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ON CARDINALITIES IN QUOTIENTS OF INVERSE LIMITS OF
GROUPS

SAHARON SHELAH AND RAMI GROSSBERG

ABSTRACT. Let )\ beR, or a strong limit of cofinalityty. Suppose that
(Gy T = m < n < w)and(Hy, : m < n < w)are

ms Tm,n
projective systems of groups of cardinality less thasind suppose that
for everyn < w there is a homorphism : H,, — G, such that all the
diagrams commute.

If for every u < Athere existsf; € G, : 4 < p) such that
P4 = ﬁ;fj‘1 ¢ 0., (H,) then there existf; € G, : i < 2*) such
thati # j — fifjil ¢ Uw(Hw)'

1. INTRODUCTION

The main result of this paper was motivated by our interest in the
structure of the grouyzt, (G, Z) for G abelian torsion free. For basic re-
sults about the structure éfrt(G, Z) the reader is refered to sections 47 and
52 of Laszlo Fuchs book [Fu], however all we need is Definition 1.21 below.
Since Shelah’s proof of the independence of Whitehead’s problentf
(see [Sh 44]) much was done since that paper, for a summary see the intro-
duction to [GrSh] and Chapter XII of Eklof & Mekler’s book is dedicated
([EK]) to the structure ofxt.

In [GrSh] we have dealt with the cardinality &f«t,(G,Z). The
main Theorem of [GrSh] states that for a strong limidf cofinality X, for
every torsion fre€&~ of cardinality A either

|Ext,(G,Z)| < Aor |Ext,(G,Z)| = 2.
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In section 2 of [GrSh] we indicated that the proof of the main theo-
rem can be adapted to give a result concerning cardinalities of inverse sys-
tems of abelian groups subject to certain conditions (See Theorem 1.1 be-
low). We did not include a proof there. Recently we were asked to sup-
ply a complete proof to that theorem. Charles Megibben in a widely circu-
lated preprint [Me] (which to our knowledge did not appear yetin print) even
claimed that he proved a result that contradicts Theorem 1.1.

The aim of this paper is to present a complete proof of Theorem 1.1
below.

Notice that we do not make any assumptions on the groups, in par-
ticular the groups need not be commutative and can be even locally finite.
See more on the subject in [Sh 664].

Theorem 1.1. [The Main Theorem] Supposes X, or itis strong limit car-
dinal of cofinalityX,.

(1) Let (G, Tmn : m < n < w) be an inverse system of groups of
cardinality less tham\ whose inverse limit i+, with 7, ,, such that
|G| < A. (7, is @ homomorphism fro@,, to G, < < v <
W = Ta,p 0 Mgy = Ta aNd7, 4 IS the identity).

(2) LetI be afinite index set. Suppose that for evesy I, (H} , 7}, , :

m < n < w) is an inverse system of groups of cardinality less than
and H/, with 7}, , be the corresponding inverse limit.

(3) Letforeveryt € 1,0!, : H. — G,, be a homomorphism such that all
diagrams commute (i.€x,, , 0 0}, = o}, o7}, , form <n < w), and
let 0!, be the induced homomorphism frdiii into G.,..

Assume that for every < X there is a sequencgf; € G, : i < )
such that fori # jandt € I = f;f;' ¢ Randol). Then there igf; €

G, :i < 2) suchthat # jandt e I= f;f;' ¢ Rando.).

Notation 1.2. Since\ has cofinalityy, we can fix\,, < A for n < w such
thatA = > __ A, foralln < w, ), is regular an@* < X,;; < A and
|Gn| + Ztel |H7tz’ S >‘n-

Denote bye, , eq: the unit elements. Without loss of generality the
groups are pairwise disjoint.
Definition 1.3. (1) Fora <wletH, =[], H, andH., =[] 5., Hs,
HSQ = Hﬁga Hﬁ
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(2) Forg € H, letlev(g) = «, forg € H! letlev(g) = « (without loss
of generality this is well defined).

(3) Fora < g <w,g € Hyletg | H, =7, 5(g9) and we say [ H is
belowg andg is abovey | H. orextendy | H.

(4) Fora<pg<w,feGgletf |G, =map(f)

We will now introduce the rank function used in the proof of Theo-
rem 1.1, itis a measure for the possibility to extend functions in Lemma 1.7
we show that it is an ultrametric valuation.

