, Lemma 2.3.4, by Ramsey’s theorem and compactness we

obtain

Lemma 3.2.3. Let T be n-simple. Let I := {āi | i < ω} be a Morley sequence over

A and b̄ ^
A

ā0 . . . ān−1. Suppose that b̄ = bdd(Ab̄) and for every ı̄ ∈ [n]n−1 the type

tp(bdd(Aāı̄)/b̄) is fixed;

Then (1) there is a sequence I ′ containing ā0, . . . , ān−1 that is indiscernible over

Ab̄.

(2) there is b̄′ |= tp(b̄/ bdd(Aā0, . . . , ān−1)) such that I is Ab̄′-indiscernible.
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Remark 3.2.4. Examples 1 and 2 in the introduction to this Chapter show why

assumption (1) in the definition of n-simplicity is necessary. In view of Lemma 3.2.3,

Proposition 3.1.5(3) shows that the strong indiscernibility assumption (2) above is

necessary as well.

Now we deal with the definition of generalized amalgamation properties. Our

approach here is more direct than in Chapter 2 in that we explicitly specify the

domains of types involved.

Definition 3.2.5. Fix n < ω. Let ā0, . . . , ān−1 be independent over A (not necessarily

having the same type). A system of types {pı̄(x̄) | ı̄ ∈ [n]n−1} is called a strong n-

dimensional independent system of types over A if

(1) dom(pı̄) = Aāı̄;

(2) there are b̄ı̄ |= pı̄(x̄) such that b̄ı̄ = bdd(Ab̄ı̄); b̄ı̄ ^
A

āı̄; and tp(b̄ı̄/ bdd(āı̄∩̄A)) =

tp(b̄̄/ bdd(āı̄∩̄A)) for all ı̄, ̄ ∈ [n]n−1.

Definition 3.2.6. We say that a strong n-dimensional independent system of types

over A can be independently amalgamated if there is b̄∗ |= ⋃
ı̄∈[n]n−1 tp(b̄ı̄/ bdd(Aāı̄))

such that b̄∗ ^
A

ā0, . . . , ān−1.

As in the strong simplicity case, we obtain

Proposition 3.2.7. Fix n ≥ 2 and N ≥ n. Let {pı̄(x̄) | ı̄ ∈ [N ]n−1} be an indepen-

dent system of Lascar strong types over A. Suppose T has the strong n-dimensional

amalgamation property for Lascar strong types. Then the system {pı̄(x̄) | ı̄ ∈ [N ]n−1}
can be independently amalgamated.

Proof. The base N = n is given by the strong n-dimensional amalgamation property.

Suppose the statement is true for some N ≥ n, and fix an independent system

{pı̄(x̄) | ı̄ ∈ [N + 1]n−1}. Consider the following n types:
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– for every s ⊂ {N − (n− 2), . . . , N} of size n− 2, we take the amalgam qs(x̄) of

{pı̄(x̄) | ı̄ ∈ [{0, . . . , N − (n− 1)}︸ ︷︷ ︸
N−n+2 elements

∪s]n−1}.

It exists by the induction hypothesis.

– the type p{N−(n−2),...,N}(x̄).

It is easy to see that these n types form a strong n-dimensional independent

system over A, so there is an independent amalgam q(x̄). It remains to observe q is

a non-forking extension of each pı̄, ı̄ ∈ [N + 1]n−1. a

A more refined definition of n-simplicity allows us to bridge the gap between

(n + 1)-dimensional amalgamation and n-simplicity at least in one direction:

Theorem 3.2.8. Suppose T is simple and has k-dimensional amalgamation proper-

ties for all 2 ≤ k ≤ n + 1. Then T is n-simple.

Proof. Using induction, it suffices to prove that if T has (n + 1)-dimensional amal-

gamation property, then for any A, Morley sequence I = {ai | i < ω} over A, and a

partial type p(x̄, ā0, . . . , āk−1), with parameters from bdd(Aā0 . . . āk−1), such that

(1) there is b̄ |= p such that b̄ = bdd(Ab̄);

(2) for every ı̄ ∈ [k]k−1 we have tp(bdd(Aāı̄)/b̄) is fixed;

(3) b̄^
A

ā0 . . . āk−1

we have the union ⋃

ı̄∈[ω]k

p(x̄, āı̄)

is consistent.

By compactness it is enough to prove that for every N < ω the type q(x̄) :=
⋃

ı̄∈[N ]n p(x̄, āı̄) is consistent. For every ı̄ ∈ [N ]n pick fı̄ ∈ SautA(C) such that

f(bdd(Aā0 . . . ān−1)) = bdd(Aāı̄). Consider the family of types {fı̄(p) | ı̄ ∈ [N ]n}.
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To apply Proposition 3.2.7, we need to show that this is a strong independent

system over A. Independence of the system is clear.

Let b̄ı̄ := fı̄(b̄). It is enough to show that for ı̄, ̄ ∈ [n+1]n we have tp(b̄ı̄/ bdd(A(āı̄∩
ā̄))) = tp(b̄̄/ bdd(A(āı̄ ∩ ā̄))). But this is easy since tp(bdd(Aāı̄)/b̄) is fixed.