Definition 1.4. (1) Forg € H!, f € G, we say thalg, f) is a nicet-
pair if o', (g) = f | Ga.
(2) Define aranking function gkg, f) for any nicet-pair. First by induc-
tion on the ordinat (we can fixf € G), we define when tKg, f) >
« simultaneously for alh < w and everyy € Hf
(a) tk(g, f) > 0iff (g, f) is a nicet-pair
(b) rki(g, f) > ¢ for alimit ordinal iff for every 3 < § we have
rkt(gu f) > 6

(c) rki(g, f) > B+ 1iff (g, f)is anicet-pair, and letting: = lev(g)
there existg/ € H},,, extendingg such thatrk(¢, f) > 3

(d) rki(g, f) > —1.

(3) Fora an ordinal or—1 (stipulating—1 < a < oo for any ordinalx)
we have rk(g, f) = aiffrk;(g, f) > canditis false that rKg, f) >
a+ 1.

(4) rki(g, f) = o< iff for every ordinala we have rk(g, f) > «.

The following two claims give the principal properties of (& f).
Claim 1.5. Let(g, f) be a nicet-pair.

(1) The following statements are equivalent:
(@) rki(g, f) = o0
(b) there existg’ € H! extending such that! (¢') = f.
(2) Ifrke(g, f) < oo, thenrk(g, f) < A™.
(3) If ¢’ is a proper extension af and(¢’, f) is also a nicet-pair then

(a) rkt(glv f) S rkt(g7 f) and
(b) if 0 < rke(g, f) < oo then the inequality is strict.

Proof. (1) (a) = (b): Letn be such thay € H. Itis enough to define
gr € Hf for k < w, k > n such that
) gn=y
(ii) gx is belowgy, thatismy ;. (gk+1) = gx @nd
(iii) rk(gxr1, f) = o0:
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Let ¢’ := limgy it is as required. The definition is by induction on
k > n. Fork = nletgy = g. Fork > n, supposey, is defined. By
(iii) we have rk(gx, f) = oo, hence there exists € Hj_, extending
gr such that rk(¢g*, f) = oo, and letgy.1 := g*.

(b) = (a): Sinceg is below¢’, it is enough to prove by induc-
tion on« that for everyk > n wheng, := ¢ | H! we have that
rkt(g7 f) 2 2

Fora = 0, sinced! (¢) = f | G, clearly for everyk we have
oi(gr) = f | G S0(gx, f) is @ nicet-pair.

For limit «, by the induction hypothesis for evety< « and every
k we have rk(gx, f) > 3, hence by Definition 1.4(2)(b), rkgx, ) >
[0S

Fora = 3 + 1, by the induction hypothesis for eveky> n we
have rk(gx, f) > (. Letky > n be given. Sincey, is belowgy, 1
and rk(gx,+1, f) > 3, Definition 1.4(2)(c) implies that tKgx,, f) >
B+ 1; i.e. for everyk > n we have rk(gx, f) > a. So we are done.

(2) Letg € H! andf € G, be given. It is enough to prove that if
rki(g, f) > AT thenrk(g, f) = oo. Using part (1) it is enough to
find ¢ € H! such thay is belowg’ andf = o/ (¢').

We define by induction oh < w, g, € HY,,, such thay, is below
g1 and rk(gr, f) > A*. Fork = Oletg, = g. Fork + 1, for
everya < At, as rk(g, f) > a by 1.4(2)(c) there igx o € Griria
extendingg;, such that rk(gx.., f) > «. But the number of possible
Gha 1S < |H 0 q| < 2M+s+1 < AT hence there are a functignand
a setS C \* of cardinality \™ such thatx € S = g, = g. Now

takegri1 = g.
(3) Immediate. O 5
Lemma1.6. (1) Let(g,f) be a nicet-pair. Then we have flg, f) <
rk(g~", f7).

(2) For every nicet-pair (g, f) we have rkg, f) = rk(g™t, f71).

Proof. (1) Byinduction omv provethatrkg, f) > a = rk(g~*, f~') >
« (see more details in Lemma 1.7).
(2) Apply part (1) twice. Uie
In the following lemma we show that the rank is indeed ultrametric
(ordinal valued).
Lemma 1.7. Letn < w be fixed, and letg,, f1), (g2, f2) be nicet-pairs
with g, € HZ(K = 1,2).

(1) If (g1, f1) and(gs, f) aret-nice pairs, ther{g g-, f1 f2) is a nice pair
and rk(g192, fi.f2) > Min{rki(ge, fo) : € = 1,2}.
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(2) Letn, (f1,91) and(f2, go) be as above. If Kg1, f1) # rki(gz, fo),
then rk(g1gq, f1.f2) = Min{rk;(ge, f¢) : £ = 1,2}.

Proof. (1) Itis easy to show that the pairisice. We show by induc-
tion on« simultaneously for alh < w and everyy;, go € H! that
Min{rk(ge, fo) : £ = 1,2} > a implies that rKg, g2, f1f2) > .

Whena = 0 or a is a limit ordinal this is easy. Suppose= 3+ 1
and that rkg,, f,) > ( + 1; by the definition of rank fo¥ = 1,2
there existg;, € H, ,, extendingy, such thatg;, f,) is a nice pair and
rki(gy, fe) > (. By the induction assumption iy} g5, f1f2) > B.
Hencey; ¢, is as required in the definition of flg1 g2, f1f2) > B+ 1.
(2) Suppose without loss of generality thatgk f1) < rk(gs, f2), let
ay = k(g1 fi) andlety = rki(go, f2). By part(1), rk(g1 92, f1f2) >
a1, by Proposition 1.6, tKg; *, f; ) = o > ;. So we have

ar = tki(g1, f1) = tKe(g19295 ", fifafo )
> Min{rk;(g192, f1f2), tke(g3 ", f3 1)}
= rki(9192, f1f2) = .

Hence the conclusion follows§l, »

Definition 1.8. (1) Lety < A andleta = (o : t € I) whereq, is an
ordinal less or equal tv". We say thaf = (f; : i < u) u-exemplifies
a €T, (or f is ap-witness fora € T,,) iff
(a) fz S Gw andfi f Gn = €ag,
(b) fori # j andt € I we have rlg(eH;sl,fif]fl) < oy (possibly is
—1).
(2) Let

[,=<%a: a={a:tel),a anordinal < \*,
and for every, < )\ there is a sequena¢; : i < u)
which pu-exemplifiesa € Fn}.
(3) A, ={ael,: :fornogwehaves € T, < a(ie. Aoy, 0 <
a;) andg # a}.
Claim1.9. (1) I',, is not empty. B B
(2) A, isnotempty in factva € I',,)(38 € A,) (B < a).

Proof. (1) Leta; = sup{rk,(g, f)+1:9g € HL, f € G*and rk(g, f) <
oo}, by 1.5(2), this is a supremum on a set of ordinala™ (as—1+
1 =0) hence is an ordinat A*. So(«; : t € I) is as required.
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(2) If not, then choose by induction dn< w a sequencg’ € T, such
that3° = a, 54! < B¢, B! +# 3% So for eacht € I, the sequence
(B¢ : ¢ < w) is a non-increasing sequence of ordinals hence is even-
tually constant, say for sonte < w we havel € [(,,w) = 8¢ = 3},
so adl is finite, £(x) = max{/, : t € I} < w, sop"™ = g+l a
contradiction. 0o

Claim1.10. (1) If u < g/ and(f; : i < '), '-exemplifya € T',, and

h:p— p/is one to one, thefy : i < p), p-exemplifiesy € I,,.

(2) If (f; : i < p),p-exemplifya € T, and f; | G, = ffori < p,
then(f;f; ' : i < p), u-exemplifya € T, 1.

3) Ifael,, thena € I',4;4.

(4) If @ € A, then someg < a belongs ta\,, . ;.

(5) Forsomen < wthereisa € (,,~,, An.

(6) In clause (b) of Definition 1.8(1) it suffices to deal witk ;.

Proof. (1) Trivial.
(2) Clearly.
Clause (a):
(fio f(;1> [ Gry = Uruf+1(fif(;1) = (U;zuH(fi))(Uer(fO))_l =
ffil = €Gpy1-
Clause (b):
Fori # j andt € I, note that
(fifo (fifeh) = fif(]_lfij_l = fifj_l
SO we can use the assumption.