By Proposition 3.2.7, there is a common non-forking extension q of all these types.

a

3.3 Examples

In this section we show that the theories Tk, k ≥ 3, that were presented as examples

of theories in the “levels” of strong n-simplicity are also examples of the theories in

the “levels” of n-simplicity.

We recall the key properties of these theories:

For all k ≥ 3:

(1) Tk is ℵ0-categorical; so for every 1 ≤ n < ω there are finitely many types in n

variables over the empty set and every such type is isolated by a basic formula.

(2) In Tk dividing is trivial, i.e., the only formulas that witness dividing are finite

disjunctions of equalities. In particular for A,B ⊃ C we have A ^
C

B if and only if

A ∩B ⊂ C.

(3) For every set A in the home sort, dcl(A) is algebraically (and boundedly)

closed.

For our purposes, (1) and (2) imply that Tk has elimination of hyperimaginaries (as

any type-definable equivalence relation in finitely many variables has to be definable).

(2) and (3) imply weak elimination of imaginaries. Namely, for any āE we have

ā ∈ acl(āE).

Proposition 3.3.1. Suppose that T is such that for any hyperimaginary āE there

is a real tuple ā′ such that bdd(āE) = bdd(ā′) and for all ā, b̄ we have bdd(āb̄) =

bdd(ā) ∪ bdd(b̄). If T is strongly n-simple, then T is n-simple.

Remark 3.3.2. These assumptions on T would hold if T has elimination of hyper-

imaginaries and weak elimination of imaginaries. The theories Trg and Tk, k ≥ 3,



94

satisfy these assumptions.

Proof. The indiscernibility requirement in n-simplicity is clearly stronger for the

“home sort” than the corresponding requirement for strong n-simplicity. The main

issue is to establish consistency of the union

⋃

ı̄∈[ω]k

p(x̄, āı̄)

when āi and x̄ can be (hyper)imaginary elements.

Suppose not. Take b̄ such that b̄ ^
A

ā0 . . . āk−1, and the indiscernibility assumptions

hold. Passing to the real tuples, we get an A-indiscernible sequence {ā′i | i < ω}, and

the strong indiscernibility assumptions guarantee that Ind(b̄′; Aā′0, . . . , Aā′n−1) holds.

By strong n-simplicity, we get the union

⋃

ı̄∈[ω]k

p(x̄, ā′ı̄)

is consistent, hence so is the union

⋃

ı̄∈[ω]k

p(x̄, bdd(ā′ı̄)).

This finishes the proof. a

So the theories Tk, k ≥ 3, are examples of (k − 2)-simple, not (k − 1)-simple

theories. The (k− 2)-simplicity part follows from the above proposition. It is easy to

see that the examples are not (k − 1)-simple. Indeed, fix k ≥ 3 and let {ai | i < ω}
be an indiscernible sequence of (real) elements such that |= R(ā0, . . . , āk−1). Let

p(x, a0 . . . , ak−2) := (a0, . . . , ak−2) S x.

Since every set in the home sort is boundedly closed, the strong indiscernibility as-

sumptions hold. However, the union

⋃

ı̄∈[ω]k−1

p(x̄, āı̄)
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is inconsistent by the structure of Tk.

Thus, it follows that Trg is ω-simple. Another example of an ω-simple theory is

ACFA. By [8] (see also [16]) ACFA has n-dimensional amalgamation for all 2 ≤ n < ω.

By Theorem 3.2.8, it follows that ACFA is ω-simple.

3.4 2-simple theories have 3-dimensional amalga-

mation

In this section, we present a proof of 3-dimensional amalgamation for strong systems

of types under 2-simplicity. The main idea is very similar to the strongly 2-simple

case, but we need to be more careful because of extra indiscernibility restrictions.

Generally, we expect that most facts true for strong n-simplicity will have appropriate

counterparts in the n-simplicity context.

Theorem 3.4.1. Let T be 2-simple. Given {āi | i < 3}, suppose that {pı̄(x̄, āı̄) | ı̄ ∈
[3]2} form a strong independent 3-dimensional system over A. Then the system can

be amalgamated.

Proof. Using the construction from Chapter 2, we get a Morley sequence {c̄i | i < ω}
over A such that c̄i[i] = āi for i < 3. The projected system of types in this case is

p01(x̄, c̄0[0], c̄1[1]), p02(x̄, c̄0[0], c̄1[2]), p12(x̄, c̄0[1], c̄1[2]).

Here, we use p(x̄, c̄0[0], c̄1[1]) to denote the complete type over bdd(Ac̄0[0]c̄1[1]).

By 2-amalgamation we can find the independent amalgam of the types

p01(x̄, c̄0[0], c̄1[1]) and p02(x̄, c̄0[0], c̄1[2])

over bdd(Ac̄0[0]) and then the independent amalgam of

p01(x̄, c̄0[0], c̄1[1]) ∪ p02(x̄, c̄0[0], c̄1[2]) and p12(x̄, c̄0[1], c̄1[2])

over bdd(Ac̄1[2]). Let

d̄0 |=
⋃

ı̄∈[3]2

pı̄(x̄, c̄0 [̄ı[0]], c̄1 [̄ı[1]]).
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Let q1(x̄, c̄0[0], c̄0[1]) be the type of d̄0 over bdd(Ac̄0[0], c̄0[1]); let q2(x̄, c̄0[1], c̄0[2]) be

the translate of the type of d̄0 over bdd(Ac̄1[1], c̄1[2]) to bdd(Ac̄0[1], c̄0[2]) over A.