(3) So lety < X\ and we should find a-witness fora € I',,,;. We can
choose/ suchthap x |G,41| < i/ < A. Asa € T, clearly thereis a
p'-witness(f; : i < u') for it. Now the number of possiblg | G4
is < |Gp41] (really) ever< |Rang,+1.,) N Ker(m, ,,+1)|) hence for
somef € G,,1 andY C p/ we have:|Y| > pand
i€Y = fi | Gpy1 = f. Byrenaming{i : i < u} C Y, now
(fifo i < p) is ap-witness by part (1).

(4) Follows by 1.10(2) and 1.9(2).

(5) By 1.10(3) by the well foundedness of the ordinals (as in the proof of
1.9(2),(8).

(6) Because fof < j, (f;f; ')~ = (fif; ') and 1.6(2). O 10

Convention 1.11. By renaming and 1.10(4), without loss of generality €
A, for everyn.

Claim 1.12. Eachqj(t € I) is a non-successor ordinal (i.e. limit or zero).
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Proof. Fix n < w.

Assumes € Iis a counterexample. S& = 5* + 1,5 > 0. Let
B = (B : t € I) be defined as follows3, is o if t # sandiss* if t = s. We
shall prove thati € T, thus getting a contradiction. So let< A and we
shall find au-witness for3 € T',,,;. Let i’ be such that|G,, 1| < i/ < A.
Asa* € T, (see 1.11) there is @-witness(f; : i < p') fora* € T, as
earlier without loss of generality < 1 = f; | G,.1 = f for somef. We
shall prove thatfif, ' : i < ) isau-witness ford € T, ;. Letf/ = f;f;*
fori < p.

Clause (a):

T Ghp = (fofo_l) I Ghy1 = eq,,, because; | G = fo |
Gyt

Clause (b):

Leti # j < u. If t € I\{s} then
tki(ec, . [I(F) 1) = tKileg,, fif; 1) < thilea,, fif;h) < of = B
(Why? By group theory, by 1.5(8)), by choice off, by choice of3;, re-
spectively).

If t = s,thenrk(eq,, fif; ') < tki(eg,,,. fif; ') by 1.5(3)8), and
proceed as above. U2

Notation 1.13. Fora < wletT,, := [],_, M. T =[]
ness used).

T, (note: tree-

n<w

Claim 1.14. There are fom < w, a sequenceéf,; : i < \,) and an ordinal
v¢ < af (o is the ordinal from 1.11) such that

(1) fni € Gu, fri | Gny1 = eq,,, forall i < A,;

(2) for eacht € I for everyh € H! andi < j < )\, we have:
ke (R, fuifag) < Vs

(3) rke(emy, fuifny) =V fori<j <,
andy,_; > 0= rk(ent, fmfn_jl) > Y1

(4) vt <Abifay >0andy, = —1if of = 0.

We delay the rest of proof for a while.

Convention 1.15. Let~!, g, (n < w,i < A\,) be asin 1.14.
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Definition 1.16. We setf, = g,—1y(n—1)9n—2n(n—2) - - - Jom(o) fOr n € T5,.
Then definef, for n € T, as follows: f,, is the element oy’ satisfying
fn I Gn = fym- Itis well defined by:

Fact1.17. (1) Forn e T, andm < n < w we have

fn[nr n+l — fn f n+1-

(2) Forn € T, we havef, € G, is well defined (as the inverse limit of
(fom 1 Gnin <w),s0n <w — f, [ Gy = fym.

Proof. (1) Asm,, is a homomorphism it is enough to prove
(forn(fpm) ™) | Gns1 = eq,..,, hence it is enough to prove
n<k<w= (funfp) | Gun = eq,,, which follows from
k<w= f, rkfn_[%kﬁ-l) | Gri1 = eq,,,, Which means
Jemt) | Grs1 = eq,,, Which holds by clause (a) of 1.11.

(2) Follows by part (1) and-,, being an inverse limit. Oy 47

Proposition 1.18. Letn, v € T,,. If n # vandt € I, thenf, f, ' ¢ o! (H.).