By construction of d̄0 and the definition of the strong independent system of types,

the types q1 and q2 agree over the intersection: bdd(Ac̄0[1]). So there is q(x̄, c̄0), an

independent amalgam of q1(x̄, c̄0[0], c̄0[1]) and q2(x̄, c̄0[1], c̄0[2]) over Ac̄0[1]. Finally,

let

d̄ |=
⋃

ı̄∈[3]2

pı̄(x̄, c̄0 [̄ı[0]], c̄1 [̄ı[1]]) ∪ q(x̄, c̄0) ∪ q(x̄, c̄1).

It is clear that d̄ is as needed to apply the definition of n-simplicity.

a

3.5 Remarks on 4-dimensional amalgamation

The goal of this section is to illustrate some of the notions that arise in our proof of

n-dimensional amalgamation as well as the difficulties in generalizing the fact from

dimension three to dimension 4.

For the purpose of this illustration, let us work under the assumption of strong

3-simplicity, and consider a nice simple theory T , such that every set is algebraically

closed, and is an amalgamation base.

The dimension of system is 4, and we have the types

pabc(x, abc), pabd(x, abd), pacd(x, acd), pbcd(x, bcd),

where the necessary independence holds, and they extend the same Lascar strong

type over A.

Suppose that the four elements abcd are “bad” in the sense that the diagram

cannot be amalgamated. To get a contradiction, we want to construct a Morley

sequence {f̄i | i < ω} over A such that the two conditions below hold.

(1) the elements a, b, c, and d (or some four elements ab̂ĉd̂ that have the same

type as abcd over A) are on the “diagonal” of the sequence f̄i.
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(2) there is a complete type q(x, f̄0, f̄1, f̄2) that does not fork over A; says that

{f̄0, f̄1, f̄2} are Ax-indiscernible; and such that

q(x, f̄0, f̄1, f̄2) ` pabc(x, a, b, c), q(x, f̄0, f̄1, f̄3) ` pabd(x, a, b, d),

q(x, f̄0, f̄2, f̄3) ` pacd(x, a, c, d), and q(x, f̄1, f̄2, f̄3) ` pbcd(x, b, c, d).

For the second condition to hold, it is clear that q should realize the “reflections”

of the types pabc, pabe, and so on, on the first three entries of the sequence fi. In

Chapter 2, we call the union of these “reflections” the projected system of types.

In the picture below, every triangle represents the type that we want to realize:
. . .

f̄0

f̄2

f̄3

f̄1

a

b

c

d

If the conditions (1) and (2) hold, we can use 3-simplicity to get that

q(x, f̄012) ∪ q(x, f̄013) ∪ q(x, f̄023) ∪ q(x, f̄123)

does not fork, and this union implies the union of the original types. This gives us

the amalgamation of the system, a contradiction.

What is difficult in the construction? Suppose we build a Morley sequence {f̄i |
i < ω}, with the “bad” four elements on the diagonal. Now we want to realize the

projected system of types on the first three entries. This is no problem, in fact, we

don’t even need the 3-dimensional amalgamation for that. Let e∗ be the realization,

and now we want to make sure that {f̄0, f̄1, f̄2} are Ae∗ indiscernible. Let me number

the relevant elements in the first three entries.
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1

2

3

4

5

6

So far we need to realize the types

123, 126, 156, 456.

Since the pairs of fi’s need to have the same type over Ae∗, it must be that the type

of 145 over Ae∗ must be the same as the type of 143 over Ae∗. Same with 436 and

236:

1

2

3

4

5

6

There is no reason why should those types be the same when we simply amal-

gamate the projected system of types, so we need to amalgamate these conditions

in (for 3-dimensional system, this is precisely the approach). In total, we get the

following system of types that needs to be amalgamated:

123, 126, 156, 456, 145, 143, 436, 236.

So now the question is: what is the dimension of this system?

One of the possible definitions of the dimension was given by Shelah, in [31]. In

our case, the definition translates into a simple condition: if there is a four-element

set of indices such that the system lists all its 3-subsets, then the dimension of the

system is 4. A quick look at the system confirms that the dimension is less than 4,

according to this definition.

However, it is not possible to amalgamate the types using just the 3-dimensional

amalgamation property. It is easy to show this graphically. When we put these
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triangles together, they form a closed surface. This means that when we actually

do the 3-dimensional amalgamation, no matter where we start, we will need to do

4-dimensional amalgamation at the last step:

1

2

5

3 4

6

We believe that it is both an interesting and a challenging problem to give the

precise definition of the dimension of the system of types that would work in the

context of n-simplicity.

The situation becomes worse for larger n, since we have to deal with more indis-

cernibility conditions (at least 6 for n = 5, and they involve more elements).
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