Proof. Suppose for the sake of contradiction that for sgnee H!, we have
ol(g9) = fnfu_l-

Let & be minimal suchthag [ £ = v | k,n(k) # v(k), without loss
of generalityn(k) < v(k). Forl > k let ¢ be rlg( I HE, foresn £ e+1))

We will reach a contradiction by showing that> k = 0 < ¢ < 4 and
0>k =+ < ¢,

Note

(#)1if € < o < w, thenrk(g [ H, fy1aforn) > 0asol(g | HE) = o'(g) |
= (fuf;") | Ffand 1.17.

For¢ = k, we show that® < +!. Leti = n[k],j = v[k]. By
the choice ofk,i # j. In this casefnr(gﬂ)fy‘r@l) = fkm(k)f,;;(k) by the
minimality of k& and, of coursefk,n(k)f,;;(k) = frifi;» hencet® = rky(g |
Hy, frifij) < 7 by clause (b) of 1.14. Note: if; = 0, then), = —1
form < whences® = —1, but(f, ;") I Gk = (forern) o iaeny) | G
immediate contradiction. So assumg> 0 hence) <~/ <! ..

Now we proceed inductively. We assume tffax ¢ and show that
¢t < ¢ Leti = gl + 1,5 = v[¢ + 1], and let
C= tki(g | Hiyy, fytesn foesny)- Observe:
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(#)2 ¢ < k(g [ Hf, foresn foesny) = € [why? by 1.5(3) andx),
above.]

So
(*)3 gt = k(g [Hg+l7f7)r(£+2)fu_féé+2))
= k(g I Hipy, fervmern(Fates foyepn) v mesn)

= tki(ens, (9 1 Hipen, s fervmery (Pt foieon) feruen)-

Now:
(%)4 rkt<€H§+17 fer1me+1)) > 7 (Why? by clause (c) of 1.14)

(*)s rki(g | Hi 4, fnr(e+1)fy_r%e+1)) =<k <l <o

(why? the equality by the definition éf, the first inequality by the induction
hypothesis and the second inequality was proved abové @ok), the last
inequality by 1.14 clause (d)

(*)s Ke(em:, |+ Ger1,(e+1)) > 72 (Why? by clause (c) of 1.14).

041

Hence by 1.5(3)

T Ferimo (Farer Foyesn) v wesn)
= I’k(g [Gﬁﬂyfnr(ﬂl)fy_[(ul))-

(*)7 rkt(€H§+1(9 [ Hiy)em

Together we get the induction demand for 1. 0 15
Before proving 1.14 and finishing we prove

Claim 1.19. Assume-1 < 3, < o fort e Tandn < wandp < A. Then
we can find(f; : i < ) such that

(1) fi e Gw andf’b r Gn—i—l = 6Gn+1
(2) tEIandZ?éjé rkt(erﬂfifj_l) € [ﬁt7a>tk)
(3) t e Tandi < p = rki(en, fi) € [B;, af).

Proof. For eachs € T we define3® = (3; : t € I) by:

s Joap iftFs
ﬁt{ﬁt ift=s

S0 < @, # a*, soasa” € X,.A, necessarily?® ¢ I',, hence
for someu® < A there is nqu®-witness for3* andn (check the definition of
r,).
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Letuy < Abe> p+ max{y®: s eI}.

Lety < X be large enough (so that it will be possible to use the finite
Ramsey theorem whexn = X, and when\ > X, the Erddbs Rado theorem
we require thak — (u1)2 whereg = 2= ¢« Hly,

Let (f; : i < x) be ax-witnessa € T',, and everv € T',, ;. For
eacht € I, h € H!, define the two place functiof, ;, from [x]? to {0, 1} for
1< j<ylet

0 if rkt(hafifj_l)<ﬁt
1 Otherwise.

E,h{ihj} = {

Define the two-place functioh from [x]?: Fori < j < yletF{i,j} =
(Fyp(iyj):t €l h e HL).

Clearly|Rang F)| < 2% Hxl,

Hence an application of one of the above partition theorems provides
us with aset” C x, |Y'| = 1 such thatF | [Y]? is constant. Without loss
of generalityY” = .

For eachs € I, clearly (fif,! : i < u®) is not au’-witness for
3%, but the only thing that may go wrong is the inequality, j < p° =
rko(ems, fif; ') < s, soforsome < j < p*we havethatriey;, f;f; ") >
(s holds, hence

(x) selandi < j < = rKi(emy, fif; ") = Bs

This means clause (b) holds and clause (a) by definitidif;afi <
X) is ax-witness fora € T',. Clause (c) follows. Saf; : i < u)is as
required. Lo

Proof. of 1.14

Stipulatey’ : if «f > 0itis 0, otherwise is it-1. Assumen < w
and(v!_, : t € I) iswell definedy!,_; < af. Lety.* be:ql | + 1if o is
a limit ordinal andy!._, = —1 otherwise (i.ea; = 0, see 1.12). Note that
to construct the family{ f,,; : i < A,,} we will combine Claim 1.19 with a
second application of the Ebd Rado Theorem.

Letd = (21HalxIHaly » |I) andy < A be such thak — (), + 2)}
(exists by Ramsey theoremif= X, and by Erds Rado theorem X > X,).
Apply Claim 1.19 to get a family{ f; : i < x} satisfying:
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(D) fi I Goyr = eq, iy
(2) fori # j andt € I, we havey,”, < rky(egy, fif; ") < o

Fort € 1,§ = (91,92), 91,92 € H! such that! (g) = eg, define
a coloringF; ; of [I]* by two colors according to the following scheme: for

e<(<E&<y,let
red it rke(gy, fi /7)< k(e fofY):
Ft ’Sy = H ‘ — : -
o188} {green it rke(gn, fi f1) > tki(g2, fofe)

By the Ramsey theorem (X = X;) or Erdds Rado Theorem ik > X,
there is a set/ C y, otp(J) = A, + 2 such that each coloring is constant
on[J]?. Let the value off} ; on [J]* be denoted; ;. Observe that, ; is
nevergreenas this would produce a descendingequence of ordinals as
if ey € Jep < gpyq for £ < w, thenrk(g, fgef;zil) > 1k(g, fmlf;g;), SO
(rki(g, [, f2L ) 1 € < w) is strictly decreasing.

€20+1

Lete(x) = Min(J)andJ, = {¢ € J : otple N J) < A} and
« is the \,,-th member ofJ, 3 the (A, + 1)-th member of/ and lety, =
rki(ems, fof5 "), by clause (b) abovel* <4l < afsoa; =0 =1 = -1
anda; > 0=~ | <AL,

We claim that{ i3, : i € Jo} (remember; C J,[Jo| = A,)
provides a set that can play the role{gf,; : i < A,,}. We note

(%)1 rke(g, fafc‘l) < Affore < ¢in Jy [why? clearlya < § < e < (¢
are inJ hence by the choice of we have rk(g, fgfc‘l) < rki(g, fofah) <
rki(g, faf/6_1> - ’772]

Now clauses (1), (4) of 1.14 holds by clause (1) above, clause (3) of
1.14 holds by(x); and clause (4) of 1.14 holds by the choice of {tie\We
are left with clause (2). Let € H!, as above clearly fof < ¢ < ¢ < ¢£in
J we have rk(h, f.f-) < tki(h, fcf'). Hence forTe < ¢ < £in J we
have

W= rkieny, fof7)
= k(R (fef D (fefeH ™)
> Min{rk(h, f-f1), tke(h 78 (fefe ) 7'}
= Min{rki(h, f-f1), tke(h, fofh)}

> Min{rk;(h, frf1), tke(h, frfh))
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= rk,(h, frfh).

So giving also clause (2) of 1.14. Oq1a [y 1

Remark 1.20. The result about the cardinality @fxt,(G,Z) can be de-
rived from Theorem 1.1 using the following definition (which constructs an
isomorphic group ozt (G, Z)).

Definition 1.21. Given an abelian grou@, letG* := Hom(G, Z) and for a
primep denote byG? the groupHom (G, Z /pZ). Forg € G* letg — g/pbe
the natural homomorphism frog#* into G*. By G*/p denote the subgroup
of G? which is the image @* /p underg — ¢/p. Finally

Ext,(G,Z) .= G?/(G"/p).

Recall that when\ is X, or strong limit of cofinalityX, then \* =
22,

The groupH,, corresponde to the subgrodfi /p and thes’s are in-
clusions.

We have learned from Paul Eklof that Christian U. Jensen in his book
[Jen] have a proof of Theorem 1.0 of [GrSh] for the case thatX,,.
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